Abstract

As a material that exhibits a high refractive index and an excellent chemical stability, Ta2O5 is widely used in the microelectronics and chemical industries. In this study, we analyzed the effect of plasma shock waves on Ta2O5 thin films. The experimental results showed that the damage characteristics of the film include thermal ablation, surface cracks, and peeling off from the substrate owing to the repeated action of the pulse. Coating characterization before and after exposure to laser plasma was performed using UV-Vis spectroscopy, energy dispersive spectroscopy (EDS), Raman spectroscopy, and X-ray diffraction. With the increase in the light absorbed by the ablated products, the transmittance of the film decreased after damage, and the Raman spectrum and X-ray diffraction pattern of the sample indicated that the film changes from an amorphous to a crystalline structure owing to the action of the high-temperature and high-pressure plasma. The EDS analysis results indicated that the oxygen content in the film decreases because of the damage inflicted to its structure.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Effect of nanosecond laser pre-irradiation on the femtosecond laser-induced damage of Ta2O5/SiO2high reflector

Shunli Chen, Yuan’an Zhao, Dawei Li, Hongbo He, and Jianda Shao
Appl. Opt. 51(10) 1495-1502 (2012)

Strategies to increase laser damage performance of Ta2O5/SiO2 mirrors by modifications of the top layer design

Drew Schiltz, Dinesh Patel, Cory Baumgarten, Brendan A. Reagan, Jorge J. Rocca, and Carmen S. Menoni
Appl. Opt. 56(4) C136-C139 (2017)

Extended x-ray absorption fine structure measurements on asymmetric bipolar pulse direct current magnetron sputtered Ta2O5 thin films

S. Maidul Haque, Pankaj R. Sagdeo, D. D. Shinde, J. S. Misal, S. N. Jha, D. Bhattacharyya, and N. K. Sahoo
Appl. Opt. 54(22) 6744-6751 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C.-H. Kao, H. Chen, and C.-Y. Chen, “Material and electrical characterizations of high-k Ta2O5 dielectric material deposited on polycrystalline silicon and single crystalline substrate,” Microelectron. Eng. 138, 36–41 (2015).
    [Crossref]
  2. C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
    [Crossref]
  3. Y.-N. Wu, L. Li, and H.-P. Cheng, “First-principles studies of Ta2O5 polymorphs,” Phys. Rev. B 83(14), 144105 (2011).
    [Crossref]
  4. Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
    [Crossref]
  5. R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
    [Crossref]
  6. J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
    [Crossref]
  7. J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
    [Crossref]
  8. G. Q. Lo, D. L. Kwong, and S. Lee, “Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films,” Appl. Phys. Lett. 60(26), 3286–3288 (1992).
    [Crossref]
  9. J. J. Yu, J. Y. Zhang, and I. W. Boyd, “UV annealing of ultrathin tantalum oxide films,” Appl. Surf. Sci. 186(1-4), 57–63 (2002).
    [Crossref]
  10. L. Liang, X. Yao, Z. Lei, Y. Sheng, W. Dong, and Y. Sun, “Annealing effect on the optical properties and laser-induced damage resistance of solgel-derived ZrO2 films,” J. Opt. Soc. Am. B 24(5), 1066–1074 (2007).
    [Crossref]
  11. R. R. Krishnan, K. G. Gopchandran, V. P. MahadevanPillai, V. Ganesan, and V. Sathe, “Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films,” Appl. Surf. Sci. 255(16), 7126–7135 (2009).
    [Crossref]
  12. I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
    [Crossref]
  13. C. Joseph, P. Bourson, and M. D. Fontana, “Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy,” J. Raman Spectrosc. 43(8), 1146–1150 (2012).
    [Crossref]
  14. R. S. Devan, W.-D. Ho, S. Y. Wu, and Y.-R. Ma, “Low-temperature phase transformation and phonon confinement in one-dimensional Ta2O5 nanorods,” J. Appl. Crystallogr. 43(3), 498–503 (2010).
    [Crossref]
  15. T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
    [Crossref]
  16. M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
    [Crossref]
  17. C.-H. Lu and C.-H. Wu, “Low-temperature crystallization of tantalum pentoxide films under elevated pressure,” J. Eur. Ceram. Soc. 26(13), 2753–2759 (2006).
    [Crossref]
  18. S.-j. J. Wu, B. Houng, and B.-s. Huang, “Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method,” J. Alloys Compd. 475(1-2), 488–493 (2009).
    [Crossref]
  19. T. X. Phuoc, “An experimental and numerical study of laser-induced spark in air,” Opt. Laser. Eng. 43(2), 113–129 (2005).
    [Crossref]
  20. X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microwave Opt. Technol. Lett. 38(1), 75–79 (2003).
    [Crossref]
  21. H. Lim and D. Kim, “Optical diagnostics for particle-cleaning process utilizing laser-induced shockwave,” Appl. Phys. A 79(4-6), 965–968 (2004).
    [Crossref]
  22. H. Lim, D. Jang, D. Kim, J. W. Lee, and J.-M. Lee, “Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process,” J. Appl. Phys. 97(5), 054903 (2005).
    [Crossref]
  23. Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
    [Crossref]
  24. J. Capilla, J. Olivares, M. Clement, J. Sangrador, E. Iborra, and A. Devos, “Characterization of amorphous tantalum oxide for insulating acoustic mirrors,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, San Francisco, CA, USA, (2011).
  25. C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
    [Crossref]

