Abstract

We report on the improvement of performance of InN-based saturable absorbers in fiber lasers operating at 1.55 µm by reducing the residual doping, due to the lower Burstein-Moss effect. The improved tuning of the band-to-band transition with respect to the operation wavelength leads to an enhancement of nonlinear optical effects, resulting in $30$ % of modulation depth. We introduce the development of an ultrafast mode-locked fiber laser using an improved InN-based saturable absorber that incorporates a buffer layer between the active layer and the substrate. The laser delivers output pulses with a temporal width of $\sim 220$ fs, a repetition rate of $5.25$ MHz, and high-pulse energy of $5.8$ nJ.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk InN as saturable absorber

M. Jimenez-Rodriguez, L. Monteagudo-Lerma, E. Monroy, M. González-Herráez, and F. B. Naranjo
Opt. Express 25(5) 5366-5375 (2017)

Large-energy passively Q-switched Er-doped fiber laser based on CVD-Bi2Se3 as saturable absorber

Nannan Xu, Na Ming, Xile Han, Baoyuan Man, and Huanian Zhang
Opt. Mater. Express 9(2) 373-383 (2019)

Passive mode locking of ytterbium- and erbium-doped all-fiber lasers using graphene oxide saturable absorbers

Hou-Ren Chen, Chih-Ya Tsai, Hsin-Ming Cheng, Kuei-Huei Lin, and Wen-Feng Hsieh
Opt. Express 22(11) 12880-12889 (2014)

References

  • View by:
  • |
  • |
  • |

  1. L. Shah, E. Fermann, J. W. Dawson, and C. P. J. Barty, “Micromachining with a 50W, 50µJ, sub-picosecond fiber laser system,” Opt. Express 14(25), 12546–12551 (2006).
    [Crossref]
  2. M. Nagai and K. Tanaka, “generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85(18), 3974–3976 (2004).
    [Crossref]
  3. H. N. Paulsen, K. M. Hilligsøe, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Coherent anit-Stokes Raman scattering microscopy with a photonic crystal fiber based light source,” Opt. Lett. 28(13), 1123–1125 (2003).
    [Crossref]
  4. L. He, K. Sheehy, and W. Culbertson, “Femtosecond laser-assisted cataract surgery: three-month follow-up,” Curr. Opin. Ophthalmol. 22(1), 43–52 (2010).
    [Crossref]
  5. X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
    [Crossref]
  6. A. V. Avdokhin, S. V. Popov, and J. R. Taylor, “Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm,” Opt. Express 11(3), 265–269 (2003).
    [Crossref]
  7. E. Garmre and A. Yariv, “Laser mode-locking with saturable absorbers,” IEEE J. Quantum Electron. 3(6), 222–226 (1967).
    [Crossref]
  8. R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5(4), 1440–1456 (2015).
    [Crossref]
  9. P. H. Hanzard and et al., “Dissipative soliton laser mode-locked with a resonant InGaAs-based saturable absorber mirror,” IEEE Photonics Technol. Lett. 29(21), 1772–1775 (2017).
    [Crossref]
  10. V. Mamidala, R. I. Woodward, Y. Yang, H. H. Liu, and K. K. Chow, “Graphene-based passively mode-locked bidirectional fiber ring laser,” Opt. Express 22(4), 4539–4546 (2014).
    [Crossref]
  11. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
    [Crossref]
  12. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  13. P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
    [Crossref]
  14. J. Koo, J. Park, J. Lee, Y. M. Jhon, and J. H. Lee, “Femtosecond harmonic mode-locking of a fiber laser at 3.27 GHz using a bulk-like, MoSe2-based saturable absorber,” Opt. Express 24(10), 10575–10589 (2016).
    [Crossref]
  15. J. Sotor, G. Sobon, M. Wojciech, P. Pałetko, and K. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
    [Crossref]
  16. M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
    [Crossref]
  17. M. Jiménez-Rodríguez, L. Monteagudo-Lerma, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk InN as saturable absorber,” Opt. Express 25(5), 5366–5375 (2017).
    [Crossref]
  18. J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
    [Crossref]
  19. S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
    [Crossref]
  20. V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, “Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries,” Phys. Rev. B 61(8), 5587–5599 (2000).
    [Crossref]
  21. P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
    [Crossref]
  22. P. Ruterana, V. Potin, B. Barbaray, and G. Nouet, “Growth defects in GaN layers on top of (0001) sapphire: A geometrical investigation of the misfit effect,” Philos. Mag. A 80(4), 937–954 (2000).
    [Crossref]
  23. P. Ruterana, A. L. Syrkin, E. Monroy, E. Valcheva, and K. Kirilov, “The microstructure and properties of InN layers,” Phys. Status Solidi C 7(5), 1301–1304 (2010).
    [Crossref]
  24. J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
    [Crossref]
  25. J. A. Arnaud, W. M. Hubbard, G. D. Mandeville, B. de la Clavière, E. A. Franke, and J. M. Franke, “Technique for Fast Measurement of Gaussian Laser Beam Parameters,” Appl. Opt. 10(12), 2775–2776 (1971).
    [Crossref]
  26. M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Opt. 48(2), 393–396 (2009).
    [Crossref]
  27. M. Jimenez-Rodriguez, L. Monroy, A. Núñez-Cascajero, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018).
  28. S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
    [Crossref]
  29. H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
    [Crossref]
  30. F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
    [Crossref]

