Abstract

In recent years, ultraviolet (UV) photodetectors based on nanomaterials of wide-bandgap semiconductors have emerged as a hot topic for miniaturizing these devices and saving energy. Herein, for the first time, we report a micro p-n nanowire-heterojunction constructed from a NiO-coated Ni core-shell nanowire combined with a ZnO layer (NiO@ZnO) and a UV photodetector based on this micro p-n nanowire-heterojunction. The micro NiO@ZnO-nanowire-heterojunction shows good rectification effects with a rectification ratio of 6000 at a  ± 2 V applied bias and a turn-on voltage of 0.5 V. The UV photodetector exhibits excellent performances of self-powered UV photodetection with a peak photoresponsivity of 17 mA/W under zero bias at the wavelength of 312 nm. The cutoff wavelength is located at 362 nm, and a dark current is ∼0.25 pA. Our findings provide an alternative approach to miniaturize UV detectors for daily carrying based on nanowire-heterojunction materials.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Visible electroluminescence from a ZnO nanowires/p-GaN heterojunction light emitting diode

C. Baratto, R. Kumar, E. Comini, G. Faglia, and G. Sberveglieri
Opt. Express 23(15) 18937-18942 (2015)

Highly spectrum-selective ultraviolet photodetector based on p-NiO/n-IGZO thin film heterojunction structure

H. K. Li, T. P. Chen, S. G. Hu, X. D. Li, Y. Liu, P. S. Lee, X. P. Wang, H. Y. Li, and G. Q. Lo
Opt. Express 23(21) 27683-27689 (2015)

Effects of ZnO seed layer annealing temperature on the properties of n-ZnO NWs/Al2O3/p-Si heterojunction

Yu-Zhu Gu, Hong-Liang Lu, Yuan Zhang, Peng-Fei Wang, Shi-Jin Ding, and David Wei Zhang
Opt. Express 23(19) 24456-24463 (2015)

References

  • View by:
  • |
  • |
  • |

  1. Y. J. Lu, C. N. Lin, and C. X. Shan, “Optoelectronic Diamond: Growth, Properties and Photodetection Applications,” Adv. Opt. Mater. 6(20), 1800359 (2018).
    [Crossref]
  2. P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
    [Crossref]
  3. Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
    [Crossref]
  4. P. N. Ni, C. X. Shan, S. P. Wang, X. Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays,” J. Mater. Chem. C 1(29), 4445–4449 (2013).
    [Crossref]
  5. E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
    [Crossref]
  6. C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
    [Crossref]
  7. Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
    [Crossref]
  8. Z. Zhang, Y. Ning, and X. Fang, “From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetector,” J. Mater. Chem. C 7(2), 223–229 (2019).
    [Crossref]
  9. Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
    [Crossref]
  10. M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Mater. Lett. 108, 149–152 (2013).
    [Crossref]
  11. S. Y. Tsai, M. H. Hon, and Y.-M. Lu, “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid-State Electron. 63(1), 37–41 (2011).
    [Crossref]
  12. Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
    [Crossref]
  13. M. Patel, S. H. Park, and Kim, “Optical, electrical and photoresponse data of flexible and high-performing NiO/ZnO ultraviolet photodetector,” Data. In. Brief. 17, 520–525 (2018).
    [Crossref]
  14. J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
    [Crossref]
  15. C. M. Liu, C. Chen, and Y. C. Tseng, “Core-Shell Ni-NiO Nano Arrays for UV Photodetection without an External Bias,” J. Electrochem. Soc. 159(4), K78–K82 (2012).
    [Crossref]
  16. L. X. Zheng, F. Teng, Z. M. Zhang, B. Zhao, and X. S. Fang, “Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions,” J. Mater. Chem. C 4(42), 10032–10039 (2016).
    [Crossref]
  17. Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
    [Crossref]
  18. Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
    [Crossref]
  19. J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
    [Crossref]
  20. F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, and H. F. Chen, “Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application,” J. Power Sources 264, 161–167 (2014).
    [Crossref]
  21. M. L. Lu, T. Y. Lin, T. M. Weng, and Y. F. Chen, “Large enhancement of photocurrent gain based on the composite of a single n-type SnO2 nanowire and p-type NiO nanoparticles,” Opt. Express 19(17), 16266–16272 (2011).
    [Crossref]
  22. H. Kim, M. D. Kumar, M. Patel, and J. Kim, “ITO nanowires-embedding transparent NiO/ZnO photodetector,” Mater. Res. Bull. 83, 35–40 (2016).
    [Crossref]
  23. D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
    [Crossref]
  24. B. S. Mashford, T. L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2010).
    [Crossref]
  25. N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
    [Crossref]
  26. G. P. Pfeifer and A. Besaratinia, “UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer,” Photochem. Photobiol. Sci. 11(1), 90–97 (2012).
    [Crossref]
  27. R. G. Freeman, “Carcinogenic effects of solar radiation and prevention measures,” Cancer 21(6), 1114–1120 (1968).
    [Crossref]
  28. D. D. Bikle, J. Invest, and V. D. Receptor, “UVR, and Skin Cancer: A Potential Protective Mechanism,” J. Invest. Dermatol. 128(10), 2357–2361 (2008).
    [Crossref]
  29. J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
    [Crossref]
  30. Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
    [Crossref]
  31. W. F. Xiang, Y. Liu, M. H. Hu, and H. Z. Guo, “Tunable terahertz transmission properties of aligned Ni-nanowire arrays,” Opt. Express 25(24), 30606–30610 (2017).
    [Crossref]
  32. Y. F. Hsu, Y. Y. Xi, A. B. Djurii, A. M. C. Ng, and W. K. Chan, “Influence of Annealing on ZnO Nanorod∕NiO LEDs,” AIP. Conference. Proceedings. 1199, 513–514 (2010).
  33. X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
    [Crossref]
  34. S. Mohammadi and M. Zavvari, “High performance n-ZnO/ p-metal-oxides UV detector grown in low-temperature aqueous solution bath,” Thin Solid Films 626, 173–177 (2017).
    [Crossref]
  35. Y. Ohteki and M. Sugiyama, “Electrical properties of ZnO:H films fabricated by RF sputtering deposition and fabrication of p-NiO/n-ZnO heterojunction devices,” Jpn. J. Appl. Phys. 57(7), 071101 (2018).
    [Crossref]
  36. W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
    [Crossref]
  37. Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
    [Crossref]
  38. H. J. Kim and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sens. Actuators, B 192, 607–627 (2014).
    [Crossref]
  39. Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sens. Actuators, B 191, 537–544 (2014).
    [Crossref]
  40. J. D. Hwang, H. Y. Chen, Y. H. Chen, and T. H. Ho, “Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering,” Nanotechnology 29(29), 295705 (2018).
    [Crossref]
  41. Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
    [Crossref]
  42. Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
    [Crossref]
  43. R. Karsthof, P. Räcke, H. Wenckstern, and M. Grundmann, “Semi-transparent NiO/ZnO UV photovoltaic cells,” Phys. Status Solidi A 213(1), 30–37 (2016).
    [Crossref]
  44. D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
    [Crossref]
  45. H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
    [Crossref]
  46. W. Ouyang, F. Teng, M. Jiang, and X. S. Fang, “ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles,” Small 13(39), 1702177 (2017).
    [Crossref]
  47. F. Teng, W. Ouyang, Y. Li, L. Zheng, and X. S. Fang, “Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film,” Small 13(22), 1700156 (2017).
    [Crossref]

2019 (3)

Z. Zhang, Y. Ning, and X. Fang, “From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetector,” J. Mater. Chem. C 7(2), 223–229 (2019).
[Crossref]

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

2018 (9)

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

Y. Ohteki and M. Sugiyama, “Electrical properties of ZnO:H films fabricated by RF sputtering deposition and fabrication of p-NiO/n-ZnO heterojunction devices,” Jpn. J. Appl. Phys. 57(7), 071101 (2018).
[Crossref]

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

M. Patel, S. H. Park, and Kim, “Optical, electrical and photoresponse data of flexible and high-performing NiO/ZnO ultraviolet photodetector,” Data. In. Brief. 17, 520–525 (2018).
[Crossref]

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

Y. J. Lu, C. N. Lin, and C. X. Shan, “Optoelectronic Diamond: Growth, Properties and Photodetection Applications,” Adv. Opt. Mater. 6(20), 1800359 (2018).
[Crossref]

J. D. Hwang, H. Y. Chen, Y. H. Chen, and T. H. Ho, “Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering,” Nanotechnology 29(29), 295705 (2018).
[Crossref]

2017 (8)

W. Ouyang, F. Teng, M. Jiang, and X. S. Fang, “ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles,” Small 13(39), 1702177 (2017).
[Crossref]

F. Teng, W. Ouyang, Y. Li, L. Zheng, and X. S. Fang, “Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film,” Small 13(22), 1700156 (2017).
[Crossref]

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

W. F. Xiang, Y. Liu, M. H. Hu, and H. Z. Guo, “Tunable terahertz transmission properties of aligned Ni-nanowire arrays,” Opt. Express 25(24), 30606–30610 (2017).
[Crossref]

S. Mohammadi and M. Zavvari, “High performance n-ZnO/ p-metal-oxides UV detector grown in low-temperature aqueous solution bath,” Thin Solid Films 626, 173–177 (2017).
[Crossref]

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

2016 (5)

H. Kim, M. D. Kumar, M. Patel, and J. Kim, “ITO nanowires-embedding transparent NiO/ZnO photodetector,” Mater. Res. Bull. 83, 35–40 (2016).
[Crossref]

L. X. Zheng, F. Teng, Z. M. Zhang, B. Zhao, and X. S. Fang, “Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions,” J. Mater. Chem. C 4(42), 10032–10039 (2016).
[Crossref]

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
[Crossref]

R. Karsthof, P. Räcke, H. Wenckstern, and M. Grundmann, “Semi-transparent NiO/ZnO UV photovoltaic cells,” Phys. Status Solidi A 213(1), 30–37 (2016).
[Crossref]

2015 (4)

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

2014 (5)

H. J. Kim and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sens. Actuators, B 192, 607–627 (2014).
[Crossref]

Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sens. Actuators, B 191, 537–544 (2014).
[Crossref]

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, and H. F. Chen, “Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application,” J. Power Sources 264, 161–167 (2014).
[Crossref]

D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
[Crossref]

2013 (2)

P. N. Ni, C. X. Shan, S. P. Wang, X. Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays,” J. Mater. Chem. C 1(29), 4445–4449 (2013).
[Crossref]

M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Mater. Lett. 108, 149–152 (2013).
[Crossref]

2012 (2)

C. M. Liu, C. Chen, and Y. C. Tseng, “Core-Shell Ni-NiO Nano Arrays for UV Photodetection without an External Bias,” J. Electrochem. Soc. 159(4), K78–K82 (2012).
[Crossref]

G. P. Pfeifer and A. Besaratinia, “UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer,” Photochem. Photobiol. Sci. 11(1), 90–97 (2012).
[Crossref]

2011 (2)

S. Y. Tsai, M. H. Hon, and Y.-M. Lu, “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid-State Electron. 63(1), 37–41 (2011).
[Crossref]

M. L. Lu, T. Y. Lin, T. M. Weng, and Y. F. Chen, “Large enhancement of photocurrent gain based on the composite of a single n-type SnO2 nanowire and p-type NiO nanoparticles,” Opt. Express 19(17), 16266–16272 (2011).
[Crossref]

2010 (1)

B. S. Mashford, T. L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2010).
[Crossref]

2008 (1)

D. D. Bikle, J. Invest, and V. D. Receptor, “UVR, and Skin Cancer: A Potential Protective Mechanism,” J. Invest. Dermatol. 128(10), 2357–2361 (2008).
[Crossref]

2003 (1)

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

1968 (1)

R. G. Freeman, “Carcinogenic effects of solar radiation and prevention measures,” Cancer 21(6), 1114–1120 (1968).
[Crossref]

1937 (2)

J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
[Crossref]

J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
[Crossref]

Abbasi, M. A.

M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Mater. Lett. 108, 149–152 (2013).
[Crossref]

Besaratinia, A.

G. P. Pfeifer and A. Besaratinia, “UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer,” Photochem. Photobiol. Sci. 11(1), 90–97 (2012).
[Crossref]

Bikle, D. D.

D. D. Bikle, J. Invest, and V. D. Receptor, “UVR, and Skin Cancer: A Potential Protective Mechanism,” J. Invest. Dermatol. 128(10), 2357–2361 (2008).
[Crossref]

Boer, J. H.

J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
[Crossref]

J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
[Crossref]

Calle, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Cao, B.

D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
[Crossref]

Cao, B. Q.

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

Cao, F.

F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, and H. F. Chen, “Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application,” J. Power Sources 264, 161–167 (2014).
[Crossref]

Chan, W. K.

Y. F. Hsu, Y. Y. Xi, A. B. Djurii, A. M. C. Ng, and W. K. Chan, “Influence of Annealing on ZnO Nanorod∕NiO LEDs,” AIP. Conference. Proceedings. 1199, 513–514 (2010).

Chang, C. T.

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

Chang, Y.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Chen, B.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Chen, C.

C. M. Liu, C. Chen, and Y. C. Tseng, “Core-Shell Ni-NiO Nano Arrays for UV Photodetection without an External Bias,” J. Electrochem. Soc. 159(4), K78–K82 (2012).
[Crossref]

Chen, C. Y.

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

Chen, H. F.

F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, and H. F. Chen, “Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application,” J. Power Sources 264, 161–167 (2014).
[Crossref]

Chen, H. Y.

J. D. Hwang, H. Y. Chen, Y. H. Chen, and T. H. Ho, “Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering,” Nanotechnology 29(29), 295705 (2018).
[Crossref]

Chen, K.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Chen, X. X.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Chen, Y. C.

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

Chen, Y. F.

Chen, Y. H.

J. D. Hwang, H. Y. Chen, Y. H. Chen, and T. H. Ho, “Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering,” Nanotechnology 29(29), 295705 (2018).
[Crossref]

Chen, Z.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Chen, Z. W.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Cheng, H. C.

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

Cui, W.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Deng, C.

Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sens. Actuators, B 191, 537–544 (2014).
[Crossref]

Deng, P.

Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
[Crossref]

Djurii, A. B.

Y. F. Hsu, Y. Y. Xi, A. B. Djurii, A. M. C. Ng, and W. K. Chan, “Influence of Annealing on ZnO Nanorod∕NiO LEDs,” AIP. Conference. Proceedings. 1199, 513–514 (2010).

Dong, L.

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

Dong, Z. B.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

Dukarov, S. V.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Fang, X.

Z. Zhang, Y. Ning, and X. Fang, “From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetector,” J. Mater. Chem. C 7(2), 223–229 (2019).
[Crossref]

Fang, X. S.

W. Ouyang, F. Teng, M. Jiang, and X. S. Fang, “ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles,” Small 13(39), 1702177 (2017).
[Crossref]

F. Teng, W. Ouyang, Y. Li, L. Zheng, and X. S. Fang, “Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film,” Small 13(22), 1700156 (2017).
[Crossref]

L. X. Zheng, F. Teng, Z. M. Zhang, B. Zhao, and X. S. Fang, “Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions,” J. Mater. Chem. C 4(42), 10032–10039 (2016).
[Crossref]

Freeman, R. G.

R. G. Freeman, “Carcinogenic effects of solar radiation and prevention measures,” Cancer 21(6), 1114–1120 (1968).
[Crossref]

Fu, Y.

Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
[Crossref]

Gao, C. J.

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Gao, P.

Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sens. Actuators, B 191, 537–544 (2014).
[Crossref]

Gong, H. B.

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

Grundmann, M.

R. Karsthof, P. Räcke, H. Wenckstern, and M. Grundmann, “Semi-transparent NiO/ZnO UV photovoltaic cells,” Phys. Status Solidi A 213(1), 30–37 (2016).
[Crossref]

Gui, P. B.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Guo, D. Y.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

Guo, H. Z.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

W. F. Xiang, Y. Liu, M. H. Hu, and H. Z. Guo, “Tunable terahertz transmission properties of aligned Ni-nanowire arrays,” Opt. Express 25(24), 30606–30610 (2017).
[Crossref]

Guo, J.

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
[Crossref]

He, J. H.

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

Ho, T. H.

J. D. Hwang, H. Y. Chen, Y. H. Chen, and T. H. Ho, “Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering,” Nanotechnology 29(29), 295705 (2018).
[Crossref]

Hon, M. H.

S. Y. Tsai, M. H. Hon, and Y.-M. Lu, “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid-State Electron. 63(1), 37–41 (2011).
[Crossref]

Hsu, Y. F.

Y. F. Hsu, Y. Y. Xi, A. B. Djurii, A. M. C. Ng, and W. K. Chan, “Influence of Annealing on ZnO Nanorod∕NiO LEDs,” AIP. Conference. Proceedings. 1199, 513–514 (2010).

Hu, L. Z.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Hu, M. H.

Hu, W. D.

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Huang, F.

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

Huang, M. R. S.

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

Huang, Y. C.

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

Hwang, J. D.

J. D. Hwang, H. Y. Chen, Y. H. Chen, and T. H. Ho, “Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering,” Nanotechnology 29(29), 295705 (2018).
[Crossref]

Ibrahim, K.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

Ibupoto, Z. H.

M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Mater. Lett. 108, 149–152 (2013).
[Crossref]

Invest, J.

D. D. Bikle, J. Invest, and V. D. Receptor, “UVR, and Skin Cancer: A Potential Protective Mechanism,” J. Invest. Dermatol. 128(10), 2357–2361 (2008).
[Crossref]

Ji, J. Y.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Jiang, M.

W. Ouyang, F. Teng, M. Jiang, and X. S. Fang, “ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles,” Small 13(39), 1702177 (2017).
[Crossref]

Jiao, L.

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

Jie, S.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Ju, D.

D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
[Crossref]

Ju, D. X.

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

Karsthof, R.

R. Karsthof, P. Räcke, H. Wenckstern, and M. Grundmann, “Semi-transparent NiO/ZnO UV photovoltaic cells,” Phys. Status Solidi A 213(1), 30–37 (2016).
[Crossref]

Khan, A.

M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Mater. Lett. 108, 149–152 (2013).
[Crossref]

Khrypunov, G. S.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Khrypunova, A. L.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Kim,

M. Patel, S. H. Park, and Kim, “Optical, electrical and photoresponse data of flexible and high-performing NiO/ZnO ultraviolet photodetector,” Data. In. Brief. 17, 520–525 (2018).
[Crossref]

Kim, H.

H. Kim, M. D. Kumar, M. Patel, and J. Kim, “ITO nanowires-embedding transparent NiO/ZnO photodetector,” Mater. Res. Bull. 83, 35–40 (2016).
[Crossref]

Kim, H. J.

H. J. Kim and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sens. Actuators, B 192, 607–627 (2014).
[Crossref]

Kim, J.

H. Kim, M. D. Kumar, M. Patel, and J. Kim, “ITO nanowires-embedding transparent NiO/ZnO photodetector,” Mater. Res. Bull. 83, 35–40 (2016).
[Crossref]

Kirichenko, M. V.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Klepikova, K. S.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Klochko, N. P.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Kopach, V. R.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Kumar, M. D.

H. Kim, M. D. Kumar, M. Patel, and J. Kim, “ITO nanowires-embedding transparent NiO/ZnO photodetector,” Mater. Res. Bull. 83, 35–40 (2016).
[Crossref]

Lee, I. C.

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

Lee, J. H.

H. J. Kim and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sens. Actuators, B 192, 607–627 (2014).
[Crossref]

Lei, H. W.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Lei, J. X.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Li, B. R.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Li, G.

Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sens. Actuators, B 191, 537–544 (2014).
[Crossref]

Li, L. H.

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

Li, M.

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

Li, P. G.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Li, R. W.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Li, S. Z.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Li, W. H.

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

Li, Y.

F. Teng, W. Ouyang, Y. Li, L. Zheng, and X. S. Fang, “Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film,” Small 13(22), 1700156 (2017).
[Crossref]

Li, Y. R.

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Liang, Y. C.

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

Lien, D. H.

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

Lin, C. A.

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

Lin, C. N.

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

Y. J. Lu, C. N. Lin, and C. X. Shan, “Optoelectronic Diamond: Growth, Properties and Photodetection Applications,” Adv. Opt. Mater. 6(20), 1800359 (2018).
[Crossref]

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Lin, T. Y.

Liu, C. M.

C. M. Liu, C. Chen, and Y. C. Tseng, “Core-Shell Ni-NiO Nano Arrays for UV Photodetection without an External Bias,” J. Electrochem. Soc. 159(4), K78–K82 (2012).
[Crossref]

Liu, C. P.

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

Liu, D.

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

Liu, G.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Liu, K. K.

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

Liu, Q.

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

Liu, X. Y.

P. N. Ni, C. X. Shan, S. P. Wang, X. Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays,” J. Mater. Chem. C 1(29), 4445–4449 (2013).
[Crossref]

Liu, Y.

W. F. Xiang, Y. Liu, M. H. Hu, and H. Z. Guo, “Tunable terahertz transmission properties of aligned Ni-nanowire arrays,” Opt. Express 25(24), 30606–30610 (2017).
[Crossref]

Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sens. Actuators, B 191, 537–544 (2014).
[Crossref]

Lu, M. L.

Lu, W. D.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Lu, X. L.

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

Lu, Y. J.

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

Y. J. Lu, C. N. Lin, and C. X. Shan, “Optoelectronic Diamond: Growth, Properties and Photodetection Applications,” Adv. Opt. Mater. 6(20), 1800359 (2018).
[Crossref]

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Lu, Y.-M.

S. Y. Tsai, M. H. Hon, and Y.-M. Lu, “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid-State Electron. 63(1), 37–41 (2011).
[Crossref]

Luo, Y.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

Luo, Y. M.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Lyubov, V. M.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Mashford, B. S.

B. S. Mashford, T. L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2010).
[Crossref]

Meng, D.

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

Meng, F.

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

Mi, R.

Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sens. Actuators, B 191, 537–544 (2014).
[Crossref]

Mo, X. M.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Mohammadi, S.

S. Mohammadi and M. Zavvari, “High performance n-ZnO/ p-metal-oxides UV detector grown in low-temperature aqueous solution bath,” Thin Solid Films 626, 173–177 (2017).
[Crossref]

Monroy, E.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Mulvaney, P.

B. S. Mashford, T. L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2010).
[Crossref]

Ng, A. M. C.

Y. F. Hsu, Y. Y. Xi, A. B. Djurii, A. M. C. Ng, and W. K. Chan, “Influence of Annealing on ZnO Nanorod∕NiO LEDs,” AIP. Conference. Proceedings. 1199, 513–514 (2010).

Nguyen, T. L.

B. S. Mashford, T. L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2010).
[Crossref]

Ni, P. N.

P. N. Ni, C. X. Shan, S. P. Wang, X. Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays,” J. Mater. Chem. C 1(29), 4445–4449 (2013).
[Crossref]

Ning, Y.

Z. Zhang, Y. Ning, and X. Fang, “From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetector,” J. Mater. Chem. C 7(2), 223–229 (2019).
[Crossref]

Nur, O.

M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Mater. Lett. 108, 149–152 (2013).
[Crossref]

Ohteki, Y.

Y. Ohteki and M. Sugiyama, “Electrical properties of ZnO:H films fabricated by RF sputtering deposition and fabrication of p-NiO/n-ZnO heterojunction devices,” Jpn. J. Appl. Phys. 57(7), 071101 (2018).
[Crossref]

Omnès, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Ouyang, W.

F. Teng, W. Ouyang, Y. Li, L. Zheng, and X. S. Fang, “Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film,” Small 13(22), 1700156 (2017).
[Crossref]

W. Ouyang, F. Teng, M. Jiang, and X. S. Fang, “ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles,” Small 13(39), 1702177 (2017).
[Crossref]

Pan, G. X.

F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, and H. F. Chen, “Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application,” J. Power Sources 264, 161–167 (2014).
[Crossref]

Park, S. H.

M. Patel, S. H. Park, and Kim, “Optical, electrical and photoresponse data of flexible and high-performing NiO/ZnO ultraviolet photodetector,” Data. In. Brief. 17, 520–525 (2018).
[Crossref]

Patel, M.

M. Patel, S. H. Park, and Kim, “Optical, electrical and photoresponse data of flexible and high-performing NiO/ZnO ultraviolet photodetector,” Data. In. Brief. 17, 520–525 (2018).
[Crossref]

H. Kim, M. D. Kumar, M. Patel, and J. Kim, “ITO nanowires-embedding transparent NiO/ZnO photodetector,” Mater. Res. Bull. 83, 35–40 (2016).
[Crossref]

Petrushenko, S. I.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Pfeifer, G. P.

G. P. Pfeifer and A. Besaratinia, “UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer,” Photochem. Photobiol. Sci. 11(1), 90–97 (2012).
[Crossref]

Qiu, Z.

D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
[Crossref]

Qiu, Z. W.

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

Qu, Z.

Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
[Crossref]

Qui, Y.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Räcke, P.

R. Karsthof, P. Räcke, H. Wenckstern, and M. Grundmann, “Semi-transparent NiO/ZnO UV photovoltaic cells,” Phys. Status Solidi A 213(1), 30–37 (2016).
[Crossref]

Receptor, V. D.

D. D. Bikle, J. Invest, and V. D. Receptor, “UVR, and Skin Cancer: A Potential Protective Mechanism,” J. Invest. Dermatol. 128(10), 2357–2361 (2008).
[Crossref]

Retamal, J. R. D.

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

San, X.

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

Shan, C. X.

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

Y. J. Lu, C. N. Lin, and C. X. Shan, “Optoelectronic Diamond: Growth, Properties and Photodetection Applications,” Adv. Opt. Mater. 6(20), 1800359 (2018).
[Crossref]

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

P. N. Ni, C. X. Shan, S. P. Wang, X. Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays,” J. Mater. Chem. C 1(29), 4445–4449 (2013).
[Crossref]

Shen, D. Z.

P. N. Ni, C. X. Shan, S. P. Wang, X. Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays,” J. Mater. Chem. C 1(29), 4445–4449 (2013).
[Crossref]

Shen, Y.

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

Shi, H. Z.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Sugiyama, M.

Y. Ohteki and M. Sugiyama, “Electrical properties of ZnO:H films fabricated by RF sputtering deposition and fabrication of p-NiO/n-ZnO heterojunction devices,” Jpn. J. Appl. Phys. 57(7), 071101 (2018).
[Crossref]

Sun, J. L.

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Tan, H. W.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Tang, P. S.

F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, and H. F. Chen, “Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application,” J. Power Sources 264, 161–167 (2014).
[Crossref]

Tang, W. H.

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Teng, F.

W. Ouyang, F. Teng, M. Jiang, and X. S. Fang, “ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles,” Small 13(39), 1702177 (2017).
[Crossref]

F. Teng, W. Ouyang, Y. Li, L. Zheng, and X. S. Fang, “Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film,” Small 13(22), 1700156 (2017).
[Crossref]

L. X. Zheng, F. Teng, Z. M. Zhang, B. Zhao, and X. S. Fang, “Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions,” J. Mater. Chem. C 4(42), 10032–10039 (2016).
[Crossref]

Tian, Y. Z.

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

Tsai, S. Y.

S. Y. Tsai, M. H. Hon, and Y.-M. Lu, “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid-State Electron. 63(1), 37–41 (2011).
[Crossref]

Tsai, W. L.

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

Tseng, Y. C.

C. M. Liu, C. Chen, and Y. C. Tseng, “Core-Shell Ni-NiO Nano Arrays for UV Photodetection without an External Bias,” J. Electrochem. Soc. 159(4), K78–K82 (2012).
[Crossref]

Tyukhov, I. I.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Verwey, E. J. W.

J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
[Crossref]

J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
[Crossref]

Wan, C. Y.

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

Wang, G.

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

Wang, J. O.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

Wang, K. Y.

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Wang, S. L.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Wang, S. P.

P. N. Ni, C. X. Shan, S. P. Wang, X. Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays,” J. Mater. Chem. C 1(29), 4445–4449 (2013).
[Crossref]

Wang, X. L.

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

Wen, J.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Wenckstern, H.

R. Karsthof, P. Räcke, H. Wenckstern, and M. Grundmann, “Semi-transparent NiO/ZnO UV photovoltaic cells,” Phys. Status Solidi A 213(1), 30–37 (2016).
[Crossref]

Weng, T. M.

Willander, M.

M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Mater. Lett. 108, 149–152 (2013).
[Crossref]

Wilson, G. J.

B. S. Mashford, T. L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2010).
[Crossref]

Wu, X. Y.

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

Wu, Y. H.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Wu, Z. P.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

Xi, Y. Y.

Y. F. Hsu, Y. Y. Xi, A. B. Djurii, A. M. C. Ng, and W. K. