Abstract

This paper presents a new optical fiber carbon dioxide (CO2) sensor based on the emission wavelength shift of CuInS2/ZnS quantum dots (CIS/ZnS QDs) due to changes in the absorption of a pH indicator (α-naphtholphthalein) with a changing CO2 concentration. Using an LED with a central wavelength of 375 nm as the excitation source, it is shown that using the red emission of CIS/ZnS QDs allows for the detection of CO2 concentration over the range of 0-100%, and the associated wavelength shift was found to be 630 pm/%CO2. Moreover, the observed luminescence intensity from CIS/ZnS QDs at 578 nm increases as the CO2 concentration increases. The observed luminescence intensity change by CO2 is expressed as I100/I0, which I0 is used to represent the sensitivity of the optical fiber sensor, where I100 and I0 represent the steady-state luminescence intensities in pure carbon dioxide and pure nitrogen environments, respectively. The ratio I100/I0 of this optical fiber sensor is estimated to be 100. These results of the optical sensing method can be used in practice for detection of CO2 and could offer a new approach for developing novel types of optical fiber sensor.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical sensor for dual sensing of oxygen and carbon dioxide based on sensing films coated on filter paper

Cheng-Shane Chu and Jhih-Jheng Syu
Appl. Opt. 56(4) 1225-1231 (2017)

Optical sensing of H2O2 based on red-shift of emission wavelength of carbon quantum dots

Cheng-Shane Chu, Meng-Wei Hsieh, and Zhi-Ren Su
Opt. Mater. Express 6(3) 759-766 (2016)

Ratiometric optical fiber sensor for dual sensing of copper ion and dissolved oxygen

Cheng-Shane Chu and Chih-Yung Chuang
Appl. Opt. 54(36) 10659-10665 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. J. Manuccia and J. G. Eden, Infrared optical measurement of blood gas concentrations and fiber optic catheter, U. S. Patent 4,509,522, (1985).
  2. Y. Shimizu and N. Yamashita, “Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode,” Sens. Actuators, B 64(1-3), 102–106 (2000).
    [Crossref]
  3. C. S. Chu and Y. L. Lo, “Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS,” Sens. Actuators, B 129(1), 120–125 (2008).
    [Crossref]
  4. C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators, B 143(1), 205–210 (2009).
    [Crossref]
  5. C. Malins and B. D. MacCraith, “Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection,” Analyst 123(11), 2373–2376 (1998).
    [Crossref]
  6. O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. M. Klainer, “Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring,” Microchim. Acta 129(3-4), 181–188 (1998).
    [Crossref]
  7. G. Neurauter, I. Klimant, and O. S. Wolfbeis, “Fiber-optic microsensor for high resolution pCO2 sensing in marine environment,” Fresenius' J. Anal. Chem. 366(5), 481–487 (2000).
    [Crossref]
  8. K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, “Characterization of a reservoir-type capillary optical microsensor for pCO(2) measurements,” Talanta 59(2), 261–267 (2003).
    [Crossref]
  9. C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
    [Crossref]
  10. Y. Amao and N. Nakamura, “An optical sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference luminescent dye for CO2 in water,” Sens. Actuators, B 107(2), 861–865 (2005).
    [Crossref]
  11. Y. Amao and N. Nakamura, “Optical CO2 sensor with the combination of colorimetric change of alpha-naphtholphthalein and internal reference fluorescent porphyrin dye,” Sens. Actuators, B 100(3), 347–351 (2004).
    [Crossref]
  12. Y. Amao and T. Komori, “Optical CO2 sensor of the combination of colorimetric change of α-naphtholphthalein in poly(isobutyl methacrylate) and fluorescent porphyrin in polystyrene,” Talanta 66(4), 976–981 (2005).
    [Crossref]
  13. Y. Amao, T. Komori, and H. Nishide, “Rapid responsible optical CO2 sensor of the combination of colorimetric change of alpha-naphtholphthalein in poly(trimethylsiliylpropyne) layer and internal reference fluorescent porphyrin in polystyrene layer,” React. Funct. Polym. 63(1), 35–41 (2005).
    [Crossref]
  14. N. Nakamura and Y. Amao, “An optical sensor for CO2 using thymol blue and europium(III) complex composite film,” Sens. Actuators, B 92(1-2), 98–101 (2003).
    [Crossref]
  15. N. Nakamura and Y. Amao, “Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminescent dye,” Anal. Bioanal. Chem. 376(5), 642–646 (2003).
    [Crossref]
  16. X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
    [Crossref]
  17. W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
    [Crossref]
  18. D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
    [Crossref]
  19. J. H. Kim and H. Yang, “All solution processed, multilayered CuInS2/ZnS colloidal quantum dot based electroluminescent device,” Opt. Lett. 39(17), 5002–5005 (2014).
    [Crossref]
  20. C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
    [Crossref]