2017 (2)

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

2016 (1)

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

2015 (3)

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

C.-H. Kao, H. Chen, and C.-Y. Chen, “Material and electrical characterizations of high-k Ta2O5 dielectric material deposited on polycrystalline silicon and single crystalline substrate,” Microelectron. Eng. 138, 36–41 (2015).
[Crossref]

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

2012 (2)

C. Joseph, P. Bourson, and M. D. Fontana, “Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy,” J. Raman Spectrosc. 43(8), 1146–1150 (2012).
[Crossref]

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

2011 (4)

T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
[Crossref]

M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
[Crossref]

Y.-N. Wu, L. Li, and H.-P. Cheng, “First-principles studies of Ta2O5 polymorphs,” Phys. Rev. B 83(14), 144105 (2011).
[Crossref]

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

2010 (1)

R. S. Devan, W.-D. Ho, S. Y. Wu, and Y.-R. Ma, “Low-temperature phase transformation and phonon confinement in one-dimensional Ta2O5 nanorods,” J. Appl. Crystallogr. 43(3), 498–503 (2010).
[Crossref]

2009 (2)

R. R. Krishnan, K. G. Gopchandran, V. P. MahadevanPillai, V. Ganesan, and V. Sathe, “Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films,” Appl. Surf. Sci. 255(16), 7126–7135 (2009).
[Crossref]

S.-j. J. Wu, B. Houng, and B.-s. Huang, “Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method,” J. Alloys Compd. 475(1-2), 488–493 (2009).
[Crossref]

2007 (1)

2006 (1)

C.-H. Lu and C.-H. Wu, “Low-temperature crystallization of tantalum pentoxide films under elevated pressure,” J. Eur. Ceram. Soc. 26(13), 2753–2759 (2006).
[Crossref]

2005 (2)

T. X. Phuoc, “An experimental and numerical study of laser-induced spark in air,” Opt. Laser. Eng. 43(2), 113–129 (2005).
[Crossref]

H. Lim, D. Jang, D. Kim, J. W. Lee, and J.-M. Lee, “Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process,” J. Appl. Phys. 97(5), 054903 (2005).
[Crossref]

2004 (1)

H. Lim and D. Kim, “Optical diagnostics for particle-cleaning process utilizing laser-induced shockwave,” Appl. Phys. A 79(4-6), 965–968 (2004).
[Crossref]

2003 (2)

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microwave Opt. Technol. Lett. 38(1), 75–79 (2003).
[Crossref]

J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
[Crossref]

2002 (1)

J. J. Yu, J. Y. Zhang, and I. W. Boyd, “UV annealing of ultrathin tantalum oxide films,” Appl. Surf. Sci. 186(1-4), 57–63 (2002).
[Crossref]

1992 (1)

G. Q. Lo, D. L. Kwong, and S. Lee, “Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films,” Appl. Phys. Lett. 60(26), 3286–3288 (1992).
[Crossref]

Bartosik, M.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Bian, B. M.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microwave Opt. Technol. Lett. 38(1), 75–79 (2003).
[Crossref]

Bourson, P.

