Abstract

Low-loss optical fibers of Ge15As25Se40Te20 glass purified by combined chemical and physical methods were successfully drawn. A novel fabrication method of fiber preform was adopted by wrapping a 1 mm thick polyethersulfone (PES) plastic tube around the glass rod. The optical, thermal, and bending strength properties of the glass and fiber were comprehensively investigated. The minimum transmission loss of the fiber was measured as 0.6 dB/m at 6.05 µm, and the average bending strength was approximately 180.67 MPa with a Weibull slope of 49.18 for a 400 µm fiber diameter. Optical power transmission characteristics of a 10.6 µm CO2 laser beam were also studied. The maximum transmitting power through a 1 m long and 400 µm diameter fiber was 1.37 W, which corresponded to a power density of 1.09 kW/cm2 at the fiber output end. Therefore, this fiber is suitable for infrared applications, e.g. mid-infrared laser transmission.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for mid-infrared photonics

Zhuoqi Tang, Vladimir S. Shiryaev, David Furniss, Lukasz Sojka, Slawomir Sujecki, Trevor M. Benson, Angela B. Seddon, and Mikhail F. Churbanov
Opt. Mater. Express 5(8) 1722-1737 (2015)

Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber

D. Jayasuriya, C. R. Petersen, D. Furniss, C. Markos, Z. Tang, MD. S. Habib, O. Bang, T. M Benson, and A. B Seddon
Opt. Mater. Express 9(6) 2617-2629 (2019)

Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography

Peiqing Zhang, Zheming Zhao, Jianghui Zeng, Qian Zhang, Xunsi Wang, Feifei Chen, Xiang Shen, and Shixun Dai
Opt. Mater. Express 6(6) 1853-1860 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. Amraoui, Y. Messaddeq, M. Rochette, S. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  2. Z. Tang, V. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. Benson, A. Seddon, and M. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for midinfrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
    [Crossref]
  3. Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2 µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
    [Crossref]
  4. J. Cui, X. Xiao, Y. Xu, X. Cui, M. Chen, J. Guo, M. Lu, B. Peng, and H. Guo, “Mid-infrared emissions of Dy3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 µm fiber laser,” Opt. Mater. Express 8(8), 2089–2102 (2018).
    [Crossref]
  5. Y. Aydin, V. Fortin, R. Vallée, and M. Bernier, “Towards power scaling of 2.8 µm fiber lasers,” Opt. Lett. 43(18), 4542–4545 (2018).
    [Crossref]
  6. R. Woodward, D. Hudson, A. Fuerbach, and S. Jackson, “Generation of 70-fs pulses at 2.86 µm from a mid-infrared fiber laser,” Opt. Lett. 42(23), 4893–4896 (2017).
    [Crossref]
  7. C. Yang, X. Wang, J. Su, and S. Dai, “Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber,” J. Non-Cryst. Solids 500, 377–381 (2018).
    [Crossref]
  8. F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
    [Crossref]
  9. D. Compton, S. Hill, N. Wright, M. Druy, J. Piche, W. Stevenson, and D. Vidrine, “In situ FT-IR analysis of a composite curing reaction using a mid-infrared transmitting optical fiber,” Appl. Spectrosc. 42(6), 972–979 (1988).
    [Crossref]
  10. A. Sincore, J. Cook, F. Tan, A. El Halawany, A. Riggins, S. McDaniel, G. Cook, D. V. Martyshkin, V. V. Fedorov, S. B. Mirov, L. Shah, A. F. Abouraddy, M. C. Richardson, and K. L. Schepler, “High power single-mode delivery of mid-infrared sources through chalcogenide fiber,” Opt. Express 26(6), 7313–7323 (2018).
    [Crossref]
  11. L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Mid-infrared power delivery through chalcogenide glass cladded optical fibers,” Proc. SPIE 2714, 211–221 (1996).
    [Crossref]
  12. J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28(23), 5122–5127 (1989).
    [Crossref]
  13. W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
    [Crossref]
  14. C. Conseil, J. Bastien, C. Boussard-Pledel, X. Zhang, P. Lucas, S. Dai, J. Lucas, and B. Bureau, “Te-based chalcohalide glasses for far-infrared optical fiber,” Opt. Mater. Express 2(11), 1470–1477 (2012).
    [Crossref]
  15. V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
    [Crossref]
  16. J. Savage, P. Webber, and A. Pitt, “The potential of Ge-As-Se-Te glasses as 3-5 µm and 8-12 µm infrared optical materials,” Infrared Phys. Technol. 20(5), 313–320 (1980).
    [Crossref]
  17. I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and thermal properties of chalcogenide Ge-As-Se-Te glasses for IR fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
    [Crossref]
  18. V. Nguyen, J. Sanghera, I. Aggarwal, and I. Lloyd, “Physical properties of chalcogenide and chalcohalide glasses,” J. Am. Ceram. Soc. 83(4), 855–859 (2000).
    [Crossref]
  19. J. Xu, R. Yang, Q. Chen, W. Jiang, and H. Ye, “The effects of Te, I atoms on the properties and structure of Ge-As-Se system glasses,” J. Non-Cryst. Solids 184, 302–308 (1995).
    [Crossref]
  20. V. Shiryaev, J. Adam, and X. Zhang, “Calorimetric study of characteristic temperatures and crystallization behavior in Ge-As-Se-Te glass system,” J. Phys. Chem. Solids 65(10), 1737–1744 (2004).
    [Crossref]
  21. V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
    [Crossref]
  22. A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
    [Crossref]
  23. S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26148–26153 (2017).
    [Crossref]
  24. J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
    [Crossref]
  25. X. Dai, X. Liu, L. Liu, B. Zhu, and Z. Fang, “A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases,” Sens. Actuators, B 220, 414–419 (2015).
    [Crossref]
  26. M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
    [Crossref]
  27. K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
    [Crossref]
  28. Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
    [Crossref]
  29. S. Cui, C. Boussard-Pledel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 µm,” Opt. Express 22(18), 21253–21262 (2014).
    [Crossref]
  30. Z. Xue, S. Liu, Z. Zhao, N. Mi, B. Wu, X. Li, P. Zhang, and X. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
    [Crossref]
  31. L. Jiang, S. Dai, Y. Liu, X. Wang, and C. Lou, “Bending Characteristics of As2S3 Chalcogenide Glass Fibers and Its Effect on Loss,” J. Chin. Ceram. Soc. 47, 250–254 (2019).
  32. G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
    [Crossref]
  33. V. Shiryaev, A. Velmuzhov, Z. Tang, M. Churbanov, and A. Seddon, “Preparation of high purity glasses in the Ga-Ge-As-Se system,” Opt. Mater. 37, 18–23 (2014).
    [Crossref]
  34. M. Oh and I. Seo, “Preparation and characterization of the As40Se60 and As38.8Se61.2 glasses with high quality for the single mode IR glass fiber,” Opt. Fiber Technol. 21, 176–179 (2015).
    [Crossref]
  35. V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).
  36. J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982).
    [Crossref]
  37. H. Christina and N. Madhusudhan, “Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres,” Mon. Not. R. Astron. Soc. 458(2), 1427–1449 (2016).
    [Crossref]
  38. V. Shiryaev, J. Adam, X. Zhang, C. Boussard-Plédel, J. Lucas, and M. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
    [Crossref]
  39. Z. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X = I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90(2), 667–669 (2007).
    [Crossref]
  40. W. Weibull, “A statistical theory of the strength of materials,” P. Am. Math. Soc. 151, 1034 (1939).
  41. J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).
    [Crossref]