2015 (1)

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

2014 (1)

2012 (1)

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

2009 (1)

C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators, B 143(1), 205–210 (2009).
[Crossref]

2008 (1)

C. S. Chu and Y. L. Lo, “Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS,” Sens. Actuators, B 129(1), 120–125 (2008).
[Crossref]

2005 (3)

Y. Amao and N. Nakamura, “An optical sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference luminescent dye for CO2 in water,” Sens. Actuators, B 107(2), 861–865 (2005).
[Crossref]

Y. Amao and T. Komori, “Optical CO2 sensor of the combination of colorimetric change of α-naphtholphthalein in poly(isobutyl methacrylate) and fluorescent porphyrin in polystyrene,” Talanta 66(4), 976–981 (2005).
[Crossref]

Y. Amao, T. Komori, and H. Nishide, “Rapid responsible optical CO2 sensor of the combination of colorimetric change of alpha-naphtholphthalein in poly(trimethylsiliylpropyne) layer and internal reference fluorescent porphyrin in polystyrene layer,” React. Funct. Polym. 63(1), 35–41 (2005).
[Crossref]

2004 (2)

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Y. Amao and N. Nakamura, “Optical CO2 sensor with the combination of colorimetric change of alpha-naphtholphthalein and internal reference fluorescent porphyrin dye,” Sens. Actuators, B 100(3), 347–351 (2004).
[Crossref]

2003 (3)

K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, “Characterization of a reservoir-type capillary optical microsensor for pCO(2) measurements,” Talanta 59(2), 261–267 (2003).
[Crossref]

N. Nakamura and Y. Amao, “An optical sensor for CO2 using thymol blue and europium(III) complex composite film,” Sens. Actuators, B 92(1-2), 98–101 (2003).
[Crossref]

N. Nakamura and Y. Amao, “Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminescent dye,” Anal. Bioanal. Chem. 376(5), 642–646 (2003).
[Crossref]

2002 (1)

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

2000 (2)

Y. Shimizu and N. Yamashita, “Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode,” Sens. Actuators, B 64(1-3), 102–106 (2000).
[Crossref]

G. Neurauter, I. Klimant, and O. S. Wolfbeis, “Fiber-optic microsensor for high resolution pCO2 sensing in marine environment,” Fresenius' J. Anal. Chem. 366(5), 481–487 (2000).
[Crossref]

1998 (3)

W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[Crossref]

C. Malins and B. D. MacCraith, “Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection,” Analyst 123(11), 2373–2376 (1998).
[Crossref]

O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. M. Klainer, “Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring,” Microchim. Acta 129(3-4), 181–188 (1998).
[Crossref]

Achilefu, S.

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Amao, Y.

Y. Amao and N. Nakamura, “An optical sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference luminescent dye for CO2 in water,” Sens. Actuators, B 107(2), 861–865 (2005).
[Crossref]

Y. Amao and T. Komori, “Optical CO2 sensor of the combination of colorimetric change of α-naphtholphthalein in poly(isobutyl methacrylate) and fluorescent porphyrin in polystyrene,” Talanta 66(4), 976–981 (2005).
[Crossref]

Y. Amao, T. Komori, and H. Nishide, “Rapid responsible optical CO2 sensor of the combination of colorimetric change of alpha-naphtholphthalein in poly(trimethylsiliylpropyne) layer and internal reference fluorescent porphyrin in polystyrene layer,” React. Funct. Polym. 63(1), 35–41 (2005).
[Crossref]

Y. Amao and N. Nakamura, “Optical CO2 sensor with the combination of colorimetric change of alpha-naphtholphthalein and internal reference fluorescent porphyrin dye,” Sens. Actuators, B 100(3), 347–351 (2004).
[Crossref]

N. Nakamura and Y. Amao, “An optical sensor for CO2 using thymol blue and europium(III) complex composite film,” Sens. Actuators, B 92(1-2), 98–101 (2003).
[Crossref]

N. Nakamura and Y. Amao, “Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminescent dye,” Anal. Bioanal. Chem. 376(5), 642–646 (2003).
[Crossref]

Cao, J.

