Abstract

Silicon oxycarbide deposited by plasma enhanced chemical vapor deposition is investigated regarding its application as a material for optical waveguides. The dependence of the infrared absorption, the refractive index, and the surface roughness on the precursor gas flow ratios is studied by Fourier transform infrared spectroscopy, ellipsometry, and atomic force microscopy, respectively. Results show that the refractive index can be tuned over a significant wider range compared to silicon oxynitride. Fabricated waveguides with a refractive index contrast of 0.05 show waveguide attenuation from about 0.3 dB/cm to 0.4 dB/cm for wavelengths between 1480 nm and 1570 nm. These low values were achieved without using a high temperature annealing process.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette
Opt. Express 16(18) 13509-13516 (2008)

Effect of precursors on propagation loss for plasma-enhanced chemical vapor deposition of SiNx:H waveguides

E. A. Douglas, Patrick Mahony, Andrew Starbuck, Andy Pomerene, Douglas C. Trotter, and Christopher T. DeRose
Opt. Mater. Express 6(9) 2892-2903 (2016)

Low-pressure chemical vapor deposition silicon–oxynitride films for integrated optics

W. Gleine and J. Müller
Appl. Opt. 31(12) 2036-2040 (1992)

References

  • View by:
  • |
  • |
  • |

  1. T. Barwicz, M. A. Popovic, P. T. Rakich, M. R. Watts, H. A. Haus, E. P. Ippen, and H. I. Smith, “Microring-resonator-based add-drop filters in sin: fabrication and analysis,” Opt. Express 12(7), 1437–1442 (2004).
    [Crossref]
  2. G.-L. Bona, R. Germann, and B. J. Offrein, “Sion high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47(2.3), 239–249 (2003).
    [Crossref]
  3. B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42(21), 4541–4544 (2017).
    [Crossref]
  4. D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” Proc. IEEE 14th International Conference on Group IV Photonics (GFP’17), pp. 83, 84, (2017).
  5. A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
    [Crossref]
  6. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol. 23(2), 702–723 (2005).
    [Crossref]
  7. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
    [Crossref]
  8. M. A. Porcel, F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. van der Slot, C. J. Lee, R. Schmidt, and R. Bratschitsch, “Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths,” Opt. Express 25(2), 1542–1554 (2017).
    [Crossref]
  9. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
    [Crossref]
  10. H. Ou, “Different index contrast silica-on-silicon waveguides by pecvd,” Electron. Lett. 39(2), 212–213 (2003).
    [Crossref]
  11. B. E. Little, “A vlsi photonics platform,” Proc. Optical Fiber Communications Conference (OFC’03), ThD1, (2003).
  12. M. Fadel, M. Bülters, M. Niemand, E. Voges, and P. M. Krummrich, “Low-loss and low-birefringence high-contrast silicon-oxynitride waveguides for optical communication,” J. Lightwave Technol. 27(6), 698–705 (2009).
    [Crossref]
  13. F. G. Johnson, O. S. King, J. V. Hryniewicz, L. G. Joneckis, S. T. Chu, and D. M. Gill, “Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides,” (2004). US Patent 6,771,868.
  14. T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated sin/sion waveguides on si platform and their application to c-band wdm filters,” IEEE Photonics J. 9(5), 1–7 (2017).
    [Crossref]
  15. F. G. Johnson, O. S. King, D. M. Gill, T. J. Davidson, and W. P. Berk, “Silicon-oxycarbide high index contrast, low-loss optical waveguides and integrated thermo-optic devices,” (2006). US Patent 7,043,133.
  16. S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
    [Crossref]
  17. F. A. Memon, F. Morichetti, C. Somaschini, G. Iseni, and A. Melloni, “Experimental analysis of silicon oxycarbide thin films and waveguides,” Proc. SPIE 10242, 1024212 (2017).
    [Crossref]
  18. M. J. Loboda and J. A. Seifferly, “Method for producing hydrogenated silicon oxycarbide films having low dielectric constant,” (2000). US Patent 6,159,871.
  19. S. Gallis, V. Nikas, E. Eisenbraun, M. Huang, and A. E. Kaloyeros, “On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide,” J. Mater. Res. Technol. 24(08), 2561–2573 (2009).
    [Crossref]
  20. L. Baudzus and P. M. Krummrich, “Efficient low-loss adaptive optical filters based on silicon oxycarbide - liquid crystal hybrid technology,” Proc. Optical Fiber Communications Conference (OFC’19), Th2A.3, (2019).
  21. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005).
    [Crossref]
  22. A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
    [Crossref]

