Abstract

Recent advances in flexible electronics have highlighted the importance of high throughput, digital additive microfabrication techniques. In this work, we demonstrate the combination of laser printing and laser sintering of a novel copper nanoparticle ink onto flexible substrates in order to produce oxide free conductive copper patterns in ambient atmospheric conditions. The printed patterns exhibit high reproducibility, very low resistivity (about 2x bulk), and negligible oxidation according to Raman spectroscopy. The process has been employed for the fabrication of an on-chip antenna on a flexible substrate for use in combination with a flexible circuit, in applications where a small form factor and simplicity of integration are required alongside ultra-low cost, e.g. consumable tagging.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment

James A. Grant-Jacob, Benjamin Mills, Matthias Feinaeugle, Collin L. Sones, Gerrit Oosterhuis, Marc B. Hoppenbrouwers, and Robert W. Eason
Opt. Mater. Express 3(6) 747-754 (2013)

Pulsed-laser printing of silver nanoparticles ink: control of morphological properties

Ludovic Rapp, Julie Ailuno, Anne Patricia Alloncle, and Philippe Delaporte
Opt. Express 19(22) 21563-21574 (2011)

Optically-controlled digital electrodeposition of thin-film metals for fabrication of nano-devices

Na Liu, Fanan Wei, Lianqing Liu, Hok Sum Sam Lai, Haibo Yu, Yuechao Wang, Gwo-Bin Lee, and Wen J. Li
Opt. Mater. Express 5(4) 838-848 (2015)

References

  • View by:
  • |
  • |
  • |

  1. D. Li, W. Y. Lai, Y. Z. Zhang, and W. Huang, “Printable Transparent Conductive Films for Flexible Electronics,” Adv. Mater. 30(10), 1704738 (2018).
    [Crossref]
  2. T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
    [Crossref]
  3. A. Piqué, H. Kim, R. C. Y. Auyeung, I. Beniam, and E. Breckenfeld, “Laser-induced forward transfer (LIFT) of congruent voxels,” Appl. Surf. Sci. 374, 42–48 (2016).
    [Crossref]
  4. E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
    [Crossref]
  5. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
    [Crossref]
  6. L. Rapp, E. Biver, A. P. Alloncle, and P. Delaporte, “High-Speed Laser Printing of Silver Nanoparticles Ink,” J. Laser Micro/Nanoeng. 9(1), 5–9 (2014).
    [Crossref]
  7. R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser Direct-Write of Metallic Nanoparticle Inks,” J. Laser Micro/Nanoeng. 2(1), 21–25 (2007).
    [Crossref]
  8. M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrates,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
    [Crossref]
  9. F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
    [Crossref]
  10. F. Zacharatos, P. Karvounis, I. Theodorakos, A. Hatziapostolou, and I. Zergioti, “Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes,” Materials 11(6), 1036 (2018).
    [Crossref]
  11. F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
    [Crossref]
  12. N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003).
    [Crossref]
  13. B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515(19), 7706–7711 (2007).
    [Crossref]
  14. A. Yabuki and N. Arriffin, “Electrical conductivity of copper nanoparticle thin films annealed at low temperature,” Thin Solid Films 518(23), 7033–7037 (2010).
    [Crossref]
  15. I. Kim and J. Kim, “The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors,” J. Appl. Phys. 108(10), 102807 (2010).
    [Crossref]
  16. M. Joo, B. Lee, S. Jeong, and M. Lee, “Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate,” Thin Solid Films 520(7), 2878–2883 (2012).
    [Crossref]
  17. F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
    [Crossref]
  18. J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
    [Crossref]
  19. H. J. Hwang, W. H. Chung, and H. S. Kim, “In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,” Nanotechnology 23(48), 485205 (2012).
    [Crossref]
  20. W. H. Chung, H. J. Hwang, and H. S. Kim, “Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics,” Thin Solid Films 580, 61–70 (2015).
    [Crossref]
  21. Y. T. Hwang, W. H. Chung, Y. R. Jang, and H. S. Kim, “Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics,” ACS Appl. Mater. Interfaces 8(13), 8591–8599 (2016).
    [Crossref]
  22. Y. H. Son, J. Y. Jang, M. K. Kang, S. Ahn, and C. S. Lee, “Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles,” Thin Solid Films 656, 61–67 (2018).
    [Crossref]
  23. H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Appl. Phys. A 97(4), 791–798 (2009).
    [Crossref]
  24. I. Shishkovsky, V. Scherbakof, and I. Volyansky, “Low-dose laser sintering of Cu nanoparticles on the ceramic substrate during ink-let interconnection,” SPIE9065, 906501 (2013).
  25. E. Halonen, E. Heinonen, and M. Mantysalo, “The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions,” Opt. Photonics J. 03(04), 40–44 (2013).
    [Crossref]
  26. E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
    [Crossref]
  27. C. W. Cheng and J. K. Chen, “Femtosecond laser sintering of copper nanoparticles,” Appl. Phys. A 122(4), 289 (2016).
    [Crossref]
  28. N. Roy, J. Jeong, W. Jou, Y. Wang, H. Feng, and M. Cullinan, “Laser sintering of copper nanoparticles: a simplified model for fluence estimation and validation,” proceedings of ASME, MSEC2017-2975 (2017).
  29. H. Min, B. Lee, S. Jeong, and M. Lee, “Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink,” Opt. Laser Technol. 88, 128–133 (2017).
    [Crossref]
  30. M. Zenou, O. Ermak, A. Saar, and Z. Kotler, “Laser sintering of copper nanoparticles,” J. Phys. D: Appl. Phys. 47(2), 025501 (2014).
    [Crossref]
  31. J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mantysalo, “Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers,” Sci. Rep. 5(1), 8832 (2015).
    [Crossref]
  32. http://intrinsiqmaterials.com/
  33. http://www.italnanotech.com/
  34. K. Myny, A. Tripathi, J. L. van der Steen, and B. Cobb, “Flexible thin-film NFC tags,” IEEE Comm. Mag. 53(10), 182–189 (2015).
    [Crossref]
  35. B. Kim, S. Uno, and K. Nakazato, “Miniature on-chip spiral inductor RFID tag antenna fabricated with metal layer of standard CMOS process for biosensor applications,” in Proceedings of IEEE Topical Conf. Antennas and Propagation Wireless Communications, 925-928 (2011).
  36. J. Grosinger, W. Pachler, and W. Bosch, “Tag size matters: Miniaturized RFID tags to connect smart objects to the internet,” IEEE Microw. Mag. 19(6), 101–111 (2018).
    [Crossref]
  37. A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
    [Crossref]
  38. P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as astructural material for lab-on-chips and MEMS,” Electrophoresis 28(24), 4539–4551 (2007).
    [Crossref]
  39. M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
    [Crossref]
  40. E. Biver, L. Rapp, A. P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122 (2014).
    [Crossref]
  41. A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
    [Crossref]
  42. I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag NPs ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
    [Crossref]
  43. Engineering ToolBox, (2005). Thermal Conductivity of Metals, Metallic Elements and Alloys
  44. P. B. Johnson and R. W. Christy, “Optical constants of the noble materials,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  45. G. Niaura, “Surface-enhanced Raman spectroscopic observation of two kinds of absorbed OH- ions at copper electrode,” Electrochim. Acta 45(21), 3507–3519 (2000).
    [Crossref]
  46. A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
    [Crossref]
  47. R. Dharmadasa, M. Jha, D. A. Amos, and T. Druffel, “Room Temperature Synthesis of a Copper Ink for the Intense Pulsed Light Sintering of Conductive Copper Films,” ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013).
    [Crossref]

