Abstract

The simultaneous measurement of relative humidity (RH) and temperature with an optical fiber sensor is proposed based on a microfiber coupler (MFC) coated with a single layer of molybdenum disulfide (MoS2) nanosheets. The MFC is fabricated using flame heating technology and has a waist diameter of approximately 6 µm and a waist length of approximately 3 mm. As the RH increases, the effective refractive index of MoS2 varies as a result of electric charge transfer, the spectrum dip shifts toward longer wavelengths, and the transmission intensity of the spectrum decreases. As the temperature increases, the refractive index of the cladding of the fiber in the MFC waist region increases due to the thermo-optic effect, the spectrum dip shifts toward shorter wavelengths, and the transmission intensity of the spectrum decreases. The experimental results show that the RH sensitivities are 115.3 pm/%RH and -0.058 dB/%RH in the range of 54.0 - 93.2%RH. The temperature sensitivities are -104.8 pm/°C and -0.042 dB/°C in the range of 30 - 90 °C. The proposed sensor is expected to be used for simultaneous measurement of RH and temperature in the field of biochemical analysis.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Novel Knob-integrated fiber Bragg grating sensor with polyvinyl alcohol coating for simultaneous relative humidity and temperature measurement

Guofeng Yan, Yanhong Liang, El-Hang Lee, and Sailing He
Opt. Express 23(12) 15624-15634 (2015)

On-chip simultaneous sensing of humidity and temperature with a dual-polarization silicon microring resonator

Zuoqin Ding, Penghao Liu, Jingye Chen, Daoxin Dai, and Yaocheng Shi
Opt. Express 27(20) 28649-28659 (2019)

Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring

Dongquan Li, Huihui Lu, Wentao Qiu, Jiangli Dong, Heyuan Guan, Wenguo Zhu, Jianhui Yu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 25(23) 28407-28416 (2017)

References

  • View by:
  • |
  • |
  • |

  1. C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
    [Crossref]
  2. Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
    [Crossref]
  3. A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
    [Crossref]
  4. Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
    [Crossref]
  5. A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
    [Crossref]
  6. Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
    [Crossref]
  7. G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
    [Crossref]
  8. B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
    [Crossref]
  9. T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
    [Crossref]
  10. J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
    [Crossref]
  11. S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
    [Crossref]
  12. C. Li, X. Yu, W. Zhou, Y. Cui, J. Liu, and S. Fan, “Ultrafast miniature fiber-tip Fabry–Perot humidity sensor with thin graphene oxide diaphragm,” Opt. Lett. 43(19), 4719 (2018).
    [Crossref]
  13. Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
    [Crossref]
  14. N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
    [Crossref]
  15. H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).
  16. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref]
  17. G. Woyessa, J. K. M. Pedersen, A. Fasano, K. Nielsen, C. Markos, H. K. Rasmussen, and O. Bang, “Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing,” Opt. Lett. 42(6), 1161–1164 (2017).
    [Crossref]
  18. A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
    [Crossref]
  19. B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
    [Crossref]
  20. D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
    [Crossref]
  21. K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
    [Crossref]
  22. K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
    [Crossref]
  23. W. Lin, H. Zhang, B. Song, Y. Miao, B. Liu, D. Yan, and Y. Liu, “Magnetically controllable wavelength-division-multiplexing fiber coupler,” Opt. Express 23(9), 11123 (2015).
    [Crossref]
  24. J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
    [Crossref]
  25. F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
    [Crossref]
  26. F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
    [Crossref]
  27. D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
    [Crossref]
  28. M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
    [Crossref]
  29. H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
    [Crossref]
  30. Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
    [Crossref]
  31. L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
    [Crossref]
  32. L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
    [Crossref]
  33. T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
    [Crossref]
  34. Y. D. Chiu, C. W. Wu, and C. C. Chiang, “Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing,” Sensors 17(9), 2129 (2017).
    [Crossref]
  35. Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
    [Crossref]
  36. Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
    [Crossref]
  37. S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
    [Crossref]
  38. A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
    [Crossref]

2018 (10)

Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]

C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
[Crossref]

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]

C. Li, X. Yu, W. Zhou, Y. Cui, J. Liu, and S. Fan, “Ultrafast miniature fiber-tip Fabry–Perot humidity sensor with thin graphene oxide diaphragm,” Opt. Lett. 43(19), 4719 (2018).
[Crossref]

2017 (6)

2016 (11)

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref]

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

2015 (3)

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

W. Lin, H. Zhang, B. Song, Y. Miao, B. Liu, D. Yan, and Y. Liu, “Magnetically controllable wavelength-division-multiplexing fiber coupler,” Opt. Express 23(9), 11123 (2015).
[Crossref]

2014 (3)

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

2013 (1)

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

2008 (1)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
[Crossref]

1985 (2)

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

Abdullah, T. N. R.

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).

Ahmad, H.

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Ahn, S. H.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Akther, A.

A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]

Arof, H.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Arregui, F. J.

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]

Ascorbe, J.

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

Asokan, S.

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Bang, O.

Barrera, D.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]

Batumalay, M.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Berruti, G.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Bisti, F.

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

Bo, L.

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Breglio, G.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Buontempo, S.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Cai, L.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Cantalini, C.

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

Chen, C.

C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]

Chen, G.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]

Chen, L.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Chen, M. Q.

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]

Chen, T.

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

Chen, X.

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Chen, Z.

Chiang, C. C.

Y. D. Chiu, C. W. Wu, and C. C. Chiang, “Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing,” Sensors 17(9), 2129 (2017).
[Crossref]

Chiu, Y. D.

Y. D. Chiu, C. W. Wu, and C. C. Chiang, “Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing,” Sensors 17(9), 2129 (2017).
[Crossref]

Consales, M.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Corres, J. M.

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

Cui, Y.

Cusano, A.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Donarelli, M.

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

Dong, H.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Dong, J.

Dong, X.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Du, B.

B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]

Du, X.

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

Fan, S.

Fan, Y.

C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]

Fang, W.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Farrell, G.

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Fasano, A.

Fazuldeen, R.

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Feng, J.

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

Frizera-Neto, A.

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]

Giancaterini, L.

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

Giordano, M.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Goicoechea, J.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]

Grattan, K. T. V.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
[Crossref]

Guan, H.

Guan, J.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Guo, J.

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

Han, W.

Harun, S. W.

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).

He, J.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

He, S.

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

He, X.

Huang, Q.

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

Huang, Y.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Hussey, C. D.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

Irawati, N.

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).

Jiang, M.

Jiang, Y.

B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

jin Gu, J.

S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
[Crossref]

Kafy, A.

A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]

Kim, H. C.

A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]

Kim, J.

A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]

Kumar, A. K. S.

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Kumar, R.

Lang, Y.

Leal-Junior, A.

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]

Li, C.

Li, D.

Li, H.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Li, K.

K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Li, M.

C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]

Li, Z.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Lian, Z.

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Lin, H.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Lin, L.

Lin, W.

Liu, B.

Liu, C.

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

Liu, D.

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

Liu, G.

K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Liu, J.

Liu, X.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Liu, Y.

Lokman, A.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Lou, W.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Lu, F.

B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]

Lu, H.

Luo, Y.

Lv, C.

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

Mallik, A. K.

Mao, D.

B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]

Markos, C.

Marques, C.

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]

Matias, I. R.

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

Mei, C.

Miao, Y.

Nardone, M.

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

Nielsen, K.

Nithin, S. P.

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Nodehi, S.

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

Ottaviano, L.

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

Ouyang, T.

Park, J.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Park, S.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Payne, F. P.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

Pedersen, J. K. M.

Peng, G.-D.

Peng, Y.

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]

Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]

Perrozzi, F.

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

Petagna, P.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Pontes, M. J.

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]

Prezioso, S.