2019 (1)

L. Jiang, S. Dai, Y. Liu, X. Wang, and C. Lou, “Bending Characteristics of As2S3 Chalcogenide Glass Fibers and Its Effect on Loss,” J. Chin. Ceram. Soc. 47, 250–254 (2019).

2018 (6)

2017 (4)

2016 (3)

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

H. Christina and N. Madhusudhan, “Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres,” Mon. Not. R. Astron. Soc. 458(2), 1427–1449 (2016).
[Crossref]

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

2015 (4)

Z. Tang, V. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. Benson, A. Seddon, and M. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for midinfrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

M. Oh and I. Seo, “Preparation and characterization of the As40Se60 and As38.8Se61.2 glasses with high quality for the single mode IR glass fiber,” Opt. Fiber Technol. 21, 176–179 (2015).
[Crossref]

X. Dai, X. Liu, L. Liu, B. Zhu, and Z. Fang, “A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases,” Sens. Actuators, B 220, 414–419 (2015).
[Crossref]

2014 (2)

S. Cui, C. Boussard-Pledel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 µm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref]

V. Shiryaev, A. Velmuzhov, Z. Tang, M. Churbanov, and A. Seddon, “Preparation of high purity glasses in the Ga-Ge-As-Se system,” Opt. Mater. 37, 18–23 (2014).
[Crossref]

2012 (1)

2010 (1)

2009 (2)

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

2007 (1)

Z. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X = I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90(2), 667–669 (2007).
[Crossref]

2004 (4)