2018 (2)

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

2017 (4)

B. Stern, X. Ji, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42(21), 4541–4544 (2017).
[Crossref]

M. A. Porcel, F. Schepers, J. P. Epping, T. Hellwig, M. Hoekman, R. G. Heideman, P. J. van der Slot, C. J. Lee, R. Schmidt, and R. Bratschitsch, “Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths,” Opt. Express 25(2), 1542–1554 (2017).
[Crossref]

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated sin/sion waveguides on si platform and their application to c-band wdm filters,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

F. A. Memon, F. Morichetti, C. Somaschini, G. Iseni, and A. Melloni, “Experimental analysis of silicon oxycarbide thin films and waveguides,” Proc. SPIE 10242, 1024212 (2017).
[Crossref]

2011 (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

2009 (2)

S. Gallis, V. Nikas, E. Eisenbraun, M. Huang, and A. E. Kaloyeros, “On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide,” J. Mater. Res. Technol. 24(08), 2561–2573 (2009).
[Crossref]

M. Fadel, M. Bülters, M. Niemand, E. Voges, and P. M. Krummrich, “Low-loss and low-birefringence high-contrast silicon-oxynitride waveguides for optical communication,” J. Lightwave Technol. 27(6), 698–705 (2009).
[Crossref]

2005 (3)

2004 (1)

2003 (2)

G.-L. Bona, R. Germann, and B. J. Offrein, “Sion high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47(2.3), 239–249 (2003).
[Crossref]

H. Ou, “Different index contrast silica-on-silicon waveguides by pecvd,” Electron. Lett. 39(2), 212–213 (2003).
[Crossref]

1998 (1)

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[Crossref]

Aihara, T.

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated sin/sion waveguides on si platform and their application to c-band wdm filters,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Barwicz, T.

Baudzus, L.

L. Baudzus and P. M. Krummrich, “Efficient low-loss adaptive optical filters based on silicon oxycarbide - liquid crystal hybrid technology,” Proc. Optical Fiber Communications Conference (OFC’19), Th2A.3, (2019).

Berk, W. P.

F. G. Johnson, O. S. King, D. M. Gill, T. J. Davidson, and W. P. Berk, “Silicon-oxycarbide high index contrast, low-loss optical waveguides and integrated thermo-optic devices,” (2006). US Patent 7,043,133.

Blumenthal, D. J.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Bona, G.-L.

G.-L. Bona, R. Germann, and B. J. Offrein, “Sion high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47(2.3), 239–249 (2003).
[Crossref]

Bratschitsch, R.

Bülters, M.

Capmany, J.

Chu, S. T.

F. G. Johnson, O. S. King, J. V. Hryniewicz, L. G. Joneckis, S. T. Chu, and D. M. Gill, “Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides,” (2004). US Patent 6,771,868.

Davidson, T. J.

F. G. Johnson, O. S. King, D. M. Gill, T. J. Davidson, and W. P. Berk, “Silicon-oxycarbide high index contrast, low-loss optical waveguides and integrated thermo-optic devices,” (2006). US Patent 7,043,133.

Dekker, R.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Dutt, A.

Efstathiadis, H.

S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
[Crossref]

Eisenbraun, E.

S. Gallis, V. Nikas, E. Eisenbraun, M. Huang, and A. E. Kaloyeros, “On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide,” J. Mater. Res. Technol. 24(08), 2561–2573 (2009).
[Crossref]

S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
[Crossref]

Epping, J. P.

Faber, D. J.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

Fadel, M.

Gallis, S.

S. Gallis, V. Nikas, E. Eisenbraun, M. Huang, and A. E. Kaloyeros, “On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide,” J. Mater. Res. Technol. 24(08), 2561–2573 (2009).
[Crossref]

S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
[Crossref]

Germann, R.

G.-L. Bona, R. Germann, and B. J. Offrein, “Sion high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47(2.3), 239–249 (2003).
[Crossref]

Geuzebroek, D.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” Proc. IEEE 14th International Conference on Group IV Photonics (GFP’17), pp. 83, 84, (2017).

Gill, D. M.

F. G. Johnson, O. S. King, D. M. Gill, T. J. Davidson, and W. P. Berk, “Silicon-oxycarbide high index contrast, low-loss optical waveguides and integrated thermo-optic devices,” (2006). US Patent 7,043,133.

F. G. Johnson, O. S. King, J. V. Hryniewicz, L. G. Joneckis, S. T. Chu, and D. M. Gill, “Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides,” (2004). US Patent 6,771,868.

Haus, H. A.

Heideman, R.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Heideman, R. G.

Hellwig, T.

Himeno, A.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[Crossref]

Hiraki, T.

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated sin/sion waveguides on si platform and their application to c-band wdm filters,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Hoekman, M.

Holzwarth, R.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Hommerich, U.

S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
[Crossref]

Hryniewicz, J. V.

F. G. Johnson, O. S. King, J. V. Hryniewicz, L. G. Joneckis, S. T. Chu, and D. M. Gill, “Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides,” (2004). US Patent 6,771,868.

Huang, M.

S. Gallis, V. Nikas, E. Eisenbraun, M. Huang, and A. E. Kaloyeros, “On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide,” J. Mater. Res. Technol. 24(08), 2561–2573 (2009).
[Crossref]

S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
[Crossref]

Ippen, E. P.

Iseni, G.

F. A. Memon, F. Morichetti, C. Somaschini, G. Iseni, and A. Melloni, “Experimental analysis of silicon oxycarbide thin films and waveguides,” Proc. SPIE 10242, 1024212 (2017).
[Crossref]

Ji, X.

Johnson, F. G.

F. G. Johnson, O. S. King, J. V. Hryniewicz, L. G. Joneckis, S. T. Chu, and D. M. Gill, “Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides,” (2004). US Patent 6,771,868.

F. G. Johnson, O. S. King, D. M. Gill, T. J. Davidson, and W. P. Berk, “Silicon-oxycarbide high index contrast, low-loss optical waveguides and integrated thermo-optic devices,” (2006). US Patent 7,043,133.

Joneckis, L. G.

F. G. Johnson, O. S. King, J. V. Hryniewicz, L. G. Joneckis, S. T. Chu, and D. M. Gill, “Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides,” (2004). US Patent 6,771,868.

Kaloyeros, A. E.

S. Gallis, V. Nikas, E. Eisenbraun, M. Huang, and A. E. Kaloyeros, “On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide,” J. Mater. Res. Technol. 24(08), 2561–2573 (2009).
[Crossref]

S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
[Crossref]

Kato, K.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[Crossref]

Kim, K.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

Kim, K. B.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

King, O. S.

F. G. Johnson, O. S. King, D. M. Gill, T. J. Davidson, and W. P. Berk, “Silicon-oxycarbide high index contrast, low-loss optical waveguides and integrated thermo-optic devices,” (2006). US Patent 7,043,133.

F. G. Johnson, O. S. King, J. V. Hryniewicz, L. G. Joneckis, S. T. Chu, and D. M. Gill, “Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides,” (2004). US Patent 6,771,868.

Kippenberg, T. J.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Klein, E.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” Proc. IEEE 14th International Conference on Group IV Photonics (GFP’17), pp. 83, 84, (2017).

Krummrich, P. M.

M. Fadel, M. Bülters, M. Niemand, E. Voges, and P. M. Krummrich, “Low-loss and low-birefringence high-contrast silicon-oxynitride waveguides for optical communication,” J. Lightwave Technol. 27(6), 698–705 (2009).
[Crossref]

L. Baudzus and P. M. Krummrich, “Efficient low-loss adaptive optical filters based on silicon oxycarbide - liquid crystal hybrid technology,” Proc. Optical Fiber Communications Conference (OFC’19), Th2A.3, (2019).

Lawniczuk, K.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” Proc. IEEE 14th International Conference on Group IV Photonics (GFP’17), pp. 83, 84, (2017).

Lee, C. J.

Leinse, A.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Lipson, M.

Little, B. E.

B. E. Little, “A vlsi photonics platform,” Proc. Optical Fiber Communications Conference (OFC’03), ThD1, (2003).

Loboda, M. J.

M. J. Loboda and J. A. Seifferly, “Method for producing hydrogenated silicon oxycarbide films having low dielectric constant,” (2000). US Patent 6,159,871.

Marchenko, D.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

Melloni, A.

F. A. Memon, F. Morichetti, C. Somaschini, G. Iseni, and A. Melloni, “Experimental analysis of silicon oxycarbide thin films and waveguides,” Proc. SPIE 10242, 1024212 (2017).
[Crossref]

Memon, F. A.

F. A. Memon, F. Morichetti, C. Somaschini, G. Iseni, and A. Melloni, “Experimental analysis of silicon oxycarbide thin films and waveguides,” Proc. SPIE 10242, 1024212 (2017).
[Crossref]

Miya, T.

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[Crossref]

Morichetti, F.

F. A. Memon, F. Morichetti, C. Somaschini, G. Iseni, and A. Melloni, “Experimental analysis of silicon oxycarbide thin films and waveguides,” Proc. SPIE 10242, 1024212 (2017).
[Crossref]

Niemand, M.

Nikas, V.

S. Gallis, V. Nikas, E. Eisenbraun, M. Huang, and A. E. Kaloyeros, “On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide,” J. Mater. Res. Technol. 24(08), 2561–2573 (2009).
[Crossref]

Nishi, H.

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated sin/sion waveguides on si platform and their application to c-band wdm filters,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

Nyein, E. E.

S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
[Crossref]

Offrein, B. J.

G.-L. Bona, R. Germann, and B. J. Offrein, “Sion high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47(2.3), 239–249 (2003).
[Crossref]

Ortega, B.

Ou, H.

H. Ou, “Different index contrast silica-on-silicon waveguides by pecvd,” Electron. Lett. 39(2), 212–213 (2003).
[Crossref]

Pastor, D.

Popovic, M. A.

Porcel, M. A.

R. M. Ruis, H. R. G.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

Rakich, P. T.

Roeloffzen, C.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Sales, S.

Schepers, F.

Schmidt, R.

Seifferly, J. A.

M. J. Loboda and J. A. Seifferly, “Method for producing hydrogenated silicon oxycarbide films having low dielectric constant,” (2000). US Patent 6,159,871.

Smith, H. I.

Somaschini, C.

F. A. Memon, F. Morichetti, C. Somaschini, G. Iseni, and A. Melloni, “Experimental analysis of silicon oxycarbide thin films and waveguides,” Proc. SPIE 10242, 1024212 (2017).
[Crossref]

Stern, B.

Tsuchizawa, T.

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated sin/sion waveguides on si platform and their application to c-band wdm filters,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

van der Slot, P. J.

van Leeuwen, T. G.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

van Rees, A.

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” Proc. IEEE 14th International Conference on Group IV Photonics (GFP’17), pp. 83, 84, (2017).

Voges, E.

Watts, M. R.

Wevers, L.

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

Appl. Phys. Lett. (1)

S. Gallis, M. Huang, H. Efstathiadis, E. Eisenbraun, A. E. Kaloyeros, E. E. Nyein, and U. Hommerich, “Photoluminescence in erbium doped amorphous silicon oxycarbide thin films,” Appl. Phys. Lett. 87(9), 091901 (2005).
[Crossref]

Electron. Lett. (1)

H. Ou, “Different index contrast silica-on-silicon waveguides by pecvd,” Electron. Lett. 39(2), 212–213 (2003).
[Crossref]

IBM J. Res. Dev. (1)