2019 (2)

T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
[Crossref]

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

2018 (7)

Y. H. Son, J. Y. Jang, M. K. Kang, S. Ahn, and C. S. Lee, “Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles,” Thin Solid Films 656, 61–67 (2018).
[Crossref]

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

D. Li, W. Y. Lai, Y. Z. Zhang, and W. Huang, “Printable Transparent Conductive Films for Flexible Electronics,” Adv. Mater. 30(10), 1704738 (2018).
[Crossref]

F. Zacharatos, P. Karvounis, I. Theodorakos, A. Hatziapostolou, and I. Zergioti, “Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes,” Materials 11(6), 1036 (2018).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

J. Grosinger, W. Pachler, and W. Bosch, “Tag size matters: Miniaturized RFID tags to connect smart objects to the internet,” IEEE Microw. Mag. 19(6), 101–111 (2018).
[Crossref]

2017 (1)

H. Min, B. Lee, S. Jeong, and M. Lee, “Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink,” Opt. Laser Technol. 88, 128–133 (2017).
[Crossref]

2016 (5)

C. W. Cheng and J. K. Chen, “Femtosecond laser sintering of copper nanoparticles,” Appl. Phys. A 122(4), 289 (2016).
[Crossref]

Y. T. Hwang, W. H. Chung, Y. R. Jang, and H. S. Kim, “Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics,” ACS Appl. Mater. Interfaces 8(13), 8591–8599 (2016).
[Crossref]

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

A. Piqué, H. Kim, R. C. Y. Auyeung, I. Beniam, and E. Breckenfeld, “Laser-induced forward transfer (LIFT) of congruent voxels,” Appl. Surf. Sci. 374, 42–48 (2016).
[Crossref]

2015 (6)

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrates,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

W. H. Chung, H. J. Hwang, and H. S. Kim, “Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics,” Thin Solid Films 580, 61–70 (2015).
[Crossref]

J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mantysalo, “Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers,” Sci. Rep. 5(1), 8832 (2015).
[Crossref]

K. Myny, A. Tripathi, J. L. van der Steen, and B. Cobb, “Flexible thin-film NFC tags,” IEEE Comm. Mag. 53(10), 182–189 (2015).
[Crossref]

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag NPs ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
[Crossref]

2014 (4)

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, “Laser sintering of copper nanoparticles,” J. Phys. D: Appl. Phys. 47(2), 025501 (2014).
[Crossref]

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

E. Biver, L. Rapp, A. P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122 (2014).
[Crossref]

L. Rapp, E. Biver, A. P. Alloncle, and P. Delaporte, “High-Speed Laser Printing of Silver Nanoparticles Ink,” J. Laser Micro/Nanoeng. 9(1), 5–9 (2014).
[Crossref]

2013 (4)

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
[Crossref]

E. Halonen, E. Heinonen, and M. Mantysalo, “The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions,” Opt. Photonics J. 03(04), 40–44 (2013).
[Crossref]

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
[Crossref]

R. Dharmadasa, M. Jha, D. A. Amos, and T. Druffel, “Room Temperature Synthesis of a Copper Ink for the Intense Pulsed Light Sintering of Conductive Copper Films,” ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013).
[Crossref]

2012 (2)

M. Joo, B. Lee, S. Jeong, and M. Lee, “Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate,” Thin Solid Films 520(7), 2878–2883 (2012).
[Crossref]

H. J. Hwang, W. H. Chung, and H. S. Kim, “In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,” Nanotechnology 23(48), 485205 (2012).
[Crossref]

2010 (2)

A. Yabuki and N. Arriffin, “Electrical conductivity of copper nanoparticle thin films annealed at low temperature,” Thin Solid Films 518(23), 7033–7037 (2010).
[Crossref]

I. Kim and J. Kim, “The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors,” J. Appl. Phys. 108(10), 102807 (2010).
[Crossref]

2009 (1)

H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Appl. Phys. A 97(4), 791–798 (2009).
[Crossref]

2007 (4)

P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as astructural material for lab-on-chips and MEMS,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref]

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515(19), 7706–7711 (2007).
[Crossref]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser Direct-Write of Metallic Nanoparticle Inks,” J. Laser Micro/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

2003 (1)

N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003).
[Crossref]

2000 (1)

G. Niaura, “Surface-enhanced Raman spectroscopic observation of two kinds of absorbed OH- ions at copper electrode,” Electrochim. Acta 45(21), 3507–3519 (2000).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble materials,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Abgrall, P.