2019 (1)

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

2017 (2)

2016 (1)

2015 (3)

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5(4), 1440–1456 (2015).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

J. Sotor, G. Sobon, M. Wojciech, P. Pałetko, and K. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

2014 (1)

2012 (2)

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

2010 (3)

L. He, K. Sheehy, and W. Culbertson, “Femtosecond laser-assisted cataract surgery: three-month follow-up,” Curr. Opin. Ophthalmol. 22(1), 43–52 (2010).
[Crossref]

P. Ruterana, A. L. Syrkin, E. Monroy, E. Valcheva, and K. Kirilov, “The microstructure and properties of InN layers,” Phys. Status Solidi C 7(5), 1301–1304 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

2009 (2)

M. A. de Araújo, R. Silva, E. de Lima, D. P. Pereira, and P. C. de Oliveira, “Measurement of Gaussian laser beam radius using the knife-edge technique: improvement on data analysis,” Appl. Opt. 48(2), 393–396 (2009).
[Crossref]

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

2008 (1)

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

2006 (1)

2004 (3)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

M. Nagai and K. Tanaka, “generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85(18), 3974–3976 (2004).
[Crossref]

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

2003 (2)

2000 (2)

V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, “Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries,” Phys. Rev. B 61(8), 5587–5599 (2000).
[Crossref]

P. Ruterana, V. Potin, B. Barbaray, and G. Nouet, “Growth defects in GaN layers on top of (0001) sapphire: A geometrical investigation of the misfit effect,” Philos. Mag. A 80(4), 937–954 (2000).
[Crossref]

1999 (1)

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

1975 (1)

H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
[Crossref]

1971 (1)

1968 (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

1967 (1)

E. Garmre and A. Yariv, “Laser mode-locking with saturable absorbers,” IEEE J. Quantum Electron. 3(6), 222–226 (1967).
[Crossref]

Abramski, K.

J. Sotor, G. Sobon, M. Wojciech, P. Pałetko, and K. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Armitage, R.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Arnaud, J. A.

Avdokhin, A. V.

Bale, B. G.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

Barbaray, B.

P. Ruterana, V. Potin, B. Barbaray, and G. Nouet, “Growth defects in GaN layers on top of (0001) sapphire: A geometrical investigation of the misfit effect,” Philos. Mag. A 80(4), 937–954 (2000).
[Crossref]

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Barcz, A.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Barty, C. P. J.

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Béré, A.

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Bonaccorso, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Botchkarev, A.