C. Joseph, P. Bourson, and M. D. Fontana, “Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy,” J. Raman Spectrosc. 43(8), 1146–1150 (2012).
[Crossref]

Boyd, I. W.

J. J. Yu, J. Y. Zhang, and I. W. Boyd, “UV annealing of ultrathin tantalum oxide films,” Appl. Surf. Sci. 186(1-4), 57–63 (2002).
[Crossref]

Capilla, J.

J. Capilla, J. Olivares, M. Clement, J. Sangrador, E. Iborra, and A. Devos, “Characterization of amorphous tantalum oxide for insulating acoustic mirrors,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, San Francisco, CA, USA, (2011).

Chang, S. J.

J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
[Crossref]

Chen, C.-Y.

C.-H. Kao, H. Chen, and C.-Y. Chen, “Material and electrical characterizations of high-k Ta2O5 dielectric material deposited on polycrystalline silicon and single crystalline substrate,” Microelectron. Eng. 138, 36–41 (2015).
[Crossref]

Chen, H.

C.-H. Kao, H. Chen, and C.-Y. Chen, “Material and electrical characterizations of high-k Ta2O5 dielectric material deposited on polycrystalline silicon and single crystalline substrate,” Microelectron. Eng. 138, 36–41 (2015).
[Crossref]

Chen, J. F.

J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
[Crossref]

Chen, X.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microwave Opt. Technol. Lett. 38(1), 75–79 (2003).
[Crossref]

Cheng, H.-P.

Y.-N. Wu, L. Li, and H.-P. Cheng, “First-principles studies of Ta2O5 polymorphs,” Phys. Rev. B 83(14), 144105 (2011).
[Crossref]

Clement, M.

J. Capilla, J. Olivares, M. Clement, J. Sangrador, E. Iborra, and A. Devos, “Characterization of amorphous tantalum oxide for insulating acoustic mirrors,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, San Francisco, CA, USA, (2011).

Dai, S.

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Daniel, R.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Deng, J.

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Devan, R. S.

R. S. Devan, W.-D. Ho, S. Y. Wu, and Y.-R. Ma, “Low-temperature phase transformation and phonon confinement in one-dimensional Ta2O5 nanorods,” J. Appl. Crystallogr. 43(3), 498–503 (2010).
[Crossref]

Devos, A.

J. Capilla, J. Olivares, M. Clement, J. Sangrador, E. Iborra, and A. Devos, “Characterization of amorphous tantalum oxide for insulating acoustic mirrors,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, San Francisco, CA, USA, (2011).

Dong, W.

Elizalde Galindo, J. T.

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

Enríquez Carrejo, J. L.

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

Euchner, H.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Fan, H.

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Fan, W.

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

Farias Mancillas, J. R.

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

Feng, G.

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Fontana, M. D.

C. Joseph, P. Bourson, and M. D. Fontana, “Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy,” J. Raman Spectrosc. 43(8), 1146–1150 (2012).
[Crossref]

Ganesan, V.

R. R. Krishnan, K. G. Gopchandran, V. P. MahadevanPillai, V. Ganesan, and V. Sathe, “Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films,” Appl. Surf. Sci. 255(16), 7126–7135 (2009).
[Crossref]

Glans, P. A.

T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
[Crossref]

Gopchandran, K. G.