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

qing Chen, M.

Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]

Qiu, W.

Rahman, H. A.

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).

Rasmussen, H. K.

Ricchiuti, A. L.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]

Sales, S.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]

Sang, X.

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

Sansone, L.

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

Semenova, Y.

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

She, X.

B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]

Shen, C.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Shentu, F.

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Shishir, M. I. R.

A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]

Shivananju, B. N.

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Song, B.

Stefani, A.

Sun, L.

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

Sun, R.

C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]

Sun, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
[Crossref]

Tai, H.

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

Tang, J.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]

Teng, J.

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

Tong, L.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Tong, R. J.

Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]

Urrutia, A.

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]

Varma, M. M.

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Venugopalan, T.

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
[Crossref]

Wan, S.

Wang, H.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Wang, K.

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

Wang, P.

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Wang, X.

C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]

Wang, Y.

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Wei, F.

Wei, L.

K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Woyessa, G.

Wu, C. W.

Y. D. Chiu, C. W. Wu, and C. C. Chiang, “Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing,” Sensors 17(9), 2129 (2017).
[Crossref]

Wu, P.

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

Wu, Q.

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

Wu, S.

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

xi Jiao, S.

S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
[Crossref]

Xia, F.

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]

Xia, K.

Xiao, Y.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Xie, G.

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

Xin, X.

Yamdagni, S.

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Yan, B.

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

Yan, D.

Yan, G.

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Yang, D.

B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]

Yang, J.

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

Yang, M.

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

Yataki, M. S.

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

Ye, Z.

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

Yu, C.

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

Yu, J.

Yu, X.

Yuan, J.

D. Liu, Q. Wu, C. Mei, J. Yuan, X. Xin, A. K. Mallik, F. Wei, W. Han, R. Kumar, C. Yu, S. Wan, X. He, B. Liu, G.-D. Peng, Y. Semenova, and G. Farrell, “Hollow Core Fiber Based Interferometer for High-Temperature (1000 °C) Measurement,” J. Lightwave Technol. 36(9), 1583–1590 (2018).
[Crossref]

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

Yuan, Y.

B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]

Yuan, Z.

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

Yun, Y.

A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]

Zhang, H.

Zhang, J.

Zhang, M.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhang, N.

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhang, N. M. Y.

Zhang, T.

K. Li, N. M. Y. Zhang, N. Zheng, T. Zhang, G. Liu, and L. Wei, “Spectral Characteristics and Ultrahigh Sensitivities Near the Dispersion Turning Point of Optical Microfiber Couplers,” J. Lightwave Technol. 36(12), 2409–2415 (2018).
[Crossref]

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

Zhao, J.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Zhao, Y.

Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]

S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
[Crossref]

Zheng, N.

Zheng, X.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Zhong, C.

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Zhong, Y.

Zhou, B.

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

Zhou, J.

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Zhou, M.

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Zhou, W.

Zhu, W.

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

T. Ouyang, L. Lin, K. Xia, M. Jiang, Y. Lang, H. Guan, J. Yu, D. Li, G. Chen, W. Zhu, Y. Zhong, J. Tang, J. Dong, H. Lu, Y. Luo, J. Zhang, and Z. Chen, “Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing,” Opt. Express 25(9), 9823–9833 (2017).
[Crossref]

D. Li, H. Lu, W. Qiu, J. Dong, H. Guan, W. Zhu, J. Yu, Y. Luo, J. Zhang, and Z. Chen, “Molybdenum disulfide nanosheets deposited on polished optical fiber for humidity sensing and human breath monitoring,” Opt. Express 25(23), 28407 (2017).
[Crossref]

Appl. Phys. Lett. (3)

K. Li, T. Zhang, G. Liu, N. Zhang, M. Zhang, and L. Wei, “Ultrasensitive optical microfiber coupler based sensors operating near the turning point of effective group index difference,” Appl. Phys. Lett. 109(10), 101101 (2016).
[Crossref]