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Chen, H.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Chen, L.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

Chen, S.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Chow, K. K.

Culbertson, W.

L. He, K. Sheehy, and W. Culbertson, “Femtosecond laser-assisted cataract surgery: three-month follow-up,” Curr. Opin. Ophthalmol. 22(1), 43–52 (2010).
[Crossref]

Dawson, J. W.

de Araújo, M. A.

de la Clavière, B.

de Lima, E.

de Oliveira, P. C.

Fedoruk, M. P.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

Fermann, E.

Fernández, H.

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

Fernández, S.

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

Ferrari, A. C.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Franke, E. A.

Franke, J. M.

Garmre, E.

E. Garmre and A. Yariv, “Laser mode-locking with saturable absorbers,” IEEE J. Quantum Electron. 3(6), 222–226 (1967).
[Crossref]

González-Herráez, M.

M. Jiménez-Rodríguez, L. Monteagudo-Lerma, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk InN as saturable absorber,” Opt. Express 25(5), 5366–5375 (2017).
[Crossref]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

M. Jimenez-Rodriguez, L. Monroy, A. Núñez-Cascajero, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018).

Grandal, J.

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

Guo, C.-Y.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Hairie, A.

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Haller, E. E.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Hanzard, P. H.

P. H. Hanzard and et al., “Dissipative soliton laser mode-locked with a resonant InGaAs-based saturable absorber mirror,” IEEE Photonics Technol. Lett. 29(21), 1772–1775 (2017).
[Crossref]

Hasan, T.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Haus, H. A.

H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
[Crossref]

He, L.

L. He, K. Sheehy, and W. Culbertson, “Femtosecond laser-assisted cataract surgery: three-month follow-up,” Curr. Opin. Ophthalmol. 22(1), 43–52 (2010).
[Crossref]

Hilligsøe, K. M.

Ho, J. C.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Hu, J.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Hu, Y.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

Hubbard, W. M.

Jablonski, M.

Jakiela, R.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Jhon, Y. M.

Jimenez-Rodriguez, M.

M. Jimenez-Rodriguez, L. Monroy, A. Núñez-Cascajero, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018).

Jiménez-Rodríguez, M.

Jin, X.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

Julien, F. H.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Keiding, S. R.

Kelleher, E. J. R.

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5(4), 1440–1456 (2015).
[Crossref]

Kirilov, K.

P. Ruterana, A. L. Syrkin, E. Monroy, E. Valcheva, and K. Kirilov, “The microstructure and properties of InN layers,” Phys. Status Solidi C 7(5), 1301–1304 (2010).
[Crossref]

Koo, J.

Larsen, J. J.

Lee, J.

Lee, J. H.

Li, S. X.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Lin, R.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Lina, A.

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Liu, A.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Liu, H. H.

Liua, X. M.

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Lu, H.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Lua, K. Q.

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Mamidala, V.

Mandeville, G. D.

Mangeney, J.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Monroy, E.

M. Jiménez-Rodríguez, L. Monteagudo-Lerma, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk InN as saturable absorber,” Opt. Express 25(5), 5366–5375 (2017).
[Crossref]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

P. Ruterana, A. L. Syrkin, E. Monroy, E. Valcheva, and K. Kirilov, “The microstructure and properties of InN layers,” Phys. Status Solidi C 7(5), 1301–1304 (2010).
[Crossref]

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

M. Jimenez-Rodriguez, L. Monroy, A. Núñez-Cascajero, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018).

Monroy, L.

M. Jimenez-Rodriguez, L. Monroy, A. Núñez-Cascajero, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018).

Monteagudo-Lerma, L.

Morkoc, H.

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Morkoç, H.

V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, “Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries,” Phys. Rev. B 61(8), 5587–5599 (2000).
[Crossref]

Nagai, M.

M. Nagai and K. Tanaka, “generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85(18), 3974–3976 (2004).
[Crossref]

Naranjo, F. B.