R. R. Krishnan, K. G. Gopchandran, V. P. MahadevanPillai, V. Ganesan, and V. Sathe, “Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films,” Appl. Surf. Sci. 255(16), 7126–7135 (2009).
[Crossref]

Gu, Q.

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

Guo, J.

T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
[Crossref]

Han, J.

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Hawkins, A. R.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

Ho, W.-D.

R. S. Devan, W.-D. Ho, S. Y. Wu, and Y.-R. Ma, “Low-temperature phase transformation and phonon confinement in one-dimensional Ta2O5 nanorods,” J. Appl. Crystallogr. 43(3), 498–503 (2010).
[Crossref]

Holec, D.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Hollerweger, R.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Houng, B.

S.-j. J. Wu, B. Houng, and B.-s. Huang, “Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method,” J. Alloys Compd. 475(1-2), 488–493 (2009).
[Crossref]

Hu, R.

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Huang, B.-s.

S.-j. J. Wu, B. Houng, and B.-s. Huang, “Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method,” J. Alloys Compd. 475(1-2), 488–493 (2009).
[Crossref]

Hushur, A.

M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
[Crossref]

Iborra, E.

J. Capilla, J. Olivares, M. Clement, J. Sangrador, E. Iborra, and A. Devos, “Characterization of amorphous tantalum oxide for insulating acoustic mirrors,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, San Francisco, CA, USA, (2011).

Imai, H.

T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
[Crossref]

Jang, D.

H. Lim, D. Jang, D. Kim, J. W. Lee, and J.-M. Lee, “Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process,” J. Appl. Phys. 97(5), 054903 (2005).
[Crossref]

Jenkins, M.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

Joseph, C.

C. Joseph, P. Bourson, and M. D. Fontana, “Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy,” J. Raman Spectrosc. 43(8), 1146–1150 (2012).
[Crossref]

Kao, C.-H.

C.-H. Kao, H. Chen, and C.-Y. Chen, “Material and electrical characterizations of high-k Ta2O5 dielectric material deposited on polycrystalline silicon and single crystalline substrate,” Microelectron. Eng. 138, 36–41 (2015).
[Crossref]

Keckes, J.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Kim, D.

H. Lim, D. Jang, D. Kim, J. W. Lee, and J.-M. Lee, “Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process,” J. Appl. Phys. 97(5), 054903 (2005).
[Crossref]

H. Lim and D. Kim, “Optical diagnostics for particle-cleaning process utilizing laser-induced shockwave,” Appl. Phys. A 79(4-6), 965–968 (2004).
[Crossref]

Krishnan, R. R.

R. R. Krishnan, K. G. Gopchandran, V. P. MahadevanPillai, V. Ganesan, and V. Sathe, “Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films,” Appl. Surf. Sci. 255(16), 7126–7135 (2009).
[Crossref]

Krywka, C.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Kwong, D. L.

G. Q. Lo, D. L. Kwong, and S. Lee, “Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films,” Appl. Phys. Lett. 60(26), 3286–3288 (1992).
[Crossref]

Leake, K.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

Lee, J. S.

J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
[Crossref]

Lee, J. W.

H. Lim, D. Jang, D. Kim, J. W. Lee, and J.-M. Lee, “Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process,” J. Appl. Phys. 97(5), 054903 (2005).
[Crossref]

Lee, J.-M.

H. Lim, D. Jang, D. Kim, J. W. Lee, and J.-M. Lee, “Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process,” J. Appl. Phys. 97(5), 054903 (2005).
[Crossref]

Lee, S.

G. Q. Lo, D. L. Kwong, and S. Lee, “Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films,” Appl. Phys. Lett. 60(26), 3286–3288 (1992).
[Crossref]

Lei, Z.

Li, D.

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Li, D.-W.

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Li, G.

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Li, L.

Y.-N. Wu, L. Li, and H.-P. Cheng, “First-principles studies of Ta2O5 polymorphs,” Phys. Rev. B 83(14), 144105 (2011).
[Crossref]

Li, Y.

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

Liang, L.

Liaw, U. H.

J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
[Crossref]

Lim, H.