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Chan, W. C. W.

W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[Crossref]

Chan, Y. C.

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

Chen, C. W.

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

Chen, Y. Q.

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Chu, C. S.

C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators, B 143(1), 205–210 (2009).
[Crossref]

C. S. Chu and Y. L. Lo, “Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS,” Sens. Actuators, B 129(1), 120–125 (2008).
[Crossref]

Chung, L. W. K.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Chung, P. H.

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

Cui, Y. Y.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Deng, D. W.

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Eden, J. G.

T. J. Manuccia and J. G. Eden, Infrared optical measurement of blood gas concentrations and fiber optic catheter, U. S. Patent 4,509,522, (1985).

Ertekin, K.

K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, “Characterization of a reservoir-type capillary optical microsensor for pCO(2) measurements,” Talanta 59(2), 261–267 (2003).
[Crossref]

Gao, X. H.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Goswami, K.

O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. M. Klainer, “Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring,” Microchim. Acta 129(3-4), 181–188 (1998).
[Crossref]

Gu, Y. Q.

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Hsiao, M.

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

Kim, J. H.

Klainer, S. M.

O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. M. Klainer, “Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring,” Microchim. Acta 129(3-4), 181–188 (1998).
[Crossref]

Klimant, I.

K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, “Characterization of a reservoir-type capillary optical microsensor for pCO(2) measurements,” Talanta 59(2), 261–267 (2003).
[Crossref]

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

G. Neurauter, I. Klimant, and O. S. Wolfbeis, “Fiber-optic microsensor for high resolution pCO2 sensing in marine environment,” Fresenius' J. Anal. Chem. 366(5), 481–487 (2000).
[Crossref]

Komori, T.

Y. Amao, T. Komori, and H. Nishide, “Rapid responsible optical CO2 sensor of the combination of colorimetric change of alpha-naphtholphthalein in poly(trimethylsiliylpropyne) layer and internal reference fluorescent porphyrin in polystyrene layer,” React. Funct. Polym. 63(1), 35–41 (2005).
[Crossref]

Y. Amao and T. Komori, “Optical CO2 sensor of the combination of colorimetric change of α-naphtholphthalein in poly(isobutyl methacrylate) and fluorescent porphyrin in polystyrene,” Talanta 66(4), 976–981 (2005).
[Crossref]

Kovacs, B.

O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. M. Klainer, “Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring,” Microchim. Acta 129(3-4), 181–188 (1998).
[Crossref]

Krause, C.

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

Levenson, R. M.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Lin, C. C.

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

Liu, R. S.

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

Lo, Y. L.

C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators, B 143(1), 205–210 (2009).
[Crossref]

C. S. Chu and Y. L. Lo, “Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS,” Sens. Actuators, B 129(1), 120–125 (2008).
[Crossref]

MacCraith, B. D.

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

C. Malins and B. D. MacCraith, “Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection,” Analyst 123(11), 2373–2376 (1998).
[Crossref]

Malins, C.

C. Malins and B. D. MacCraith, “Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection,” Analyst 123(11), 2373–2376 (1998).
[Crossref]

Manuccia, T. J.

T. J. Manuccia and J. G. Eden, Infrared optical measurement of blood gas concentrations and fiber optic catheter, U. S. Patent 4,509,522, (1985).

McDonagh, C.

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

McEvoy, A. K.

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

Nakamura, N.

Y. Amao and N. Nakamura, “An optical sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference luminescent dye for CO2 in water,” Sens. Actuators, B 107(2), 861–865 (2005).
[Crossref]

Y. Amao and N. Nakamura, “Optical CO2 sensor with the combination of colorimetric change of alpha-naphtholphthalein and internal reference fluorescent porphyrin dye,” Sens. Actuators, B 100(3), 347–351 (2004).
[Crossref]

N. Nakamura and Y. Amao, “Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminescent dye,” Anal. Bioanal. Chem. 376(5), 642–646 (2003).
[Crossref]

N. Nakamura and Y. Amao, “An optical sensor for CO2 using thymol blue and europium(III) complex composite film,” Sens. Actuators, B 92(1-2), 98–101 (2003).
[Crossref]

Neurauter, G.