M. Jiménez-Rodríguez, L. Monteagudo-Lerma, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Widely power-tunable polarization-independent ultrafast mode-locked fiber laser using bulk InN as saturable absorber,” Opt. Express 25(5), 5366–5375 (2017).
[Crossref]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

M. Jimenez-Rodriguez, L. Monroy, A. Núñez-Cascajero, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018).

Nouet, G.

V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, “Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries,” Phys. Rev. B 61(8), 5587–5599 (2000).
[Crossref]

P. Ruterana, V. Potin, B. Barbaray, and G. Nouet, “Growth defects in GaN layers on top of (0001) sapphire: A geometrical investigation of the misfit effect,” Philos. Mag. A 80(4), 937–954 (2000).
[Crossref]

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Núñez-Cascajero, A.

M. Jimenez-Rodriguez, L. Monroy, A. Núñez-Cascajero, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018).

Paletko, P.

J. Sotor, G. Sobon, M. Wojciech, P. Pałetko, and K. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Park, J.

Paulsen, H. N.

Paumier, E.

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Pereira, D. P.

Pond, R.C.

V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, “Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries,” Phys. Rev. B 61(8), 5587–5599 (2000).
[Crossref]

Popa, D.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Popov, S. V.

Potin, V.

V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, “Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries,” Phys. Rev. B 61(8), 5587–5599 (2000).
[Crossref]

P. Ruterana, V. Potin, B. Barbaray, and G. Nouet, “Growth defects in GaN layers on top of (0001) sapphire: A geometrical investigation of the misfit effect,” Philos. Mag. A 80(4), 937–954 (2000).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Rigutti, L.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Ruan, S.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Ruterana, P.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

P. Ruterana, A. L. Syrkin, E. Monroy, E. Valcheva, and K. Kirilov, “The microstructure and properties of InN layers,” Phys. Status Solidi C 7(5), 1301–1304 (2010).
[Crossref]

P. Ruterana, V. Potin, B. Barbaray, and G. Nouet, “Growth defects in GaN layers on top of (0001) sapphire: A geometrical investigation of the misfit effect,” Philos. Mag. A 80(4), 937–954 (2000).
[Crossref]

V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, “Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries,” Phys. Rev. B 61(8), 5587–5599 (2000).
[Crossref]

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Salvador, A.

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Sánchez-García, M. A.

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

Schaff, W. J.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Set, S. Y.

Shah, L.

Sheehy, K.

L. He, K. Sheehy, and W. Culbertson, “Femtosecond laser-assisted cataract surgery: three-month follow-up,” Curr. Opin. Ophthalmol. 22(1), 43–52 (2010).
[Crossref]

Shub, C.

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Silva, R.

Sobon, G.

J. Sotor, G. Sobon, M. Wojciech, P. Pałetko, and K. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Solis, J.

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

Sotor, J.

J. Sotor, G. Sobon, M. Wojciech, P. Pałetko, and K. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Sun, Z.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Syrkin, A. L.

P. Ruterana, A. L. Syrkin, E. Monroy, E. Valcheva, and K. Kirilov, “The microstructure and properties of InN layers,” Phys. Status Solidi C 7(5), 1301–1304 (2010).
[Crossref]

Tanaka, K.

M. Nagai and K. Tanaka, “generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85(18), 3974–3976 (2004).
[Crossref]

Tanaka, Y.

Tauc, J.

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Taylor, J. R.

Thøgersen, J.

Torrisi, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Turitsyn, S. K.

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

Valcheva, E.

P. Ruterana, A. L. Syrkin, E. Monroy, E. Valcheva, and K. Kirilov, “The microstructure and properties of InN layers,” Phys. Status Solidi C 7(5), 1301–1304 (2010).
[Crossref]

Valdueza-Felip, S.

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

Vermaut, P.

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Walukiewicz, W.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Wang, F.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Wanga, L. R.

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Wanga, T.

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Weber, E. R.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Wojciech, M.