H. Lim, D. Jang, D. Kim, J. W. Lee, and J.-M. Lee, “Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process,” J. Appl. Phys. 97(5), 054903 (2005).
[Crossref]

H. Lim and D. Kim, “Optical diagnostics for particle-cleaning process utilizing laser-induced shockwave,” Appl. Phys. A 79(4-6), 965–968 (2004).
[Crossref]

Liu, C. H.

J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
[Crossref]

Liu, J.-T.

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Liu, S.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

Lo, G. Q.

G. Q. Lo, D. L. Kwong, and S. Lee, “Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films,” Appl. Phys. Lett. 60(26), 3286–3288 (1992).
[Crossref]

Lu, C.-H.

C.-H. Lu and C.-H. Wu, “Low-temperature crystallization of tantalum pentoxide films under elevated pressure,” J. Eur. Ceram. Soc. 26(13), 2753–2759 (2006).
[Crossref]

Lu, J.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microwave Opt. Technol. Lett. 38(1), 75–79 (2003).
[Crossref]

Ma, H.

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Ma, Y.-R.

R. S. Devan, W.-D. Ho, S. Y. Wu, and Y.-R. Ma, “Low-temperature phase transformation and phonon confinement in one-dimensional Ta2O5 nanorods,” J. Appl. Crystallogr. 43(3), 498–503 (2010).
[Crossref]

MahadevanPillai, V. P.

R. R. Krishnan, K. G. Gopchandran, V. P. MahadevanPillai, V. Ganesan, and V. Sathe, “Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films,” Appl. Surf. Sci. 255(16), 7126–7135 (2009).
[Crossref]

Manghnani, M. H.

M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
[Crossref]

Mayrhofer, P. H.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Measor, P.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

Miyoshi, S.

T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
[Crossref]

Ni, X. W.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microwave Opt. Technol. Lett. 38(1), 75–79 (2003).
[Crossref]

Niu, J.-N.

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Olivares, J.

J. Capilla, J. Olivares, M. Clement, J. Sangrador, E. Iborra, and A. Devos, “Characterization of amorphous tantalum oxide for insulating acoustic mirrors,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, San Francisco, CA, USA, (2011).

Paulitsch, J.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Perera, F. G.

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

Perez, I.

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

Phuoc, T. X.

T. X. Phuoc, “An experimental and numerical study of laser-induced spark in air,” Opt. Laser. Eng. 43(2), 113–129 (2005).
[Crossref]

Polcik, P.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Qi, J.

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Qiang, Y.

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Qiang, Y.-H.

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Rachbauer, R.

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Rodríguez, C. I.

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

Sangrador, J.

J. Capilla, J. Olivares, M. Clement, J. Sangrador, E. Iborra, and A. Devos, “Characterization of amorphous tantalum oxide for insulating acoustic mirrors,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, San Francisco, CA, USA, (2011).

Sathe, V.

R. R. Krishnan, K. G. Gopchandran, V. P. MahadevanPillai, V. Ganesan, and V. Sathe, “Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films,” Appl. Surf. Sci. 255(16), 7126–7135 (2009).
[Crossref]

Schmidt, H.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

Sekine, T.

M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
[Crossref]

Shen, Z. H.

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microwave Opt. Technol. Lett. 38(1), 75–79 (2003).
[Crossref]

Sheng, Y.

Sosa, V.

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

Stebbins, J. F.

M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
[Crossref]

Sun, S. C.

J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
[Crossref]

Sun, Y.

Tao, C.-X.

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Tsuchiya, T.

T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
[Crossref]

Wang, J.-F.

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Wang, S.

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Wang, Z.

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Wei, A.

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

Williams, Q.

M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
[Crossref]

Wu, C.-H.

C.-H. Lu and C.-H. Wu, “Low-temperature crystallization of tantalum pentoxide films under elevated pressure,” J. Eur. Ceram. Soc. 26(13), 2753–2759 (2006).
[Crossref]

Wu, J.

M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
[Crossref]

Wu, S. Y.

R. S. Devan, W.-D. Ho, S. Y. Wu, and Y.-R. Ma, “Low-temperature phase transformation and phonon confinement in one-dimensional Ta2O5 nanorods,” J. Appl. Crystallogr. 43(3), 498–503 (2010).
[Crossref]

Wu, S.-j. J.

S.-j. J. Wu, B. Houng, and B.-s. Huang, “Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method,” J. Alloys Compd. 475(1-2), 488–493 (2009).
[Crossref]

Wu, Y.-N.

Y.-N. Wu, L. Li, and H.-P. Cheng, “First-principles studies of Ta2O5 polymorphs,” Phys. Rev. B 83(14), 144105 (2011).
[Crossref]

Xu, C.

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Yamaguchi, S.

T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
[Crossref]

Yang, S.

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

Yao, X.

Yi, P.

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Yu, J. J.

J. J. Yu, J. Y. Zhang, and I. W. Boyd, “UV annealing of ultrathin tantalum oxide films,” Appl. Surf. Sci. 186(1-4), 57–63 (2002).
[Crossref]

Zhang, J. Y.

J. J. Yu, J. Y. Zhang, and I. W. Boyd, “UV annealing of ultrathin tantalum oxide films,” Appl. Surf. Sci. 186(1-4), 57–63 (2002).
[Crossref]

Zhang, Q.

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

Zhao, Y.

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

Zhou, S.

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Acta Mater. (1)

R. Hollerweger, D. Holec, J. Paulitsch, M. Bartosik, R. Daniel, R. Rachbauer, P. Polcik, J. Keckes, C. Krywka, H. Euchner, and P. H. Mayrhofer, “Complementary ab initio and X-ray nanodiffraction studies of Ta2O5,” Acta Mater. 83, 276–284 (2015).
[Crossref]

Appl. Phys. A (1)

H. Lim and D. Kim, “Optical diagnostics for particle-cleaning process utilizing laser-induced shockwave,” Appl. Phys. A 79(4-6), 965–968 (2004).
[Crossref]

Appl. Phys. Lett. (2)

Y. Zhao, M. Jenkins, P. Measor, K. Leake, S. Liu, H. Schmidt, and A. R. Hawkins, “Hollow waveguides with low intrinsic photoluminescence fabricated with Ta2O5 and SiO2 films,” Appl. Phys. Lett. 98(9), 091104 (2011).
[Crossref]

G. Q. Lo, D. L. Kwong, and S. Lee, “Metal-oxide-semiconductor characteristics of chemical vapor deposited Ta2O5 films,” Appl. Phys. Lett. 60(26), 3286–3288 (1992).
[Crossref]

Appl. Surf. Sci. (2)

J. J. Yu, J. Y. Zhang, and I. W. Boyd, “UV annealing of ultrathin tantalum oxide films,” Appl. Surf. Sci. 186(1-4), 57–63 (2002).
[Crossref]

R. R. Krishnan, K. G. Gopchandran, V. P. MahadevanPillai, V. Ganesan, and V. Sathe, “Microstructural, optical and spectroscopic studies of laser ablated nanostructured tantalum oxide thin films,” Appl. Surf. Sci. 255(16), 7126–7135 (2009).
[Crossref]

Chinese Phys. Lett. (1)

C. Xu, S. Yang, J.-F. Wang, J.-N. Niu, H. Ma, Y.-H. Qiang, J.-T. Liu, D.-W. Li, and C.-X. Tao, “Effect of oxygen vacancy on the band gap and nanosecond laser-induced damage threshold of Ta2O5 films,” Chinese Phys. Lett. 29(8), 084207 (2012).
[Crossref]

J. Alloys Compd. (2)

I. Perez, J. L. Enríquez Carrejo, V. Sosa, F. G. Perera, J. R. Farias Mancillas, J. T. Elizalde Galindo, and C. I. Rodríguez, “Evidence for structural transition in crystalline tantalum pentoxide films grown by RF magnetron sputtering,” J. Alloys Compd. 712, 303–310 (2017).
[Crossref]