H. Li, S. H. Ahn, S. Park, L. Cai, J. Zhao, J. He, M. Zhou, J. Park, and X. Zheng, “Molybdenum disulfide catalyzed tungsten oxide for on-chip acetone sensing,” Appl. Phys. Lett. 109(13), 133103 (2016).
[Crossref]

Y. Wang, C. Shen, W. Lou, F. Shentu, C. Zhong, X. Dong, and L. Tong, “Fiber optic relative humidity sensor based on the tilted fiber Bragg grating coated with graphene oxide,” Appl. Phys. Lett. 109(3), 031107 (2016).
[Crossref]

Electron. Lett. (2)

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985).
[Crossref]

F. P. Payne, C. D. Hussey, and M. S. Yataki, “Modelling fused single-mode-fibre couplers,” Electron. Lett. 21(11), 461–462 (1985).
[Crossref]

IEEE Photonics J. (1)

L. Sun, Y. Semenova, Q. Wu, D. Liu, J. Yuan, X. Sang, B. Yan, K. Wang, C. Yu, and G. Farrell, “Investigation of humidity and temperature response of a silica gel coated microfiber coupler,” IEEE Photonics J. 8(6), 1–7 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Y. Wang, Q. Huang, W. Zhu, and M. Yang, “Simultaneous Measurement of Temperature and Relative Humidity Based on FBG and FP Interferometer,” IEEE Photonics Technol. Lett. 30(9), 833–836 (2018).
[Crossref]

IEEE Sens. J. (1)

B. N. Shivananju, S. Yamdagni, R. Fazuldeen, A. K. S. Kumar, S. P. Nithin, M. M. Varma, and S. Asokan, “Highly sensitive carbon nanotubes coated etched fiber Bragg grating sensor for humidity sensing,” IEEE Sens. J. 14(8), 2615–2619 (2014).
[Crossref]

Instrum. Sci. Technol. (1)

S. xi Jiao, Y. Zhao, and J. jin Gu, “Simultaneous measurement of humidity and temperature using a polyvinyl alcohol tapered fiber Bragg grating,” Instrum. Sci. Technol. 46(5), 463–474 (2018).
[Crossref]

J. Lightwave Technol. (2)

Measurement (1)

N. Irawati, H. A. Rahman, H. Ahmad, and S. W. Harun, “A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating,” Measurement 99, 128–133 (2017).
[Crossref]

Microw. Opt. Technol. Lett. (2)

A. Lokman, S. Nodehi, M. Batumalay, H. Arof, H. Ahmad, and S. W. Harun, “Optical fiber humidity sensor based on a tapered fiber with hydroxyethylcellulose/polyvinylidenefluoride composite,” Microw. Opt. Technol. Lett. 56(2), 380–382 (2014).
[Crossref]

L. Bo, P. Wang, Y. Semenova, and G. Farrell, “Optical microfiber coupler based humidity sensor with a polyethylene oxide coating,” Microw. Opt. Technol. Lett. 57(2), 457–460 (2015).
[Crossref]

Opt. Commun. (1)

Y. Wang, C. Shen, W. Lou, and F. Shentu, “Fiber optic humidity sensor based on the graphene oxide/PVA composite film,” Opt. Commun. 372, 229–234 (2016).
[Crossref]

Opt. Express (4)

Opt. Fiber Technol. (1)

J. Teng, J. Yang, C. Lv, T. Chen, J. Guo, J. Feng, and P. Wu, “Guidelines for design and fabrication of fused fiber coupler based wavelength division multiplexings,” Opt. Fiber Technol. 20(3), 239–244 (2014).
[Crossref]

Opt. Lett. (2)

Sens. Actuators, A (2)

T. Venugopalan, T. Sun, and K. T. V. Grattan, “Long period grating-based humidity sensor for potential structural health monitoring,” Sens. Actuators, A 148(1), 57–62 (2008).
[Crossref]

A. Kafy, A. Akther, M. I. R. Shishir, H. C. Kim, Y. Yun, and J. Kim, “Cellulose nanocrystal/graphene oxide composite film as humidity sensor,” Sens. Actuators, A 247, 221–226 (2016).
[Crossref]

Sens. Actuators, B (10)

Y. Zhao, Y. Peng, M. qing Chen, and R. J. Tong, “Humidity sensor based on unsymmetrical U-shaped microfiber with a polyvinyl alcohol overlay,” Sens. Actuators, B 263, 312–318 (2018).
[Crossref]

C. Chen, X. Wang, M. Li, Y. Fan, and R. Sun, “Humidity sensor based on reduced graphene oxide/lignosulfonate composite thin-film,” Sens. Actuators, B 255(2), 1569–1576 (2018).
[Crossref]

Z. Yuan, H. Tai, Z. Ye, C. Liu, G. Xie, X. Du, and Y. Jiang, “Novel highly sensitive QCM humidity sensor with low hysteresis based on graphene oxide (GO)/poly(ethyleneimine) layered film,” Sens. Actuators, B 234, 145–154 (2016).
[Crossref]

J. Ascorbe, J. M. Corres, I. R. Matias, and F. J. Arregui, “High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances,” Sens. Actuators, B 233, 7–16 (2016).
[Crossref]

S. Wu, G. Yan, Z. Lian, X. Chen, B. Zhou, and S. He, “An open-cavity Fabry-Perot interferometer with PVA coating for simultaneous measurement of relative humidity and temperature,” Sens. Actuators, B 225, 50–56 (2016).
[Crossref]

G. Berruti, M. Consales, M. Giordano, L. Sansone, P. Petagna, S. Buontempo, G. Breglio, and A. Cusano, “Radiation hard humidity sensors for high energy physics applications using polyimide-coated fiber Bragg gratings sensors,” Sens. Actuators, B 177, 94–102 (2013).
[Crossref]

A. Urrutia, J. Goicoechea, A. L. Ricchiuti, D. Barrera, S. Sales, and F. J. Arregui, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sens. Actuators, B 227, 135–141 (2016).
[Crossref]

B. Du, D. Yang, X. She, Y. Yuan, D. Mao, Y. Jiang, and F. Lu, “MoS2-based all-fiber humidity sensor for monitoring human breath with fast response and recovery,” Sens. Actuators, B 251, 180–184 (2017).
[Crossref]

M. Donarelli, S. Prezioso, F. Perrozzi, F. Bisti, M. Nardone, L. Giancaterini, C. Cantalini, and L. Ottaviano, “Response to NO2 and other gases of resistive chemically exfoliated MoS2-based gas sensors,” Sens. Actuators, B 207, 602–613 (2015).
[Crossref]

Y. Huang, W. Zhu, Z. Li, G. Chen, L. Chen, J. Zhou, H. Lin, J. Guan, W. Fang, X. Liu, H. Dong, J. Tang, H. Guan, H. Lu, Y. Xiao, J. Zhang, H. Wang, Z. Chen, and J. Yu, “High-performance fibre-optic humidity sensor based on a side-polished fibre wavelength selectively coupled with graphene oxide film,” Sens. Actuators, B 255, 57–69 (2018).
[Crossref]

Sensors (2)

Y. D. Chiu, C. W. Wu, and C. C. Chiang, “Tilted fiber Bragg grating sensor with graphene oxide coating for humidity sensing,” Sensors 17(9), 2129 (2017).
[Crossref]

A. Leal-Junior, A. Frizera-Neto, C. Marques, and M. J. Pontes, “Measurement of temperature and relative humidity with polymer optical fiber sensors based on the induced stress-optic effect,” Sensors 18(3), 916 (2018).
[Crossref]

Small (1)

Y. Peng, Y. Zhao, M. Q. Chen, and F. Xia, “Research Advances in Microfiber Humidity Sensors,” Small 14(29), 1800524 (2018).
[Crossref]