J. Sotor, G. Sobon, M. Wojciech, P. Pałetko, and K. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

Woodward, R. I.

Wu, J.

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

Wu, Q.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

Yaguchi, H.

Yan, P.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Yang, Y.

Yariv, A.

E. Garmre and A. Yariv, “Laser mode-locking with saturable absorbers,” IEEE J. Quantum Electron. 3(6), 222–226 (1967).
[Crossref]

Zhang, F.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

Zhang, H.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

Zhang, M.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

Zhanga, T. Y.

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Zhao, W.

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Zheng, Y.

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Zheng, Z.

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4(2), 803–810 (2010).
[Crossref]

Adv. Opt. Mater. (1)

M. Zhang, Q. Wu, F. Zhang, L. Chen, X. Jin, Y. Hu, Z. Zheng, and H. Zhang, “2D Black Phosphorus Saturable Absorbers for Ultrafast Photonics,” Adv. Opt. Mater. 7(1), 1800224 (2019).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

J. Sotor, G. Sobon, M. Wojciech, P. Pałetko, and K. Abramski, “Black phosphorus saturable absorber for ultrashort pulse generation,” Appl. Phys. Lett. 107(5), 051108 (2015).
[Crossref]

M. Nagai and K. Tanaka, “generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56 µm fiber laser pulses,” Appl. Phys. Lett. 85(18), 3974–3976 (2004).
[Crossref]

J. Wu, W. Walukiewicz, S. X. Li, R. Armitage, J. C. Ho, E. R. Weber, E. E. Haller, H. Lu, W. J. Schaff, A. Barcz, and R. Jakiela, “effects of electron concentration on the optical absorption edge of InN,” Appl. Phys. Lett. 84(15), 2805–2807 (2004).
[Crossref]

S. Valdueza-Felip, L. Rigutti, F. B. Naranjo, P. Ruterana, J. Mangeney, F. H. Julien, M. González-Herráez, and E. Monroy, “Carrier localization in InN/InGaN multiple-quantum well with high In-content,” Appl. Phys. Lett. 101(6), 062109 (2012).
[Crossref]

Appl. Sci. (1)

R. I. Woodward and E. J. R. Kelleher, “2D saturable absorbers for fibre lasers,” Appl. Sci. 5(4), 1440–1456 (2015).
[Crossref]

Curr. Opin. Ophthalmol. (1)

L. He, K. Sheehy, and W. Culbertson, “Femtosecond laser-assisted cataract surgery: three-month follow-up,” Curr. Opin. Ophthalmol. 22(1), 43–52 (2010).
[Crossref]

IEEE J. Quantum Electron. (2)

H. A. Haus, “Theory of mode locking with a slow saturable absorber,” IEEE J. Quantum Electron. 11(9), 736–746 (1975).
[Crossref]

E. Garmre and A. Yariv, “Laser mode-locking with saturable absorbers,” IEEE J. Quantum Electron. 3(6), 222–226 (1967).
[Crossref]

IEEE Photonics Technol. Lett. (1)

P. H. Hanzard and et al., “Dissipative soliton laser mode-locked with a resonant InGaAs-based saturable absorber mirror,” IEEE Photonics Technol. Lett. 29(21), 1772–1775 (2017).
[Crossref]

J. Lightwave Technol. (1)

Laser Phys. (1)

X. M. Liua, T. Wanga, C. Shub, L. R. Wanga, A. Lina, K. Q. Lua, T. Y. Zhanga, and W. Zhao, “Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation,” Laser Phys. 18(11), 1357–1361 (2008).
[Crossref]

Mater. Res. Bull. (1)

J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si,” Mater. Res. Bull. 3(1), 37–46 (1968).
[Crossref]

Microelectron. J. (1)

F. B. Naranjo, M. González-Herráez, S. Valdueza-Felip, H. Fernández, J. Solis, S. Fernández, E. Monroy, J. Grandal, and M. A. Sánchez-García, “Non-linear properties of nitride-based nanostructures for optically controlling the speed of light at 1.5 um,” Microelectron. J. 40(2), 349–352 (2009).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Philos. Mag. A (1)

P. Ruterana, V. Potin, B. Barbaray, and G. Nouet, “Growth defects in GaN layers on top of (0001) sapphire: A geometrical investigation of the misfit effect,” Philos. Mag. A 80(4), 937–954 (2000).
[Crossref]

Phys. Rep. (1)

S. K. Turitsyn, B. G. Bale, and M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012).
[Crossref]

Phys. Rev. B (2)

V. Potin, P. Ruterana, G. Nouet, R.C. Pond, and H. Morkoç, “Mosaic growth of GaN on (0001) sapphire: A high-resolution electron microscopy and crystallographic study of threading dislocations from low-angle to high-angle grain boundaries,” Phys. Rev. B 61(8), 5587–5599 (2000).
[Crossref]

P. Ruterana, B. Barbaray, A. Béré, P. Vermaut, A. Hairie, E. Paumier, G. Nouet, A. Salvador, A. Botchkarev, and H. Morkoc, “Formation mechanism and relative stability of the {112−0} stacking fault atomic configurations in wurtzite (Al, Ga, In) nitrides,” Phys. Rev. B 59(24), 15917–15925 (1999).
[Crossref]

Phys. Status Solidi C (1)

P. Ruterana, A. L. Syrkin, E. Monroy, E. Valcheva, and K. Kirilov, “The microstructure and properties of InN layers,” Phys. Status Solidi C 7(5), 1301–1304 (2010).
[Crossref]

Sci. Rep. (1)

P. Yan, R. Lin, S. Ruan, A. Liu, H. Chen, Y. Zheng, S. Chen, C.-Y. Guo, and J. Hu, “A practical topological insulator saturable absorber for mode-locked fiber laser,” Sci. Rep. 5(1), 8690 (2015).
[Crossref]

Other (1)

M. Jimenez-Rodriguez, L. Monroy, A. Núñez-Cascajero, E. Monroy, M. González-Herráez, and F. B. Naranjo, “Study of Absorption Saturation in InN Thin Films through the Z-Scan Technique at 1.55 μm,” in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online) (Optical Society of America, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. AFM images of (a) sample A and (b) sample B. (c) Dark field TEM image showing the InN/InGaN MQW, between the InN layer and GaN template. Dark areas in the image correspond to the barriers, and brighter areas to the InN layers.
Fig. 2.
Fig. 2. Illustration of (αE)2 versus E for sample A (black thick line) and sample B (blue thin line). Red dashed line represents the Tauc’s approximation. Inset: Linear transmittance measurements of each sample.
Fig. 3.
Fig. 3. Optical transmittance as a function of the impinging fluence of samples A and B. Solid lines are fits to Eq. (4).
Fig. 4.
Fig. 4. Laser set-up: the laser cavity consists on a EDFA amplifier that after interacting with the semiconductor saturable absorber in a free-space transmission configuration, delivers a 220fs pulse. The output optical power and temporal duration are monitorized by a power meter (PM) and an autocorrelator (AC).
Fig. 5.
Fig. 5. Electrical spectrum of the detected pulse train with a repetition rate of 5.25MHz, which corresponds to 190ns separation between consecutive pulses.
Fig. 6.
Fig. 6. Typical laser output using sample A at 30.6mW output average power, showing: (a) autocorrelation function of the pulse, and (b) linear optical spectrum. Green dashed line corresponds to the spectrum for sample B using a 70/30 fiber coupler. Both traces have been fitted to a sech2 pulse profile (red line) (c) Laser analysis in the mode-locking range of the laser as a function of the average output power, presenting the estimated peak power and the time-bandwidth product.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = T n s ln ( 1 + T l i n / T l i n T n s ( e F / F F s a t F s a t 1 ) T n s ( e F / F F s a t F s a t 1 ) ) F / F F s a t F s a t