K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, “Characterization of a reservoir-type capillary optical microsensor for pCO(2) measurements,” Talanta 59(2), 261–267 (2003).
[Crossref]

G. Neurauter, I. Klimant, and O. S. Wolfbeis, “Fiber-optic microsensor for high resolution pCO2 sensing in marine environment,” Fresenius' J. Anal. Chem. 366(5), 481–487 (2000).
[Crossref]

Nie, S. M.

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[Crossref]

Nishide, H.

Y. Amao, T. Komori, and H. Nishide, “Rapid responsible optical CO2 sensor of the combination of colorimetric change of alpha-naphtholphthalein in poly(trimethylsiliylpropyne) layer and internal reference fluorescent porphyrin in polystyrene layer,” React. Funct. Polym. 63(1), 35–41 (2005).
[Crossref]

Qian, Z. Y.

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Shimizu, Y.

Y. Shimizu and N. Yamashita, “Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode,” Sens. Actuators, B 64(1-3), 102–106 (2000).
[Crossref]

Tian, J. M.

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Von Bultzingslowen, C.

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

Wolfbeis, O. S.

K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, “Characterization of a reservoir-type capillary optical microsensor for pCO(2) measurements,” Talanta 59(2), 261–267 (2003).
[Crossref]

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

G. Neurauter, I. Klimant, and O. S. Wolfbeis, “Fiber-optic microsensor for high resolution pCO2 sensing in marine environment,” Fresenius' J. Anal. Chem. 366(5), 481–487 (2000).
[Crossref]

O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. M. Klainer, “Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring,” Microchim. Acta 129(3-4), 181–188 (1998).
[Crossref]

Wu, D. Y.

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

Yamashita, N.

Y. Shimizu and N. Yamashita, “Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode,” Sens. Actuators, B 64(1-3), 102–106 (2000).
[Crossref]

Yang, H.

Anal. Bioanal. Chem. (1)

N. Nakamura and Y. Amao, “Optical sensor for carbon dioxide combining colorimetric change of a pH indicator and a reference luminescent dye,” Anal. Bioanal. Chem. 376(5), 642–646 (2003).
[Crossref]

Analyst (2)

C. Malins and B. D. MacCraith, “Dye-doped organically modified silica glass for fluorescence based carbon dioxide gas detection,” Analyst 123(11), 2373–2376 (1998).
[Crossref]

C. Von Bultzingslowen, A. K. McEvoy, C. McDonagh, B. D. MacCraith, I. Klimant, C. Krause, and O. S. Wolfbeis, “Sol-gel based optical carbon dioxide sensor employing dual luminophore referencing for application in food packaging technology,” Analyst 127(11), 1478–1483 (2002).
[Crossref]

Chem. Mater. (1)

D. W. Deng, Y. Q. Chen, J. Cao, J. M. Tian, Z. Y. Qian, S. Achilefu, and Y. Q. Gu, “High quality CuInS2/ZnS quantum dots for in vitro and in vivo bioimaging,” Chem. Mater. 24(15), 3029–3037 (2012).
[Crossref]

Fresenius' J. Anal. Chem. (1)

G. Neurauter, I. Klimant, and O. S. Wolfbeis, “Fiber-optic microsensor for high resolution pCO2 sensing in marine environment,” Fresenius' J. Anal. Chem. 366(5), 481–487 (2000).
[Crossref]

J. Phys. Chem. C (1)

C. W. Chen, D. Y. Wu, Y. C. Chan, C. C. Lin, P. H. Chung, M. Hsiao, and R. S. Liu, “Evaluations of the chemical stability and cytotoxicity of CuInS2 and CuInS2/ZnS core/shell quantum dots,” J. Phys. Chem. C 119(5), 2852–2860 (2015).
[Crossref]

Microchim. Acta (1)

O. S. Wolfbeis, B. Kovacs, K. Goswami, and S. M. Klainer, “Fiber-optic fluorescence carbon dioxide sensor for environmental monitoring,” Microchim. Acta 129(3-4), 181–188 (1998).
[Crossref]