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

V. Shiryaev, J. Adam, and X. Zhang, “Calorimetric study of characteristic temperatures and crystallization behavior in Ge-As-Se-Te glass system,” J. Phys. Chem. Solids 65(10), 1737–1744 (2004).
[Crossref]

V. Shiryaev, J. Adam, X. Zhang, C. Boussard-Plédel, J. Lucas, and M. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

2003 (1)

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

2001 (1)

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

2000 (1)

V. Nguyen, J. Sanghera, I. Aggarwal, and I. Lloyd, “Physical properties of chalcogenide and chalcohalide glasses,” J. Am. Ceram. Soc. 83(4), 855–859 (2000).
[Crossref]

1996 (1)

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Mid-infrared power delivery through chalcogenide glass cladded optical fibers,” Proc. SPIE 2714, 211–221 (1996).
[Crossref]

1995 (1)

J. Xu, R. Yang, Q. Chen, W. Jiang, and H. Ye, “The effects of Te, I atoms on the properties and structure of Ge-As-Se system glasses,” J. Non-Cryst. Solids 184, 302–308 (1995).
[Crossref]

1989 (1)

1988 (1)

1987 (1)

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and thermal properties of chalcogenide Ge-As-Se-Te glasses for IR fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

1982 (1)

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982).
[Crossref]

1980 (1)

J. Savage, P. Webber, and A. Pitt, “The potential of Ge-As-Se-Te glasses as 3-5 µm and 8-12 µm infrared optical materials,” Infrared Phys. Technol. 20(5), 313–320 (1980).
[Crossref]

1939 (1)

W. Weibull, “A statistical theory of the strength of materials,” P. Am. Math. Soc. 151, 1034 (1939).

Abouraddy, A. F.

Adam, J.

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

V. Shiryaev, J. Adam, X. Zhang, C. Boussard-Plédel, J. Lucas, and M. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

V. Shiryaev, J. Adam, and X. Zhang, “Calorimetric study of characteristic temperatures and crystallization behavior in Ge-As-Se-Te glass system,” J. Phys. Chem. Solids 65(10), 1737–1744 (2004).
[Crossref]

Aggarwal, I.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).
[Crossref]

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

V. Nguyen, J. Sanghera, I. Aggarwal, and I. Lloyd, “Physical properties of chalcogenide and chalcohalide glasses,” J. Am. Ceram. Soc. 83(4), 855–859 (2000).
[Crossref]

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Mid-infrared power delivery through chalcogenide glass cladded optical fibers,” Proc. SPIE 2714, 211–221 (1996).
[Crossref]

Alamgir, I.

Amraoui, M.

Anne, M.

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

Antipov, S.

Aydin, Y.

Bastien, J.

Baumann, T.

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

Bayya, S.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Benson, T.

Bernier, M.

Boussard-Pledel, C.

Boussard-Plédel, C.

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

V. Shiryaev, J. Adam, X. Zhang, C. Boussard-Plédel, J. Lucas, and M. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

Braud, A.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Brochot, F.

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

Bureau, B.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

S. Cui, C. Boussard-Pledel, J. Lucas, and B. Bureau, “Te-based glass fiber for far-infrared biochemical sensing up to 16 µm,” Opt. Express 22(18), 21253–21262 (2014).
[Crossref]

C. Conseil, J. Bastien, C. Boussard-Pledel, X. Zhang, P. Lucas, S. Dai, J. Lucas, and B. Bureau, “Te-based chalcohalide glasses for far-infrared optical fiber,” Opt. Mater. Express 2(11), 1470–1477 (2012).
[Crossref]

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

Busse, L.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).
[Crossref]

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Mid-infrared power delivery through chalcogenide glass cladded optical fibers,” Proc. SPIE 2714, 211–221 (1996).
[Crossref]

Camy, P.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Chahal, R.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Charpentier, F.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Chen, M.

Chen, Q.

J. Xu, R. Yang, Q. Chen, W. Jiang, and H. Ye, “The effects of Te, I atoms on the properties and structure of Ge-As-Se system glasses,” J. Non-Cryst. Solids 184, 302–308 (1995).
[Crossref]

Chen, W.

Z. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X = I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90(2), 667–669 (2007).
[Crossref]

Chin, G.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Christina, H.

H. Christina and N. Madhusudhan, “Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres,” Mon. Not. R. Astron. Soc. 458(2), 1427–1449 (2016).
[Crossref]

Churbanov, M.