G.-L. Bona, R. Germann, and B. J. Offrein, “Sion high-refractive-index waveguide and planar lightwave circuits,” IBM J. Res. Dev. 47(2.3), 239–249 (2003).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Himeno, K. Kato, and T. Miya, “Silica-based planar lightwave circuits,” IEEE J. Sel. Top. Quantum Electron. 4(6), 913–924 (1998).
[Crossref]

IEEE Photonics J. (1)

T. Hiraki, T. Aihara, H. Nishi, and T. Tsuchizawa, “Deuterated sin/sion waveguides on si platform and their application to c-band wdm filters,” IEEE Photonics J. 9(5), 1–7 (2017).
[Crossref]

J. Lightwave Technol. (3)

J. Mater. Res. Technol. (1)

S. Gallis, V. Nikas, E. Eisenbraun, M. Huang, and A. E. Kaloyeros, “On the effects of thermal treatment on the composition, structure, morphology, and optical properties of hydrogenated amorphous silicon-oxycarbide,” J. Mater. Res. Technol. 24(08), 2561–2573 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Proc. IEEE (1)

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106(12), 2209–2231 (2018).
[Crossref]

Proc. SPIE (2)

A. Leinse, L. Wevers, D. Marchenko, R. Dekker, H. R. G. R. M. Ruis, D. J. Faber, T. G. van Leeuwen, K. B. Kim, and K. Kim, “Spectral domain, common path oct in a handheld pic based system,” Proc. SPIE 10483, 104831J (2018).
[Crossref]

F. A. Memon, F. Morichetti, C. Somaschini, G. Iseni, and A. Melloni, “Experimental analysis of silicon oxycarbide thin films and waveguides,” Proc. SPIE 10242, 1024212 (2017).
[Crossref]

Science (1)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011).
[Crossref]

Other (6)

D. Geuzebroek, A. van Rees, E. Klein, and K. Lawniczuk, “Ultra-wide band (400-1700nm) integrated spectrometer based on arrayed waveguide gratings for spectral tissue sensing,” Proc. IEEE 14th International Conference on Group IV Photonics (GFP’17), pp. 83, 84, (2017).

M. J. Loboda and J. A. Seifferly, “Method for producing hydrogenated silicon oxycarbide films having low dielectric constant,” (2000). US Patent 6,159,871.

F. G. Johnson, O. S. King, D. M. Gill, T. J. Davidson, and W. P. Berk, “Silicon-oxycarbide high index contrast, low-loss optical waveguides and integrated thermo-optic devices,” (2006). US Patent 7,043,133.

F. G. Johnson, O. S. King, J. V. Hryniewicz, L. G. Joneckis, S. T. Chu, and D. M. Gill, “Use of deuterated gases for the vapor deposition of thin films for low-loss optical devices and waveguides,” (2004). US Patent 6,771,868.

B. E. Little, “A vlsi photonics platform,” Proc. Optical Fiber Communications Conference (OFC’03), ThD1, (2003).

L. Baudzus and P. M. Krummrich, “Efficient low-loss adaptive optical filters based on silicon oxycarbide - liquid crystal hybrid technology,” Proc. Optical Fiber Communications Conference (OFC’19), Th2A.3, (2019).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. ATR FTIR Spectrum of SiOC with an refractive index of 1.67 for different gas flow ratios of SiH$_4$ and CH$_4$.
Fig. 2.
Fig. 2. Refractive index at 633 nm in dependence of the CO$_2$ gas flow with a SiH$_4$ gas flow of 5 sccm and a CH$_4$ gas flow of 100 sccm.
Fig. 3.
Fig. 3. AFM measurement results for films with a thickness of 1 µm and different refractive indices.
Fig. 4.
Fig. 4. Refractive index profile of the fabricated waveguides.
Fig. 5.
Fig. 5. ATR FTIR Spectrum of the waveguide core and cladding material.
Fig. 6.
Fig. 6. Photo of the photonic chip lying on the vacuum holder with fibers positioned at the chip facets.
Fig. 7.
Fig. 7. Transmission spectra of waveguides with the lengths 2.5 cm and 7.1 cm.
Fig. 8.
Fig. 8. Optical attenuation of SiOC waveguides with a refractive index contrast of 0.05.