Nat. Biotechnol. (1)

X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, and S. M. Nie, “In vivo cancer targeting and imaging with semiconductor quantum dots,” Nat. Biotechnol. 22(8), 969–976 (2004).
[Crossref]

Opt. Lett. (1)

React. Funct. Polym. (1)

Y. Amao, T. Komori, and H. Nishide, “Rapid responsible optical CO2 sensor of the combination of colorimetric change of alpha-naphtholphthalein in poly(trimethylsiliylpropyne) layer and internal reference fluorescent porphyrin in polystyrene layer,” React. Funct. Polym. 63(1), 35–41 (2005).
[Crossref]

Science (1)

W. C. W. Chan and S. M. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[Crossref]

Sens. Actuators, B (6)

N. Nakamura and Y. Amao, “An optical sensor for CO2 using thymol blue and europium(III) complex composite film,” Sens. Actuators, B 92(1-2), 98–101 (2003).
[Crossref]

Y. Shimizu and N. Yamashita, “Solid electrolyte CO2 sensor using NASICON and perovskite-type oxide electrode,” Sens. Actuators, B 64(1-3), 102–106 (2000).
[Crossref]

C. S. Chu and Y. L. Lo, “Fiber-optic carbon dioxide sensor based on fluorinated xerogels doped with HPTS,” Sens. Actuators, B 129(1), 120–125 (2008).
[Crossref]

C. S. Chu and Y. L. Lo, “Highly sensitive and linear optical fiber carbon dioxide sensor based on sol-gel matrix doped with silica particles and HPTS,” Sens. Actuators, B 143(1), 205–210 (2009).
[Crossref]

Y. Amao and N. Nakamura, “An optical sensor with the combination of colorimetric change of α-naphtholphthalein and internal reference luminescent dye for CO2 in water,” Sens. Actuators, B 107(2), 861–865 (2005).
[Crossref]

Y. Amao and N. Nakamura, “Optical CO2 sensor with the combination of colorimetric change of alpha-naphtholphthalein and internal reference fluorescent porphyrin dye,” Sens. Actuators, B 100(3), 347–351 (2004).
[Crossref]

Talanta (2)

Y. Amao and T. Komori, “Optical CO2 sensor of the combination of colorimetric change of α-naphtholphthalein in poly(isobutyl methacrylate) and fluorescent porphyrin in polystyrene,” Talanta 66(4), 976–981 (2005).
[Crossref]

K. Ertekin, I. Klimant, G. Neurauter, and O. S. Wolfbeis, “Characterization of a reservoir-type capillary optical microsensor for pCO(2) measurements,” Talanta 59(2), 261–267 (2003).
[Crossref]

Other (1)

T. J. Manuccia and J. G. Eden, Infrared optical measurement of blood gas concentrations and fiber optic catheter, U. S. Patent 4,509,522, (1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. (a) CIS/ZnS QDs fluorescence image (b) TEM image showing CIS/ZnS QDs at a resolution of 20 nm, and (c) EDX analysis results for CIS/ZnS QDs.
Fig. 2.
Fig. 2. Construction of optical fiber carbon dioxide sensor.
Fig. 3.
Fig. 3. Schematic diagram of the experimental setup for the optical fiber carbon dioxide sensor system.
Fig. 4.
Fig. 4. Emission spectra of optical fiber carbon dioxide sensor under various CO2 concentrations.
Fig. 5.
Fig. 5. Variation of I/I0 with 0-100% CO2 concentration.
Fig. 6.
Fig. 6. (a) Normalized luminescence intensity under different CO2 concentration and (b) variation of wavelength with CO2 concentration.
Fig. 7.
Fig. 7. Photostability of optical fiber carbon dioxide sensor.
Fig. 8.
Fig. 8. Response time of the optical fiber carbon dioxide sensor when switching between 100% N2 and 100% CO2.
Fig. 9.
Fig. 9. Emission spectrum of optical fiber CO2 sensor in the air at four different temperatures.

Tables (1)

Tables Icon

Table 1. Comparison of sensing characteristics of current sensor and representative colorimetric change CO2 sensors presented in the literature.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I / I 0 = 10 { C ( 1 / ( K + [ C O 2 ] ) 1 / K ) }

Metrics