A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
[Crossref]

Z. Tang, V. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. Benson, A. Seddon, and M. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for midinfrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

V. Shiryaev, A. Velmuzhov, Z. Tang, M. Churbanov, and A. Seddon, “Preparation of high purity glasses in the Ga-Ge-As-Se system,” Opt. Mater. 37, 18–23 (2014).
[Crossref]

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

V. Shiryaev, J. Adam, X. Zhang, C. Boussard-Plédel, J. Lucas, and M. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

Compton, D.

Conseil, C.

Cook, G.

Cook, J.

Cui, J.

Cui, S.

Cui, X.

Dai, S.

L. Jiang, S. Dai, Y. Liu, X. Wang, and C. Lou, “Bending Characteristics of As2S3 Chalcogenide Glass Fibers and Its Effect on Loss,” J. Chin. Ceram. Soc. 47, 250–254 (2019).

C. Yang, X. Wang, J. Su, and S. Dai, “Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber,” J. Non-Cryst. Solids 500, 377–381 (2018).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2 µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
[Crossref]

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

C. Conseil, J. Bastien, C. Boussard-Pledel, X. Zhang, P. Lucas, S. Dai, J. Lucas, and B. Bureau, “Te-based chalcohalide glasses for far-infrared optical fiber,” Opt. Mater. Express 2(11), 1470–1477 (2012).
[Crossref]

Dai, X.

X. Dai, X. Liu, L. Liu, B. Zhu, and Z. Fang, “A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases,” Sens. Actuators, B 220, 414–419 (2015).
[Crossref]

Dianov, E.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Doualan, J.-L.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Druy, M.

El Halawany, A.

Fang, Z.

X. Dai, X. Liu, L. Liu, B. Zhu, and Z. Fang, “A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases,” Sens. Actuators, B 220, 414–419 (2015).
[Crossref]

Fedorov, V. V.

Florea, C.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).
[Crossref]

Fortin, V.

Fuerbach, A.

Furniss, D.

Z. Tang, V. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. Benson, A. Seddon, and M. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for midinfrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Gattass, R.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Gibson, D.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Guo, H.

Guo, J.

Han, X.

Hill, S.

Hu, T.

Hudson, D.

Iizuka, R.

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and thermal properties of chalcogenide Ge-As-Se-Te glasses for IR fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

Inagawa, I.

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and thermal properties of chalcogenide Ge-As-Se-Te glasses for IR fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

Jackson, S.

Jiang, L.

L. Jiang, S. Dai, Y. Liu, X. Wang, and C. Lou, “Bending Characteristics of As2S3 Chalcogenide Glass Fibers and Its Effect on Loss,” J. Chin. Ceram. Soc. 47, 250–254 (2019).

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Jiang, W.

J. Xu, R. Yang, Q. Chen, W. Jiang, and H. Ye, “The effects of Te, I atoms on the properties and structure of Ge-As-Se system glasses,” J. Non-Cryst. Solids 184, 302–308 (1995).
[Crossref]

Jouan, T.

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

Kim, W.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Kokorina, V. F.

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

Kotereva, T. V.

A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
[Crossref]

Kung, F.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

Lewis, K.

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Li, G.

Li, L.

Li, X.

Li, Y.

Liu, L.

X. Dai, X. Liu, L. Liu, B. Zhu, and Z. Fang, “A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases,” Sens. Actuators, B 220, 414–419 (2015).
[Crossref]

Liu, S.

Z. Xue, S. Liu, Z. Zhao, N. Mi, B. Wu, X. Li, P. Zhang, and X. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Liu, X.

X. Dai, X. Liu, L. Liu, B. Zhu, and Z. Fang, “A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases,” Sens. Actuators, B 220, 414–419 (2015).
[Crossref]

Liu, Y.

L. Jiang, S. Dai, Y. Liu, X. Wang, and C. Lou, “Bending Characteristics of As2S3 Chalcogenide Glass Fibers and Its Effect on Loss,” J. Chin. Ceram. Soc. 47, 250–254 (2019).

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Liu, Z.

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Lloyd, I.

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

V. Nguyen, J. Sanghera, I. Aggarwal, and I. Lloyd, “Physical properties of chalcogenide and chalcohalide glasses,” J. Am. Ceram. Soc. 83(4), 855–859 (2000).
[Crossref]

Lou, C.

L. Jiang, S. Dai, Y. Liu, X. Wang, and C. Lou, “Bending Characteristics of As2S3 Chalcogenide Glass Fibers and Its Effect on Loss,” J. Chin. Ceram. Soc. 47, 250–254 (2019).

Lu, M.

Lucas, J.

Lucas, P.

Luo, L.