S.-j. J. Wu, B. Houng, and B.-s. Huang, “Effect of growth and annealing temperatures on crystallization of tantalum pentoxide thin film prepared by RF magnetron sputtering method,” J. Alloys Compd. 475(1-2), 488–493 (2009).
[Crossref]

J. Appl. Crystallogr. (1)

R. S. Devan, W.-D. Ho, S. Y. Wu, and Y.-R. Ma, “Low-temperature phase transformation and phonon confinement in one-dimensional Ta2O5 nanorods,” J. Appl. Crystallogr. 43(3), 498–503 (2010).
[Crossref]

J. Appl. Phys. (3)

J. Han, Q. Zhang, W. Fan, G. Feng, Y. Li, A. Wei, R. Hu, and Q. Gu, “The characteristics of Ta2O5 films deposited by radio frequency pure oxygen ion assisted deposition (RFOIAD) technology,” J. Appl. Phys. 121(6), 065302 (2017).
[Crossref]

M. H. Manghnani, A. Hushur, T. Sekine, J. Wu, J. F. Stebbins, and Q. Williams, “Raman, Brillouin, and nuclear magnetic resonance spectroscopic studies on shocked borosilicate glass,” J. Appl. Phys. 109(11), 113509 (2011).
[Crossref]

H. Lim, D. Jang, D. Kim, J. W. Lee, and J.-M. Lee, “Correlation between particle removal and shock-wave dynamics in the laser shock cleaning process,” J. Appl. Phys. 97(5), 054903 (2005).
[Crossref]

J. Eur. Ceram. Soc. (1)

C.-H. Lu and C.-H. Wu, “Low-temperature crystallization of tantalum pentoxide films under elevated pressure,” J. Eur. Ceram. Soc. 26(13), 2753–2759 (2006).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Raman Spectrosc. (1)

C. Joseph, P. Bourson, and M. D. Fontana, “Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy,” J. Raman Spectrosc. 43(8), 1146–1150 (2012).
[Crossref]

Mater. Chem. Phys. (1)

J. S. Lee, S. J. Chang, J. F. Chen, S. C. Sun, C. H. Liu, and U. H. Liaw, “Effects of O2 thermal annealing on the properties of CVD Ta2O5 thin films,” Mater. Chem. Phys. 77(1), 242–247 (2003).
[Crossref]

Microelectron. Eng. (1)

C.-H. Kao, H. Chen, and C.-Y. Chen, “Material and electrical characterizations of high-k Ta2O5 dielectric material deposited on polycrystalline silicon and single crystalline substrate,” Microelectron. Eng. 138, 36–41 (2015).
[Crossref]

Microwave Opt. Technol. Lett. (1)

X. Chen, B. M. Bian, Z. H. Shen, J. Lu, and X. W. Ni, “Equations of laser-induced plasma shock wave motion in air,” Microwave Opt. Technol. Lett. 38(1), 75–79 (2003).
[Crossref]

Opt. Eng. (1)

Z. Wang, G. Feng, J. Han, S. Wang, R. Hu, G. Li, S. Dai, and S. Zhou, “Fabrication of microhole arrays on coated silica sheet using femtosecond laser,” Opt. Eng. 55(10), 105101 (2016).
[Crossref]

Opt. Laser. Eng. (1)

T. X. Phuoc, “An experimental and numerical study of laser-induced spark in air,” Opt. Laser. Eng. 43(2), 113–129 (2005).
[Crossref]

Phys. Chem. Chem. Phys. (1)

T. Tsuchiya, H. Imai, S. Miyoshi, P. A. Glans, J. Guo, and S. Yamaguchi, “X-ray absorption, photoemission spectroscopy, and Raman scattering analysis of amorphous tantalum oxide with a large extent of oxygen nonstoichiometry,” Phys. Chem. Chem. Phys. 13(38), 17013–17018 (2011).
[Crossref]