P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as astructural material for lab-on-chips and MEMS,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref]

Afsarimanesh, N.

T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
[Crossref]

Ahn, S.

Y. H. Son, J. Y. Jang, M. K. Kang, S. Ahn, and C. S. Lee, “Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles,” Thin Solid Films 656, 61–67 (2018).
[Crossref]

Alloncle, A. P.

L. Rapp, E. Biver, A. P. Alloncle, and P. Delaporte, “High-Speed Laser Printing of Silver Nanoparticles Ink,” J. Laser Micro/Nanoeng. 9(1), 5–9 (2014).
[Crossref]

E. Biver, L. Rapp, A. P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122 (2014).
[Crossref]

Amos, D. A.

R. Dharmadasa, M. Jha, D. A. Amos, and T. Druffel, “Room Temperature Synthesis of a Copper Ink for the Intense Pulsed Light Sintering of Conductive Copper Films,” ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013).
[Crossref]

Andritsos, K.

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

Arriffin, N.

A. Yabuki and N. Arriffin, “Electrical conductivity of copper nanoparticle thin films annealed at low temperature,” Thin Solid Films 518(23), 7033–7037 (2010).
[Crossref]

Auyeung, R. C. Y.

A. Piqué, H. Kim, R. C. Y. Auyeung, I. Beniam, and E. Breckenfeld, “Laser-induced forward transfer (LIFT) of congruent voxels,” Appl. Surf. Sci. 374, 42–48 (2016).
[Crossref]

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser Direct-Write of Metallic Nanoparticle Inks,” J. Laser Micro/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

Baumann, R. R.

J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mantysalo, “Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers,” Sci. Rep. 5(1), 8832 (2015).
[Crossref]

Beniam, I.

A. Piqué, H. Kim, R. C. Y. Auyeung, I. Beniam, and E. Breckenfeld, “Laser-induced forward transfer (LIFT) of congruent voxels,” Appl. Surf. Sci. 374, 42–48 (2016).
[Crossref]

Bieri, N. R.

N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003).
[Crossref]

Biver, E.

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

L. Rapp, E. Biver, A. P. Alloncle, and P. Delaporte, “High-Speed Laser Printing of Silver Nanoparticles Ink,” J. Laser Micro/Nanoeng. 9(1), 5–9 (2014).
[Crossref]

E. Biver, L. Rapp, A. P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122 (2014).
[Crossref]

Boeffel, C.

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Bosch, W.

J. Grosinger, W. Pachler, and W. Bosch, “Tag size matters: Miniaturized RFID tags to connect smart objects to the internet,” IEEE Microw. Mag. 19(6), 101–111 (2018).
[Crossref]

Boutopoulos, C.

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Braz, N.

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

Breckenfeld, E.

A. Piqué, H. Kim, R. C. Y. Auyeung, I. Beniam, and E. Breckenfeld, “Laser-induced forward transfer (LIFT) of congruent voxels,” Appl. Surf. Sci. 374, 42–48 (2016).
[Crossref]

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

Burgues-Ceballos, I.

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Burmeister, D.

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

Camon, H.

P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as astructural material for lab-on-chips and MEMS,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref]

Charipar, N.

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

Chen, J. K.

C. W. Cheng and J. K. Chen, “Femtosecond laser sintering of copper nanoparticles,” Appl. Phys. A 122(4), 289 (2016).
[Crossref]

Cheng, C. W.

C. W. Cheng and J. K. Chen, “Femtosecond laser sintering of copper nanoparticles,” Appl. Phys. A 122(4), 289 (2016).
[Crossref]

Cho, H.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Choulis, S. A.

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Christodoulou, C.

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble materials,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Chung, J.

N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003).
[Crossref]

Chung, W. H.

Y. T. Hwang, W. H. Chung, Y. R. Jang, and H. S. Kim, “Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics,” ACS Appl. Mater. Interfaces 8(13), 8591–8599 (2016).
[Crossref]

W. H. Chung, H. J. Hwang, and H. S. Kim, “Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics,” Thin Solid Films 580, 61–70 (2015).
[Crossref]

H. J. Hwang, W. H. Chung, and H. S. Kim, “In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,” Nanotechnology 23(48), 485205 (2012).
[Crossref]

Cobb, B.

K. Myny, A. Tripathi, J. L. van der Steen, and B. Cobb, “Flexible thin-film NFC tags,” IEEE Comm. Mag. 53(10), 182–189 (2015).
[Crossref]

Conedera, V.

P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as astructural material for lab-on-chips and MEMS,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref]

Córdoba, C.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
[Crossref]

Cullinan, M.

N. Roy, J. Jeong, W. Jou, Y. Wang, H. Feng, and M. Cullinan, “Laser sintering of copper nanoparticles: a simplified model for fluence estimation and validation,” proceedings of ASME, MSEC2017-2975 (2017).

de la Vega, F.

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

Delaporte, P.

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

L. Rapp, E. Biver, A. P. Alloncle, and P. Delaporte, “High-Speed Laser Printing of Silver Nanoparticles Ink,” J. Laser Micro/Nanoeng. 9(1), 5–9 (2014).
[Crossref]

E. Biver, L. Rapp, A. P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122 (2014).
[Crossref]

Dhage, S. R.

H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Appl. Phys. A 97(4), 791–798 (2009).
[Crossref]

Dharmadasa, R.

R. Dharmadasa, M. Jha, D. A. Amos, and T. Druffel, “Room Temperature Synthesis of a Copper Ink for the Intense Pulsed Light Sintering of Conductive Copper Films,” ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013).
[Crossref]

Druffel, T.

R. Dharmadasa, M. Jha, D. A. Amos, and T. Druffel, “Room Temperature Synthesis of a Copper Ink for the Intense Pulsed Light Sintering of Conductive Copper Films,” ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013).
[Crossref]

Eom, H.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Ermak, O.

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, “Laser sintering of copper nanoparticles,” J. Phys. D: Appl. Phys. 47(2), 025501 (2014).
[Crossref]

Feng, H.

N. Roy, J. Jeong, W. Jou, Y. Wang, H. Feng, and M. Cullinan, “Laser sintering of copper nanoparticles: a simplified model for fluence estimation and validation,” proceedings of ASME, MSEC2017-2975 (2017).

Fernández-Pradas, J. M.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
[Crossref]

Fréchet, J. M.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Georgiou, E.

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Geremia, R.

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag NPs ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
[Crossref]

Grigoropoulos, C. P.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003).
[Crossref]

Grosinger, J.

J. Grosinger, W. Pachler, and W. Bosch, “Tag size matters: Miniaturized RFID tags to connect smart objects to the internet,” IEEE Microw. Mag. 19(6), 101–111 (2018).
[Crossref]

Gue, A. M.

P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as astructural material for lab-on-chips and MEMS,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref]

Haferl, S. E.

N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003).
[Crossref]

Hahn, H. T.

H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Appl. Phys. A 97(4), 791–798 (2009).
[Crossref]

Halonen, E.

E. Halonen, E. Heinonen, and M. Mantysalo, “The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions,” Opt. Photonics J. 03(04), 40–44 (2013).
[Crossref]

Han, T.

T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
[Crossref]

Hatziapostolou, A.

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

F. Zacharatos, P. Karvounis, I. Theodorakos, A. Hatziapostolou, and I. Zergioti, “Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes,” Materials 11(6), 1036 (2018).
[Crossref]

Heinonen, E.

E. Halonen, E. Heinonen, and M. Mantysalo, “The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions,” Opt. Photonics J. 03(04), 40–44 (2013).
[Crossref]

Hermerschmidt, F.

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

Hong, S.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Huang, W.

D. Li, W. Y. Lai, Y. Z. Zhang, and W. Huang, “Printable Transparent Conductive Films for Flexible Electronics,” Adv. Mater. 30(10), 1704738 (2018).
[Crossref]

Hwang, H. J.

W. H. Chung, H. J. Hwang, and H. S. Kim, “Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics,” Thin Solid Films 580, 61–70 (2015).
[Crossref]

H. J. Hwang, W. H. Chung, and H. S. Kim, “In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,” Nanotechnology 23(48), 485205 (2012).
[Crossref]

Hwang, Y. T.

Y. T. Hwang, W. H. Chung, Y. R. Jang, and H. S. Kim, “Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics,” ACS Appl. Mater. Interfaces 8(13), 8591–8599 (2016).
[Crossref]

Jang, J. Y.

Y. H. Son, J. Y. Jang, M. K. Kang, S. Ahn, and C. S. Lee, “Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles,” Thin Solid Films 656, 61–67 (2018).
[Crossref]

Jang, Y. R.

Y. T. Hwang, W. H. Chung, Y. R. Jang, and H. S. Kim, “Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics,” ACS Appl. Mater. Interfaces 8(13), 8591–8599 (2016).
[Crossref]

Jeong, J.

N. Roy, J. Jeong, W. Jou, Y. Wang, H. Feng, and M. Cullinan, “Laser sintering of copper nanoparticles: a simplified model for fluence estimation and validation,” proceedings of ASME, MSEC2017-2975 (2017).

Jeong, S.

H. Min, B. Lee, S. Jeong, and M. Lee, “Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink,” Opt. Laser Technol. 88, 128–133 (2017).
[Crossref]

M. Joo, B. Lee, S. Jeong, and M. Lee, “Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate,” Thin Solid Films 520(7), 2878–2883 (2012).
[Crossref]

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515(19), 7706–7711 (2007).
[Crossref]

Jha, M.

R. Dharmadasa, M. Jha, D. A. Amos, and T. Druffel, “Room Temperature Synthesis of a Copper Ink for the Intense Pulsed Light Sintering of Conductive Copper Films,” ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble materials,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joo, M.

M. Joo, B. Lee, S. Jeong, and M. Lee, “Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate,” Thin Solid Films 520(7), 2878–2883 (2012).
[Crossref]

Jou, W.

N. Roy, J. Jeong, W. Jou, Y. Wang, H. Feng, and M. Cullinan, “Laser sintering of copper nanoparticles: a simplified model for fluence estimation and validation,” proceedings of ASME, MSEC2017-2975 (2017).

Kabla, A.

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

Kalaitzis, A.

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

Kalpyris, I.

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Kang, H.

J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mantysalo, “Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers,” Sci. Rep. 5(1), 8832 (2015).
[Crossref]

Kang, M. K.

Y. H. Son, J. Y. Jang, M. K. Kang, S. Ahn, and C. S. Lee, “Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles,” Thin Solid Films 656, 61–67 (2018).
[Crossref]

Karnakis, D.

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag NPs ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
[Crossref]

Karvounis, P.

F. Zacharatos, P. Karvounis, I. Theodorakos, A. Hatziapostolou, and I. Zergioti, “Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes,” Materials 11(6), 1036 (2018).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

Kim, B.

B. Kim, S. Uno, and K. Nakazato, “Miniature on-chip spiral inductor RFID tag antenna fabricated with metal layer of standard CMOS process for biosensor applications,” in Proceedings of IEEE Topical Conf. Antennas and Propagation Wireless Communications, 925-928 (2011).

Kim, D.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515(19), 7706–7711 (2007).
[Crossref]

Kim, H.

A. Piqué, H. Kim, R. C. Y. Auyeung, I. Beniam, and E. Breckenfeld, “Laser-induced forward transfer (LIFT) of congruent voxels,” Appl. Surf. Sci. 374, 42–48 (2016).
[Crossref]

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser Direct-Write of Metallic Nanoparticle Inks,” J. Laser Micro/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

Kim, H. S.

Y. T. Hwang, W. H. Chung, Y. R. Jang, and H. S. Kim, “Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics,” ACS Appl. Mater. Interfaces 8(13), 8591–8599 (2016).
[Crossref]

W. H. Chung, H. J. Hwang, and H. S. Kim, “Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics,” Thin Solid Films 580, 61–70 (2015).
[Crossref]

H. J. Hwang, W. H. Chung, and H. S. Kim, “In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,” Nanotechnology 23(48), 485205 (2012).
[Crossref]

H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Appl. Phys. A 97(4), 791–798 (2009).
[Crossref]

Kim, I.

I. Kim and J. Kim, “The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors,” J. Appl. Phys. 108(10), 102807 (2010).
[Crossref]

Kim, J.

I. Kim and J. Kim, “The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors,” J. Appl. Phys. 108(10), 102807 (2010).
[Crossref]

Kim, J. S.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515(19), 7706–7711 (2007).
[Crossref]

Ko, S. H.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Kotler, Z.

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrates,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, “Laser sintering of copper nanoparticles,” J. Phys. D: Appl. Phys. 47(2), 025501 (2014).
[Crossref]

Kreissl, S.

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Kundu, S.

T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
[Crossref]

Kwon, J.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Lai, W. Y.

D. Li, W. Y. Lai, Y. Z. Zhang, and W. Huang, “Printable Transparent Conductive Films for Flexible Electronics,” Adv. Mater. 30(10), 1704738 (2018).
[Crossref]

Lee, B.

H. Min, B. Lee, S. Jeong, and M. Lee, “Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink,” Opt. Laser Technol. 88, 128–133 (2017).
[Crossref]

M. Joo, B. Lee, S. Jeong, and M. Lee, “Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate,” Thin Solid Films 520(7), 2878–2883 (2012).
[Crossref]

Lee, C. S.

Y. H. Son, J. Y. Jang, M. K. Kang, S. Ahn, and C. S. Lee, “Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles,” Thin Solid Films 656, 61–67 (2018).
[Crossref]

Lee, H.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Lee, M.

H. Min, B. Lee, S. Jeong, and M. Lee, “Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink,” Opt. Laser Technol. 88, 128–133 (2017).
[Crossref]

M. Joo, B. Lee, S. Jeong, and M. Lee, “Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate,” Thin Solid Films 520(7), 2878–2883 (2012).
[Crossref]

Leyder, S.

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

Li, D.

D. Li, W. Y. Lai, Y. Z. Zhang, and W. Huang, “Printable Transparent Conductive Films for Flexible Electronics,” Adv. Mater. 30(10), 1704738 (2018).
[Crossref]

Lieberwirth, I.

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
[Crossref]

Ligorio, G.

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

List-Kratochvil, E. J. W.

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Luscombe, C. K.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Makrygianni, M.

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Mantysalo, M.

J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mantysalo, “Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers,” Sci. Rep. 5(1), 8832 (2015).
[Crossref]

E. Halonen, E. Heinonen, and M. Mantysalo, “The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions,” Opt. Photonics J. 03(04), 40–44 (2013).
[Crossref]

Mathews, S. A.

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser Direct-Write of Metallic Nanoparticle Inks,” J. Laser Micro/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

Melamed, S.

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

Min, H.

H. Min, B. Lee, S. Jeong, and M. Lee, “Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink,” Opt. Laser Technol. 88, 128–133 (2017).
[Crossref]

Moon, H.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Moon, J.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515(19), 7706–7711 (2007).
[Crossref]

Morenza, J. L.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
[Crossref]

Mukhopadhyay, S. C.

T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
[Crossref]

Myny, K.

K. Myny, A. Tripathi, J. L. van der Steen, and B. Cobb, “Flexible thin-film NFC tags,” IEEE Comm. Mag. 53(10), 182–189 (2015).
[Crossref]

Nag, A.

T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
[Crossref]

Nakazato, K.

B. Kim, S. Uno, and K. Nakazato, “Miniature on-chip spiral inductor RFID tag antenna fabricated with metal layer of standard CMOS process for biosensor applications,” in Proceedings of IEEE Topical Conf. Antennas and Propagation Wireless Communications, 925-928 (2011).

Nguyen, N. T.

P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as astructural material for lab-on-chips and MEMS,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref]

Niaura, G.

G. Niaura, “Surface-enhanced Raman spectroscopic observation of two kinds of absorbed OH- ions at copper electrode,” Electrochim. Acta 45(21), 3507–3519 (2000).
[Crossref]

Niittynen, J.

J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mantysalo, “Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers,” Sci. Rep. 5(1), 8832 (2015).
[Crossref]

Pachler, W.

J. Grosinger, W. Pachler, and W. Bosch, “Tag size matters: Miniaturized RFID tags to connect smart objects to the internet,” IEEE Microw. Mag. 19(6), 101–111 (2018).
[Crossref]

Pai, M. R.

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
[Crossref]

Palla-Papavlu, A.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
[Crossref]

Pan, H.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Park, B. K.

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515(19), 7706–7711 (2007).
[Crossref]

Patrascioiu, A.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
[Crossref]

Pillai, K. T.

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
[Crossref]

Piqué, A.