Z. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X = I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90(2), 667–669 (2007).
[Crossref]

Luther-Davies, B.

Ma, H.

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

Madhusudhan, N.

H. Christina and N. Madhusudhan, “Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres,” Mon. Not. R. Astron. Soc. 458(2), 1427–1449 (2016).
[Crossref]

Martyshkin, D. V.

Mason, P.

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

McDaniel, S.

Messaddeq, Y.

Mi, N.

Z. Xue, S. Liu, Z. Zhao, N. Mi, B. Wu, X. Li, P. Zhang, and X. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Michel, K.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

Miklos, F.

Miklos, R.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

Mirov, S. B.

Moizan, V.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Moon, J.

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Mid-infrared power delivery through chalcogenide glass cladded optical fibers,” Proc. SPIE 2714, 211–221 (1996).
[Crossref]

Nazabal, V.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Nguyen, V.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

V. Nguyen, J. Sanghera, I. Aggarwal, and I. Lloyd, “Physical properties of chalcogenide and chalcohalide glasses,” J. Am. Ceram. Soc. 83(4), 855–859 (2000).
[Crossref]

Nie, Q.

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Nishii, J.

Oh, M.

M. Oh and I. Seo, “Preparation and characterization of the As40Se60 and As38.8Se61.2 glasses with high quality for the single mode IR glass fiber,” Opt. Fiber Technol. 21, 176–179 (2015).
[Crossref]

Orchard, D.

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Pan, Z.

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Peng, B.

Piche, J.

Pitt, A.

J. Savage, P. Webber, and A. Pitt, “The potential of Ge-As-Se-Te glasses as 3-5 µm and 8-12 µm infrared optical materials,” Infrared Phys. Technol. 20(5), 313–320 (1980).
[Crossref]

Plekhovich, A.

A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
[Crossref]

Plotnichenko, V.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Pureza, P.

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

Qi, S.

Quetel, L.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Quinn, J.

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

Richardson, M. C.

Riggins, A.

Rochette, M.

Salle, E.

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

Sanghera, J.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

J. Sanghera, C. Florea, L. Busse, B. Shaw, F. Miklos, and I. Aggarwal, “Reduced fresnel losses in chalcogenide fibers by using anti-reflective surface structures on fiber end faces,” Opt. Express 18(25), 26760–26768 (2010).
[Crossref]

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

V. Nguyen, J. Sanghera, I. Aggarwal, and I. Lloyd, “Physical properties of chalcogenide and chalcohalide glasses,” J. Am. Ceram. Soc. 83(4), 855–859 (2000).
[Crossref]

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Mid-infrared power delivery through chalcogenide glass cladded optical fibers,” Proc. SPIE 2714, 211–221 (1996).
[Crossref]

Savage, J.

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

J. Savage, P. Webber, and A. Pitt, “The potential of Ge-As-Se-Te glasses as 3-5 µm and 8-12 µm infrared optical materials,” Infrared Phys. Technol. 20(5), 313–320 (1980).
[Crossref]

Savage, J. A.

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982).
[Crossref]

Schepler, K. L.

Seddon, A.

Z. Tang, V. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. Benson, A. Seddon, and M. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for midinfrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

V. Shiryaev, A. Velmuzhov, Z. Tang, M. Churbanov, and A. Seddon, “Preparation of high purity glasses in the Ga-Ge-As-Se system,” Opt. Mater. 37, 18–23 (2014).
[Crossref]

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Seo, I.

M. Oh and I. Seo, “Preparation and characterization of the As40Se60 and As38.8Se61.2 glasses with high quality for the single mode IR glass fiber,” Opt. Fiber Technol. 21, 176–179 (2015).
[Crossref]

Shah, L.

Shaw, B.

Shaw, L.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Shiryaev, V.

A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
[Crossref]

Z. Tang, V. Shiryaev, D. Furniss, L. Sojka, S. Sujecki, T. Benson, A. Seddon, and M. Churbanov, “Low loss Ge-As-Se chalcogenide glass fiber, fabricated using extruded preform, for midinfrared photonics,” Opt. Mater. Express 5(8), 1722–1737 (2015).
[Crossref]

V. Shiryaev, A. Velmuzhov, Z. Tang, M. Churbanov, and A. Seddon, “Preparation of high purity glasses in the Ga-Ge-As-Se system,” Opt. Mater. 37, 18–23 (2014).
[Crossref]

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

V. Shiryaev, J. Adam, X. Zhang, C. Boussard-Plédel, J. Lucas, and M. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

V. Shiryaev, J. Adam, and X. Zhang, “Calorimetric study of characteristic temperatures and crystallization behavior in Ge-As-Se-Te glass system,” J. Phys. Chem. Solids 65(10), 1737–1744 (2004).
[Crossref]

Sincore, A.