Other (1)

H. A. Rahman, N. Irawati, T. N. R. Abdullah, and S. W. Harun, “PMMA microfiber coated with ZnO nanostructure for the measurement of relative humidity,” in IOP Conference Series: Materials Science and Engineering (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic diagram of the microfiber coupler.
Fig. 2.
Fig. 2. Simulated transmission of MFC for different ambient refractive index values of ${n_3}$ .
Fig. 3.
Fig. 3. Simulated amplitude distribution of light propagating in the microfiber coupler for different ambient refractive index levels of (a) 1.0, (b) 1.358, and (c) 1.4182.
Fig. 4.
Fig. 4. Simulated transmission of MFC for different refractive index values of the fiber cladding of ${n_2}$ .
Fig. 5.
Fig. 5. Optical microscope graph of a microfiber coupler.
Fig. 6.
Fig. 6. Schematic diagram of the experimental setup of the proposed humidity sensor.
Fig. 7.
Fig. 7. Transmission characteristics of the microfiber coupler coated with a single layer of MoS2 nanosheets at different RHs.
Fig. 8.
Fig. 8. Transmission spectral evolution of the dip at different RHs.
Fig. 9.
Fig. 9. Wavelength and transmission intensity response to a change in RH.
Fig. 10.
Fig. 10. Transmission spectral evolution of the dip at different temperatures.
Fig. 11.
Fig. 11. Wavelength and transmission intensity response to a change in temperature.

Tables (3)

Tables Icon

Table 1. RH sensors based on the coupler structure.

Tables Icon

Table 2. Comparison of RH sensors based on two-dimensional materials.

Tables Icon

Table 3. Comparison of fiber-optic sensors for simultaneous measurement of RH and temperature.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

{ P C ( λ ) = P 1 cos 2 φ ( λ , n 2 , n 3 ) P D ( λ ) = P 1 sin 2 φ ( λ , n 2 , n 3 )
φ ( λ , n 2 , n 3 ) = S C C 1 ( λ , n 2 , n 3 , z ) d z + W C C 2 ( λ , n 2 , n 3 , z ) d z = φ S C ( λ , n 2 , n 3 ) + φ W C ( λ , n 2 , n 3 )
{ C 1 = 3 π λ 32 n 2 r 2 1 ( 1 + 1 / V ) 2 C 2 = 2 r ( Δ 2 π D ) 1 / 2 U V 5 / 2 e V ( 2 D 2 )
S n = λ n 3 = φ ( λ , n 2 , n 3 ) n 3 φ ( λ , n 2 , n 3 ) λ = φ S C n 3 + φ W C n 3 φ S C λ + φ W C λ
S R H = λ R H = λ n 3 d n 3 d R H = φ ( λ , n 2 , n 3 ) n 3 φ ( λ , n 2 , n 3 ) λ d n 3 d R H = φ S C n 3 + φ W C n 3 φ S C λ + φ W C λ d n 3 d R H
{ n 2 T = n 20 + ξ n 20 Δ T r T = r 0 + α r 0 Δ T L T = L 0 + α L 0 Δ T
S T = λ T = λ n 2 d n 2 d T = φ ( λ , n 2 , n 3 ) n 2 φ ( λ , n 2 , n 3 ) λ d n 2 d T = φ S C n 2 + φ W C n 2 φ S C λ + φ W C λ d n 2 d T
[ Δ λ Δ t ] = [ K λ , R H K λ , T K t , R H K t , T ] [ Δ R H Δ T ]
[ Δ R H Δ T ] = [ K λ , R H K λ , T K t , R H K t , T ] 1 [ Δ λ Δ t ] = 1 K λ , R H K t , T K λ , T K t , R H [ K t , T K λ , T K t , R H K λ , R H ] [ Δ λ Δ t ]
[ Δ R H Δ T ] = 1 10.921 [ 0.042 104.8 0.058 115.3 ] [ Δ λ Δ t ]

Metrics