A. Piqué, H. Kim, R. C. Y. Auyeung, I. Beniam, and E. Breckenfeld, “Laser-induced forward transfer (LIFT) of congruent voxels,” Appl. Surf. Sci. 374, 42–48 (2016).
[Crossref]

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser Direct-Write of Metallic Nanoparticle Inks,” J. Laser Micro/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

Poulikakos, D.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003).
[Crossref]

Pozov, S. M.

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Puerto, P.

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

Rao, R.

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
[Crossref]

Rapp, L.

E. Biver, L. Rapp, A. P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122 (2014).
[Crossref]

L. Rapp, E. Biver, A. P. Alloncle, and P. Delaporte, “High-Speed Laser Printing of Silver Nanoparticles Ink,” J. Laser Micro/Nanoeng. 9(1), 5–9 (2014).
[Crossref]

Roy, N.

N. Roy, J. Jeong, W. Jou, Y. Wang, H. Feng, and M. Cullinan, “Laser sintering of copper nanoparticles: a simplified model for fluence estimation and validation,” proceedings of ASME, MSEC2017-2975 (2017).

Sa’ar, A.

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrates,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

Saar, A.

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, “Laser sintering of copper nanoparticles,” J. Phys. D: Appl. Phys. 47(2), 025501 (2014).
[Crossref]

Scherbakof, V.

I. Shishkovsky, V. Scherbakof, and I. Volyansky, “Low-dose laser sintering of Cu nanoparticles on the ceramic substrate during ink-let interconnection,” SPIE9065, 906501 (2013).

Schider, G.

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Serra, P.

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

E. Biver, L. Rapp, A. P. Alloncle, P. Serra, and P. Delaporte, “High-speed multi-jets printing using laser forward transfer: time-resolved study of the ejection dynamics,” Opt. Express 22(14), 17122 (2014).
[Crossref]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
[Crossref]

Shim, D. E.

H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Appl. Phys. A 97(4), 791–798 (2009).
[Crossref]

Shin, J.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Shishkovsky, I.

I. Shishkovsky, V. Scherbakof, and I. Volyansky, “Low-dose laser sintering of Cu nanoparticles on the ceramic substrate during ink-let interconnection,” SPIE9065, 906501 (2013).

Singhal, A.

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
[Crossref]

Son, Y. H.

Y. H. Son, J. Y. Jang, M. K. Kang, S. Ahn, and C. S. Lee, “Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles,” Thin Solid Films 656, 61–67 (2018).
[Crossref]

Sowade, E.

J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mantysalo, “Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers,” Sci. Rep. 5(1), 8832 (2015).
[Crossref]

Suh, Y. D.

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Theodorakos, I.

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

F. Zacharatos, P. Karvounis, I. Theodorakos, A. Hatziapostolou, and I. Zergioti, “Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes,” Materials 11(6), 1036 (2018).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag NPs ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
[Crossref]

Tripathi, A.

K. Myny, A. Tripathi, J. L. van der Steen, and B. Cobb, “Flexible thin-film NFC tags,” IEEE Comm. Mag. 53(10), 182–189 (2015).
[Crossref]

Tuohy, S.

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

Tyagi, A. K.

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
[Crossref]

Uno, S.

B. Kim, S. Uno, and K. Nakazato, “Miniature on-chip spiral inductor RFID tag antenna fabricated with metal layer of standard CMOS process for biosensor applications,” in Proceedings of IEEE Topical Conf. Antennas and Propagation Wireless Communications, 925-928 (2011).

van der Steen, J. L.

K. Myny, A. Tripathi, J. L. van der Steen, and B. Cobb, “Flexible thin-film NFC tags,” IEEE Comm. Mag. 53(10), 182–189 (2015).
[Crossref]

Volyansky, I.

I. Shishkovsky, V. Scherbakof, and I. Volyansky, “Low-dose laser sintering of Cu nanoparticles on the ceramic substrate during ink-let interconnection,” SPIE9065, 906501 (2013).

Wang, Y.

N. Roy, J. Jeong, W. Jou, Y. Wang, H. Feng, and M. Cullinan, “Laser sintering of copper nanoparticles: a simplified model for fluence estimation and validation,” proceedings of ASME, MSEC2017-2975 (2017).

Ward, R.

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

Xu, Y.

T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
[Crossref]

Yabuki, A.

A. Yabuki and N. Arriffin, “Electrical conductivity of copper nanoparticle thin films annealed at low temperature,” Thin Solid Films 518(23), 7033–7037 (2010).
[Crossref]

Zacharatos, F.

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

F. Zacharatos, P. Karvounis, I. Theodorakos, A. Hatziapostolou, and I. Zergioti, “Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes,” Materials 11(6), 1036 (2018).
[Crossref]

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag NPs ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
[Crossref]

Zenou, M.

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrates,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, “Laser sintering of copper nanoparticles,” J. Phys. D: Appl. Phys. 47(2), 025501 (2014).
[Crossref]

Zergioti, I.

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

F. Zacharatos, P. Karvounis, I. Theodorakos, A. Hatziapostolou, and I. Zergioti, “Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes,” Materials 11(6), 1036 (2018).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag NPs ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
[Crossref]

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Zhang, Y. Z.

