Abstract

Epsilon-near-zero materials have recently come onto the scene as promising new nonlinear optical materials. However, this field is quite crowded and it is prudent to ask whether they possess any key features which will elevate them above other candidates. It is our opinion that they in fact possess two such features, a simultaneous intrinsic and extrinsic enhancement to light matter interaction. Here we elucidate these enhancement mechanisms and compare them to other manifestations found in literature, explaining why this combination is unique to epsilon-near-zero materials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

13 June 2019: A typographical correction was made to Fig. 1.

References

  • View by:
  • |
  • |
  • |

  1. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  2. R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64(5), 056625 (2001).
    [Crossref]
  3. N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
    [Crossref]
  4. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref]
  5. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
    [Crossref]
  6. S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
    [Crossref]
  7. J. F. Ward, “Calculation of Nonlinear Optical Susceptibilities Using Diagrammatic Perturbation Theory,” Rev. Mod. Phys. 37(1), 1–18 (1965).
    [Crossref]
  8. R. W. Ditchburn, Light (Dover Publications, 1991).
  9. J. Khurgin, “Electro-optical switching and bistability in coupled quantum wells,” Appl. Phys. Lett. 54(25), 2589–2591 (1989).
    [Crossref]
  10. M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
    [Crossref]
  11. K. Hall, E. Ippen, and E. Thoen, “Nonlinearities in Active Media,” in Nonlinear Optics in Semiconductors II, E. M. Garmire and A. R. Kost, eds. (Academic Press, 1999), p. 334.
  12. G. Sun, J. B. Khurgin, and R. A. Soref, “Nonlinear all-optical GaN∕AlGaN multi-quantum-well devices for 100Gb∕s applications at λ=1.55µm,” Appl. Phys. Lett. 87(20), 201108 (2005).
    [Crossref]
  13. J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photonics 2(3), 287 (2010).
    [Crossref]
  14. R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited],” J. Opt. Soc. Am. B 28(12), A38 (2011).
    [Crossref]
  15. J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(8), 768–779 (2012).
    [Crossref]

2018 (1)

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

2017 (1)

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

2016 (1)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

2015 (2)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

2012 (1)

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(8), 768–779 (2012).
[Crossref]

2011 (1)

2010 (1)

J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photonics 2(3), 287 (2010).
[Crossref]

2007 (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

2005 (1)

G. Sun, J. B. Khurgin, and R. A. Soref, “Nonlinear all-optical GaN∕AlGaN multi-quantum-well devices for 100Gb∕s applications at λ=1.55µm,” Appl. Phys. Lett. 87(20), 201108 (2005).
[Crossref]

2001 (1)

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64(5), 056625 (2001).
[Crossref]

1989 (1)

J. Khurgin, “Electro-optical switching and bistability in coupled quantum wells,” Appl. Phys. Lett. 54(25), 2589–2591 (1989).
[Crossref]

1965 (1)

J. F. Ward, “Calculation of Nonlinear Optical Susceptibilities Using Diagrammatic Perturbation Theory,” Rev. Mod. Phys. 37(1), 1–18 (1965).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Alù, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Boltasseva, A.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(8), 768–779 (2012).
[Crossref]

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

R. W. Boyd, “Material slow light and structural slow light: similarities and differences for nonlinear optics [Invited],” J. Opt. Soc. Am. B 28(12), A38 (2011).
[Crossref]

Bruno, V.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

Capretti, A.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Carnemolla, E. G.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

Caspani, L.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

Clerici, M.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

Dal Negro, L.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Devault, C.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Ditchburn, R. W.

R. W. Ditchburn, Light (Dover Publications, 1991).

Dubietis, A.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

Engheta, N.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Faccio, D.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

Ferrera, M.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Hall, K.

K. Hall, E. Ippen, and E. Thoen, “Nonlinearities in Active Media,” in Nonlinear Optics in Semiconductors II, E. M. Garmire and A. R. Kost, eds. (Academic Press, 1999), p. 334.

Heyman, E.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64(5), 056625 (2001).
[Crossref]

Ippen, E.

K. Hall, E. Ippen, and E. Thoen, “Nonlinearities in Active Media,” in Nonlinear Optics in Semiconductors II, E. M. Garmire and A. R. Kost, eds. (Academic Press, 1999), p. 334.

Khurgin, J.

J. Khurgin, “Electro-optical switching and bistability in coupled quantum wells,” Appl. Phys. Lett. 54(25), 2589–2591 (1989).
[Crossref]

Khurgin, J. B.

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(8), 768–779 (2012).
[Crossref]

J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photonics 2(3), 287 (2010).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Nonlinear all-optical GaN∕AlGaN multi-quantum-well devices for 100Gb∕s applications at λ=1.55µm,” Appl. Phys. Lett. 87(20), 201108 (2005).
[Crossref]

Kim, J.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Kinsey, N.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Roger, T.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Shalaev, V.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

Shalaev, V. M.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V. M. Shalaev, and A. Boltasseva, “Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths,” Optica 2(7), 616–622 (2015).
[Crossref]

Shaltout, A.