Phys. Rev. B (1)

Y.-N. Wu, L. Li, and H.-P. Cheng, “First-principles studies of Ta2O5 polymorphs,” Phys. Rev. B 83(14), 144105 (2011).
[Crossref]

Thin Solid Films (1)

C. Xu, D. Li, H. Fan, J. Deng, J. Qi, P. Yi, and Y. Qiang, “Effects of different post-treatment methods on optical properties, absorption and nanosecond laser-induced damage threshold of Ta2O5 films,” Thin Solid Films 580, 12–20 (2015).
[Crossref]

Other (1)

J. Capilla, J. Olivares, M. Clement, J. Sangrador, E. Iborra, and A. Devos, “Characterization of amorphous tantalum oxide for insulating acoustic mirrors,” in Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, San Francisco, CA, USA, (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1. Schematic of experimental setup (d = 0.2 mm).
Fig. 2.
Fig. 2. Laser plasma-induced damage morphology of Ta2O5 film after: (a) 1, (b) 3, (c) 5, (d) 8, (e) 10, and (f) 15 pulses.
Fig. 3.
Fig. 3. Laser plasma-induced damage morphology of Ta2O5 film after 20 pulses.
Fig. 4.
Fig. 4. Microstructure of the damaged areas of the Ta2O5 film: (a) and (b) region A in Fig. 3, and (c) and (d) region B in Fig. 3.
Fig. 5.
Fig. 5. Transmittance and optical band gap of Ta2O5 film before and after damage.
Fig. 6.
Fig. 6. EDS spectra of the Ta2O5 film: (a) and (b) before and (c) and (d) after damage.
Fig. 7.
Fig. 7. Raman spectra of the typical damaged and smooth areas of the Ta2O5 film.
Fig. 8.
Fig. 8. XRD patterns of the damaged and smooth areas of the Ta2O5 film.
Fig. 9.
Fig. 9. XRD patterns of the damaged area of the Ta2O5 film compared with reference Ta2O5 (PDF 18-1304) and Ta2O5 (PDF 19-1299) patterns.
Fig. 10.
Fig. 10. Relationship between shock wave pressure and propagation radius.
Fig. 11.
Fig. 11. Shock wave propagation in the air-film-substrate system.
Fig. 12.
Fig. 12. Relationship between wave front temperature and propagation distance.
Fig. 13.
Fig. 13. Band gap with (a) and without (b) oxygen vacancy of the Ta2O5 film.

Tables (1)

Tables Icon

Table 1. Elemental composition of the Ta2O5 film before and after damage.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

α h v = A ( h v E g ) 2
ln ( 1 / T ) = α d
R ( t ) = M 0 c t [ 1 ( 1 1 M 0 ) exp ( α ( R 0 c t ) 3 / 5 ) ] + R 0
U ( t ) = d R d t = M 0 c [ 1 ( 1 1 M 0 ) exp ( α ( R 0 c t ) 3 / 5 ) ( 1 + 3 5 α ( R 0 c t ) 3 / 5 ) ]
t = ( 2 5 c ) 5 / 3 ( Q α ρ 0 ) 1 / 3 M 5 / 3 ( 1 + β M 2 ) ,
β = ω ( N + 1 ) ( N + 2 ) / N ( 2 + 3 N ) .
P = 2 γ + 1 ρ 0 U 2 [ 1 γ 1 2 γ M 2 ] ,
R = ρ 2 C 2 cos θ 1 ρ 1 C 1 2 C 2 2 sin 2 θ 1 ρ 2 C 2 cos θ 1 + ρ 1 C 1 2 C 2 2 sin 2 θ 1
T = 2 ρ 2 C 2 cos θ 1 ρ 2 C 2 cos θ 1 + ρ 1 C 1 2 C 2 2 sin 2 θ 1
σ r = | R | σ i , σ t = | T | σ i
ρ 1 = ρ 0 ( γ + 1 ) / ( γ 1 + 2 M s 2 )
T = P / ρ 1 R

Metrics