D. Li, W. Y. Lai, Y. Z. Zhang, and W. Huang, “Printable Transparent Conductive Films for Flexible Electronics,” Adv. Mater. 30(10), 1704738 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (3)

J. Kwon, H. Cho, H. Eom, H. Lee, Y. D. Suh, H. Moon, J. Shin, S. Hong, and S. H. Ko, “Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications,” ACS Appl. Mater. Interfaces 8(18), 11575–11582 (2016).
[Crossref]

Y. T. Hwang, W. H. Chung, Y. R. Jang, and H. S. Kim, “Intensive plasmonic flash light sintering of copper nanoinks using a band-pass light filter for highly electrically conductive electrodes in printed electronics,” ACS Appl. Mater. Interfaces 8(13), 8591–8599 (2016).
[Crossref]

R. Dharmadasa, M. Jha, D. A. Amos, and T. Druffel, “Room Temperature Synthesis of a Copper Ink for the Intense Pulsed Light Sintering of Conductive Copper Films,” ACS Appl. Mater. Interfaces 5(24), 13227–13234 (2013).
[Crossref]

Adv. Mater. (1)

D. Li, W. Y. Lai, Y. Z. Zhang, and W. Huang, “Printable Transparent Conductive Films for Flexible Electronics,” Adv. Mater. 30(10), 1704738 (2018).
[Crossref]

Adv. Mater. Technol. (1)

F. Hermerschmidt, D. Burmeister, G. Ligorio, S. M. Pozov, R. Ward, S. A. Choulis, and E. J. W. List-Kratochvil, “Truly low temperature Sintering of printed copper ink using formic acid,” Adv. Mater. Technol. 3(12), 1800146 (2018).
[Crossref]

Appl. Phys. A (3)

C. W. Cheng and J. K. Chen, “Femtosecond laser sintering of copper nanoparticles,” Appl. Phys. A 122(4), 289 (2016).
[Crossref]

H. S. Kim, S. R. Dhage, D. E. Shim, and H. T. Hahn, “Intense pulsed light sintering of copper nanoink for printed electronics,” Appl. Phys. A 97(4), 791–798 (2009).
[Crossref]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys. A 110(4), 751–755 (2013).
[Crossref]

Appl. Phys. Lett. (1)

N. R. Bieri, J. Chung, S. E. Haferl, D. Poulikakos, and C. P. Grigoropoulos, “Microstructuring by printing and laser curing of nanoparticle solutions,” Appl. Phys. Lett. 82(20), 3529–3531 (2003).
[Crossref]

Appl. Surf. Sci. (6)

A. Piqué, H. Kim, R. C. Y. Auyeung, I. Beniam, and E. Breckenfeld, “Laser-induced forward transfer (LIFT) of congruent voxels,” Appl. Surf. Sci. 374, 42–48 (2016).
[Crossref]

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

F. Zacharatos, M. Makrygianni, R. Geremia, E. Biver, D. Karnakis, S. Leyder, P. Puerto, P. Delaporte, and I. Zergioti, “Laser Direct Write micro-fabrication of large area electronics on flexible substrates,” Appl. Surf. Sci. 374, 117–123 (2016).
[Crossref]

A. Kalaitzis, M. Makrygianni, I. Theodorakos, A. Hatziapostolou, S. Melamed, A. Kabla, F. de la Vega, and I. Zergioti, “Jetting dynamics of Newtonian and non-Newtonian fluids via laser-induced forward transfer: Experimental and simulation studies,” Appl. Surf. Sci. 465, 136–142 (2019).
[Crossref]

I. Theodorakos, F. Zacharatos, R. Geremia, D. Karnakis, and I. Zergioti, “Selective laser sintering of Ag NPs ink for applications in flexible electronics,” Appl. Surf. Sci. 336, 157–162 (2015).
[Crossref]

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Electrochim. Acta (1)

G. Niaura, “Surface-enhanced Raman spectroscopic observation of two kinds of absorbed OH- ions at copper electrode,” Electrochim. Acta 45(21), 3507–3519 (2000).
[Crossref]

Electrophoresis (1)

P. Abgrall, V. Conedera, H. Camon, A. M. Gue, and N. T. Nguyen, “SU-8 as astructural material for lab-on-chips and MEMS,” Electrophoresis 28(24), 4539–4551 (2007).
[Crossref]

Eur. J. Inorg. Chem. (1)

A. Singhal, M. R. Pai, R. Rao, K. T. Pillai, I. Lieberwirth, and A. K. Tyagi, “Copper(I) Oxide Nanocrystals – One Step Synthesis, Characterization, Formation Mechanism, and Photocatalytic Properties,” Eur. J. Inorg. Chem. 2013(14), 2640–2651 (2013).
[Crossref]

IEEE Comm. Mag. (1)

K. Myny, A. Tripathi, J. L. van der Steen, and B. Cobb, “Flexible thin-film NFC tags,” IEEE Comm. Mag. 53(10), 182–189 (2015).
[Crossref]

IEEE Microw. Mag. (1)

J. Grosinger, W. Pachler, and W. Bosch, “Tag size matters: Miniaturized RFID tags to connect smart objects to the internet,” IEEE Microw. Mag. 19(6), 101–111 (2018).
[Crossref]

J. Appl. Phys. (1)

I. Kim and J. Kim, “The effect of reduction atmospheres on the sintering behaviors of inkjet-printed Cu interconnectors,” J. Appl. Phys. 108(10), 102807 (2010).
[Crossref]

J. Laser Micro/Nanoeng. (2)

L. Rapp, E. Biver, A. P. Alloncle, and P. Delaporte, “High-Speed Laser Printing of Silver Nanoparticles Ink,” J. Laser Micro/Nanoeng. 9(1), 5–9 (2014).
[Crossref]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser Direct-Write of Metallic Nanoparticle Inks,” J. Laser Micro/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

J. Phys. D: Appl. Phys. (2)

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrates,” J. Phys. D: Appl. Phys. 48(20), 205303 (2015).
[Crossref]

M. Zenou, O. Ermak, A. Saar, and Z. Kotler, “Laser sintering of copper nanoparticles,” J. Phys. D: Appl. Phys. 47(2), 025501 (2014).
[Crossref]

Materials (2)

F. Zacharatos, P. Karvounis, I. Theodorakos, A. Hatziapostolou, and I. Zergioti, “Single Step Laser Transfer and Laser Curing of Ag NanoWires: A Digital Process for the Fabrication of Flexible and Transparent Microelectrodes,” Materials 11(6), 1036 (2018).
[Crossref]