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Soref, R. A.

G. Sun, J. B. Khurgin, and R. A. Soref, “Nonlinear all-optical GaN∕AlGaN multi-quantum-well devices for 100Gb∕s applications at λ=1.55µm,” Appl. Phys. Lett. 87(20), 201108 (2005).
[Crossref]

Sun, G.

G. Sun, J. B. Khurgin, and R. A. Soref, “Nonlinear all-optical GaN∕AlGaN multi-quantum-well devices for 100Gb∕s applications at λ=1.55µm,” Appl. Phys. Lett. 87(20), 201108 (2005).
[Crossref]

Thoen, E.

K. Hall, E. Ippen, and E. Thoen, “Nonlinearities in Active Media,” in Nonlinear Optics in Semiconductors II, E. M. Garmire and A. R. Kost, eds. (Academic Press, 1999), p. 334.

Vezzoli, S.

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

Wang, Y.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Ward, J. F.

J. F. Ward, “Calculation of Nonlinear Optical Susceptibilities Using Diagrammatic Perturbation Theory,” Rev. Mod. Phys. 37(1), 1–18 (1965).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64(5), 056625 (2001).
[Crossref]

ACS Photonics (1)

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Comparative Study of Second-Harmonic Generation from Epsilon-Near-Zero Indium Tin Oxide and Titanium Nitride Nanolayers Excited in the Near-Infrared Spectral Range,” ACS Photonics 2(11), 1584–1591 (2015).
[Crossref]

Adv. Opt. Photonics (1)

J. B. Khurgin, “Slow light in various media: a tutorial,” Adv. Opt. Photonics 2(3), 287 (2010).
[Crossref]

Appl. Phys. Lett. (2)

J. Khurgin, “Electro-optical switching and bistability in coupled quantum wells,” Appl. Phys. Lett. 54(25), 2589–2591 (1989).
[Crossref]

G. Sun, J. B. Khurgin, and R. A. Soref, “Nonlinear all-optical GaN∕AlGaN multi-quantum-well devices for 100Gb∕s applications at λ=1.55µm,” Appl. Phys. Lett. 87(20), 201108 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

MRS Bull. (1)

J. B. Khurgin and A. Boltasseva, “Reflecting upon the losses in plasmonics and metamaterials,” MRS Bull. 37(8), 768–779 (2012).
[Crossref]

Nat. Commun. (1)

M. Clerici, N. Kinsey, C. DeVault, J. Kim, E. G. Carnemolla, L. Caspani, A. Shaltout, D. Faccio, V. Shalaev, A. Boltasseva, and M. Ferrera, “Controlling hybrid nonlinearities in transparent conducting oxides via two-colour excitation,” Nat. Commun. 8(1), 16139 (2017).
[Crossref]

Optica (1)

Phys. Rev. B (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Phys. Rev. E (1)

R. W. Ziolkowski and E. Heyman, “Wave propagation in media having negative permittivity and permeability,” Phys. Rev. E 64(5), 056625 (2001).
[Crossref]

Phys. Rev. Lett. (1)

S. Vezzoli, V. Bruno, C. Devault, T. Roger, V. M. Shalaev, A. Boltasseva, M. Ferrera, M. Clerici, A. Dubietis, and D. Faccio, “Optical Time Reversal from Time-Dependent Epsilon-Near-Zero Media,” Phys. Rev. Lett. 120(4), 043902 (2018).
[Crossref]

Rev. Mod. Phys. (1)

J. F. Ward, “Calculation of Nonlinear Optical Susceptibilities Using Diagrammatic Perturbation Theory,” Rev. Mod. Phys. 37(1), 1–18 (1965).
[Crossref]

Science (1)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref]

Other (2)

R. W. Ditchburn, Light (Dover Publications, 1991).

K. Hall, E. Ippen, and E. Thoen, “Nonlinearities in Active Media,” in Nonlinear Optics in Semiconductors II, E. M. Garmire and A. R. Kost, eds. (Academic Press, 1999), p. 334.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1.
Fig. 1. This figure shows dispersion curves of light in the dispersive material in the vicinity of the pole (1/ɛ∼0) at resonant frequency ω0 and zero (ɛ∼0) at frequency ωp straddling the gap where ɛ<0. The lower curve commonly referred to as lower polariton branch in the vicinity of the pole experiences reduction of group velocity vg but the electric field does not get enhanced as the energy is contained in material excitation. This is “conventional” slow light medium. The upper curve or upper polariton branch also experiences reduction of group velocity but this reduction is accompanied by strong enhancement of the electric field. This enhancement is maximum when ω0 approaches zero, i.e. when the electrons are free as they are in doped semiconductor ENZ materials described by Eq.1.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε ( ω ) = ε N e 2 / ε 0 m ω 2 + i ω γ