Snopatin, G.

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

Sojka, L.

Starecki, F.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Staubmann, K.

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

Stevenson, W.

Su, J.

C. Yang, X. Wang, J. Su, and S. Dai, “Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber,” J. Non-Cryst. Solids 500, 377–381 (2018).
[Crossref]

Sujecki, S.

Sukhanov, M.

A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
[Crossref]

Tan, F.

Tang, D.

Tang, G.

Z. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X = I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90(2), 667–669 (2007).
[Crossref]

Tang, Z.

Tikhomirov, V.

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

Tristant, J.

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

Troles, J.

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Vallée, R.

Velmuzhov, A.

A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
[Crossref]

V. Shiryaev, A. Velmuzhov, Z. Tang, M. Churbanov, and A. Seddon, “Preparation of high purity glasses in the Ga-Ge-As-Se system,” Opt. Mater. 37, 18–23 (2014).
[Crossref]

Vidrine, D.

Wang, X.

L. Jiang, S. Dai, Y. Liu, X. Wang, and C. Lou, “Bending Characteristics of As2S3 Chalcogenide Glass Fibers and Its Effect on Loss,” J. Chin. Ceram. Soc. 47, 250–254 (2019).

C. Yang, X. Wang, J. Su, and S. Dai, “Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber,” J. Non-Cryst. Solids 500, 377–381 (2018).
[Crossref]

Z. Xue, S. Liu, Z. Zhao, N. Mi, B. Wu, X. Li, P. Zhang, and X. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2 µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
[Crossref]

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Wang, Y.

Webber, P.

J. Savage, P. Webber, and A. Pitt, “The potential of Ge-As-Se-Te glasses as 3-5 µm and 8-12 µm infrared optical materials,” Infrared Phys. Technol. 20(5), 313–320 (1980).
[Crossref]

Weibull, W.

W. Weibull, “A statistical theory of the strength of materials,” P. Am. Math. Soc. 151, 1034 (1939).

Woodward, R.

Wright, N.

Wu, B.

Z. Xue, S. Liu, Z. Zhao, N. Mi, B. Wu, X. Li, P. Zhang, and X. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Xiao, X.

Xu, D.

Xu, J.

J. Xu, R. Yang, Q. Chen, W. Jiang, and H. Ye, “The effects of Te, I atoms on the properties and structure of Ge-As-Se system glasses,” J. Non-Cryst. Solids 184, 302–308 (1995).
[Crossref]

Xu, P.

Xu, Y.

Xue, Z.

Yamagishi, T.

J. Nishii, T. Yamashita, and T. Yamagishi, “Chalcogenide glass fiber with a core-cladding structure,” Appl. Opt. 28(23), 5122–5127 (1989).
[Crossref]

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and thermal properties of chalcogenide Ge-As-Se-Te glasses for IR fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

Yamashita, T.

Yang, A.

Yang, C.

C. Yang, X. Wang, J. Su, and S. Dai, “Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber,” J. Non-Cryst. Solids 500, 377–381 (2018).
[Crossref]

Yang, R.

J. Xu, R. Yang, Q. Chen, W. Jiang, and H. Ye, “The effects of Te, I atoms on the properties and structure of Ge-As-Se system glasses,” J. Non-Cryst. Solids 184, 302–308 (1995).
[Crossref]

Yang, Z.

S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26148–26153 (2017).
[Crossref]

Z. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X = I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90(2), 667–669 (2007).
[Crossref]

Ye, H.

J. Xu, R. Yang, Q. Chen, W. Jiang, and H. Ye, “The effects of Te, I atoms on the properties and structure of Ge-As-Se system glasses,” J. Non-Cryst. Solids 184, 302–308 (1995).
[Crossref]

Yokota, R.

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and thermal properties of chalcogenide Ge-As-Se-Te glasses for IR fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

You, C.

Yu, Y.

Zernova, N.

A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
[Crossref]

Zhai, C.

Zhang, B.

Zhang, P.

Zhang, X.

C. Conseil, J. Bastien, C. Boussard-Pledel, X. Zhang, P. Lucas, S. Dai, J. Lucas, and B. Bureau, “Te-based chalcohalide glasses for far-infrared optical fiber,” Opt. Mater. Express 2(11), 1470–1477 (2012).
[Crossref]

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

V. Shiryaev, J. Adam, X. Zhang, C. Boussard-Plédel, J. Lucas, and M. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

V. Shiryaev, J. Adam, and X. Zhang, “Calorimetric study of characteristic temperatures and crystallization behavior in Ge-As-Se-Te glass system,” J. Phys. Chem. Solids 65(10), 1737–1744 (2004).
[Crossref]

Zhao, Z.

Z. Xue, S. Liu, Z. Zhao, N. Mi, B. Wu, X. Li, P. Zhang, and X. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Zhu, B.

X. Dai, X. Liu, L. Liu, B. Zhu, and Z. Fang, “A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases,” Sens. Actuators, B 220, 414–419 (2015).
[Crossref]

Acta Phys. Sin. (1)

Z. Zhao, B. Wu, Y. Liu, L. Jiang, N. Mi, X. Wang, Z. Liu, S. Liu, Z. Pan, Q. Nie, and S. Dai, “Investigation on Ge-As-Se-Te chalcogenide glasses for far-infrared fiber,” Acta Phys. Sin. 65(12), 124205 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Spectrosc. (1)

Infrared Phys. Technol. (2)

V. Tikhomirov, D. Furniss, A. Seddon, J. Savage, P. Mason, D. Orchard, and K. Lewis, “Glass formation in the Te-enriched part of the quaternary Ge-As-Se-Te system and its implication for mid-infrared optical fibres,” Infrared Phys. Technol. 45(2), 115–123 (2004).
[Crossref]

J. Savage, P. Webber, and A. Pitt, “The potential of Ge-As-Se-Te glasses as 3-5 µm and 8-12 µm infrared optical materials,” Infrared Phys. Technol. 20(5), 313–320 (1980).
[Crossref]

Inorg. Mater. (1)

G. Snopatin, V. Shiryaev, V. Plotnichenko, E. Dianov, and M. Churbanov, “High-purity chalcogenide glasses for fiber optics,” Inorg. Mater. 45(13), 1439–1460 (2009).
[Crossref]

J. Am. Ceram. Soc. (2)

V. Nguyen, J. Sanghera, I. Aggarwal, and I. Lloyd, “Physical properties of chalcogenide and chalcohalide glasses,” J. Am. Ceram. Soc. 83(4), 855–859 (2000).
[Crossref]

Z. Yang, G. Tang, L. Luo, and W. Chen, “Visible transparent GeSe2-Ga2Se3-KX (X = I, Br, or Cl) glasses for infrared optics,” J. Am. Ceram. Soc. 90(2), 667–669 (2007).
[Crossref]

J. Chin. Ceram. Soc. (1)

L. Jiang, S. Dai, Y. Liu, X. Wang, and C. Lou, “Bending Characteristics of As2S3 Chalcogenide Glass Fibers and Its Effect on Loss,” J. Chin. Ceram. Soc. 47, 250–254 (2019).

J. Lightwave Technol. (1)

J. Non-Cryst. Solids (7)

I. Inagawa, R. Iizuka, T. Yamagishi, and R. Yokota, “Optical and thermal properties of chalcogenide Ge-As-Se-Te glasses for IR fibers,” J. Non-Cryst. Solids 95-96, 801–808 (1987).
[Crossref]

J. Quinn, V. Nguyen, J. Sanghera, I. Lloyd, P. Pureza, R. Miklos, and I. Aggarwal, “Strength and fractographic analysis of chalcogenide As-S-Se and Ge-As-Se-Te glass fibers,” J. Non-Cryst. Solids 325(1-3), 150–157 (2003).
[Crossref]

J. Xu, R. Yang, Q. Chen, W. Jiang, and H. Ye, “The effects of Te, I atoms on the properties and structure of Ge-As-Se system glasses,” J. Non-Cryst. Solids 184, 302–308 (1995).
[Crossref]

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

C. Yang, X. Wang, J. Su, and S. Dai, “Spectroscopy analysis of mixed organic liquid detection with Ge20Se60Te20 glass-tapered fiber,” J. Non-Cryst. Solids 500, 377–381 (2018).
[Crossref]

J. A. Savage, “Optical properties of chalcogenide glasses,” J. Non-Cryst. Solids 47(1), 101–115 (1982).
[Crossref]

V. Shiryaev, J. Adam, X. Zhang, C. Boussard-Plédel, J. Lucas, and M. Churbanov, “Infrared fibers based on Te–As–Se glass system with low optical losses,” J. Non-Cryst. Solids 336(2), 113–119 (2004).
[Crossref]

J. Phys. Chem. Solids (1)

V. Shiryaev, J. Adam, and X. Zhang, “Calorimetric study of characteristic temperatures and crystallization behavior in Ge-As-Se-Te glass system,” J. Phys. Chem. Solids 65(10), 1737–1744 (2004).
[Crossref]

Mon. Not. R. Astron. Soc. (1)

H. Christina and N. Madhusudhan, “Effect of pressure broadening on molecular absorption cross sections in exoplanetary atmospheres,” Mon. Not. R. Astron. Soc. 458(2), 1427–1449 (2016).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

M. Oh and I. Seo, “Preparation and characterization of the As40Se60 and As38.8Se61.2 glasses with high quality for the single mode IR glass fiber,” Opt. Fiber Technol. 21, 176–179 (2015).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (2)

V. Shiryaev, A. Velmuzhov, Z. Tang, M. Churbanov, and A. Seddon, “Preparation of high purity glasses in the Ga-Ge-As-Se system,” Opt. Mater. 37, 18–23 (2014).
[Crossref]

A. Velmuzhov, V. Shiryaev, M. Sukhanov, T. V. Kotereva, M. Churbanov, N. Zernova, and A. Plekhovich, “Fiber sensor on the basis of Ge26As17Se25Te32 glass for FEWS analysis,” Opt. Mater. 75, 525–532 (2018).
[Crossref]

Opt. Mater. Express (3)

Optica (1)

P. Am. Math. Soc. (1)

W. Weibull, “A statistical theory of the strength of materials,” P. Am. Math. Soc. 151, 1034 (1939).

Proc. SPIE (2)

L. Busse, J. Moon, J. Sanghera, and I. Aggarwal, “Mid-infrared power delivery through chalcogenide glass cladded optical fibers,” Proc. SPIE 2714, 211–221 (1996).
[Crossref]

V. Nguyen, J. Sanghera, F. Kung, P. Pureza, R. Miklos, I. Aggarwal, and I. Lloyd, “Effect of temperature on the loss of the As-S-Se and Ge-As-Se-Te chalcogenide glass fibers,” Proc. SPIE 4204, 287–299 (2001).
[Crossref]

Sens. Actuators, B (4)

F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabal, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+:Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

X. Dai, X. Liu, L. Liu, B. Zhu, and Z. Fang, “A novel image-guided FT-IR sensor using chalcogenide glass optical fibers for the detection of combustion gases,” Sens. Actuators, B 220, 414–419 (2015).
[Crossref]

M. Anne, E. Salle, B. Bureau, J. Tristant, F. Brochot, C. Boussard-Plédel, H. Ma, X. Zhang, and J. Adam, “Polymerisation of an industrial resin monitored by infrared fiber evanescent wave spectroscopy,” Sens. Actuators, B 137(2), 687–691 (2009).
[Crossref]

K. Michel, B. Bureau, C. Boussard-Plédel, T. Jouan, J. Adam, K. Staubmann, and T. Baumann, “Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers,” Sens. Actuators, B 101(1-2), 252–259 (2004).
[Crossref]

Other (1)

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic diagram of purification glass preparation.
Fig. 2.
Fig. 2. (a) Precision-polished glass rod. (b) Preform with PES tube wrapping. (c) Fabricated fibers with a diameter of 400 µm (±2 µm) and length of 50 m.
Fig. 3.
Fig. 3. Schematic diagram of the device for measuring bending strength (1-Platform controller, 2-Fiber fixing fixture, 3-Moving platform, 4-Slideway, 5-Measured Ge15As25Se40Te20 fiber).
Fig. 4.
Fig. 4. Experimental setup for CO2 laser power transmission.
Fig. 5.
Fig. 5. (a) IR absorption spectrum of bulk Ge15As25Se40Te20 glass (illustration: IR transmission spectrum of the glass in the wavelength range of 2.5-8.5 µm). (b) Refractive index (n) varies with wavelength for Ge15As25Se40Te20 glass.
Fig. 6.
Fig. 6. Attenuation spectrum of Ge15As25Se40Te20 glass fiber.
Fig. 7.
Fig. 7. DSC thermogram of Ge15As25Se40Te20 glass (illustration: thermal expansion curve of the glass).
Fig. 8.
Fig. 8. Weibull distribution of bending strength for the uncoated 400 µm Ge15As25Se40Te20 fiber.
Fig. 9.
Fig. 9. Dependence on the input and output CO2 laser power through the coated fiber (length = 1 m, diameter = 400 µm).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

σ   =   1.198 E 2 r D d ,
F ( σ ) = 1 exp ( σ m η m ) ,
ln [ ln ( 1 F ( σ ) ) 1 ] = m ln σ ln σ 0 .

Metrics