F. Zacharatos, I. Theodorakos, P. Karvounis, S. Tuohy, N. Braz, S. Melamed, A. Kabla, F. de la Vega, K. Andritsos, A. Hatziapostolou, D. Karnakis, and I. Zergioti, “Selective Laser Sintering of Laser Printed Ag Nanoparticle Micropatterns at High Repetition Rates,” Materials 11(11), 2142 (2018).
[Crossref]

Nanotechnology (2)

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. Fréchet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by Low-dose laser sintering of Cu high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

H. J. Hwang, W. H. Chung, and H. S. Kim, “In situ monitoring of flash-light sintering of copper nanoparticle ink for printed electronics,” Nanotechnology 23(48), 485205 (2012).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

H. Min, B. Lee, S. Jeong, and M. Lee, “Fabrication of 10 µm-scale conductive Cu patterns by selective laser sintering of Cu complex ink,” Opt. Laser Technol. 88, 128–133 (2017).
[Crossref]

Opt. Photonics J. (1)

E. Halonen, E. Heinonen, and M. Mantysalo, “The effect of laser sintering process parameters on Cu nanoparticle ink in room conditions,” Opt. Photonics J. 03(04), 40–44 (2013).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble materials,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Sci. Rep. (1)

J. Niittynen, E. Sowade, H. Kang, R. R. Baumann, and M. Mantysalo, “Comparison of laser and intense pulsed light sintering (IPL) for inkjet-printed copper nanoparticle layers,” Sci. Rep. 5(1), 8832 (2015).
[Crossref]

Sensors (1)

T. Han, A. Nag, N. Afsarimanesh, S. C. Mukhopadhyay, S. Kundu, and Y. Xu, “Laser-Assisted Printed Flexible Sensors: A Review,” Sensors 19(6), 1462 (2019).
[Crossref]

Sol. RRL (1)

E. Georgiou, S. A. Choulis, F. Hermerschmidt, S. M. Pozov, I. Burgues-Ceballos, C. Christodoulou, G. Schider, S. Kreissl, R. Ward, E. J. W. List-Kratochvil, and C. Boeffel, “Printed copper nanoparticle metal grids for cost-effective ITO-free solution processed solar cells,” Sol. RRL 2(3), 1700192 (2018).
[Crossref]

Thin Solid Films (5)

W. H. Chung, H. J. Hwang, and H. S. Kim, “Flash light sintered copper precursor/nanoparticle pattern with high electrical conductivity and low porosity for printed electronics,” Thin Solid Films 580, 61–70 (2015).
[Crossref]

Y. H. Son, J. Y. Jang, M. K. Kang, S. Ahn, and C. S. Lee, “Application of flash-light sintering method to flexible inkjet printing using anti-oxidant copper nanoparticles,” Thin Solid Films 656, 61–67 (2018).
[Crossref]

M. Joo, B. Lee, S. Jeong, and M. Lee, “Comparative studies on thermal and laser sintering for highly conductive Cu films printable on plastic substrate,” Thin Solid Films 520(7), 2878–2883 (2012).
[Crossref]

B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, “Direct writing of copper conductive patterns by ink-jet printing,” Thin Solid Films 515(19), 7706–7711 (2007).
[Crossref]

A. Yabuki and N. Arriffin, “Electrical conductivity of copper nanoparticle thin films annealed at low temperature,” Thin Solid Films 518(23), 7033–7037 (2010).
[Crossref]

Other (6)

I. Shishkovsky, V. Scherbakof, and I. Volyansky, “Low-dose laser sintering of Cu nanoparticles on the ceramic substrate during ink-let interconnection,” SPIE9065, 906501 (2013).

N. Roy, J. Jeong, W. Jou, Y. Wang, H. Feng, and M. Cullinan, “Laser sintering of copper nanoparticles: a simplified model for fluence estimation and validation,” proceedings of ASME, MSEC2017-2975 (2017).

http://intrinsiqmaterials.com/

http://www.italnanotech.com/

B. Kim, S. Uno, and K. Nakazato, “Miniature on-chip spiral inductor RFID tag antenna fabricated with metal layer of standard CMOS process for biosensor applications,” in Proceedings of IEEE Topical Conf. Antennas and Propagation Wireless Communications, 925-928 (2011).

Engineering ToolBox, (2005). Thermal Conductivity of Metals, Metallic Elements and Alloys

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic illustration of (a) the laser printing and (b) laser sintering of the copper ink.
Fig. 2.
Fig. 2. (a) Diameters of the printed droplets vs printing laser fluence, (b) optical microscopy images of the printed droplets at different laser fuences and (c) of the printed lines utilizing different laser scanning speeds.
Fig. 3.
Fig. 3. (a) Resistivity vs vertical scanning step and SEM images indicating that surface morphology is reproduced in the cross-section, confirming efficient in-depth sintering, (b) schematic illustration of the laser sintering process with vertical scanning, (c) optical microscope image of the corresponding sintered lines
Fig. 4.
Fig. 4. Raman spectra of printed patterns dried in ambient atmosphere and sintered with increasing laser fluence
Fig. 5.
Fig. 5. Total deposited energy on the spiral pattern during sintering vs vertical scanning step (left), schematic illustration and optical microscopy photos (right). The total resistance decreases with decreasing scanning step.
Fig. 6.
Fig. 6. (a) Viscosity profile measurement of 60% Copper nanoparticle ink in DGBE solvent, and (b) TEM image of copper nanoparticles.
Fig. 7.
Fig. 7. EDX spectra of printed copper nanoparticle ink and dried in ambient air; Inset: EDX spectra of printed copper nanoparticle ink and laser sintered.

Tables (1)

Tables Icon

Table 1. Observed Raman Shifts of Copper Oxides from Fig. 4

Metrics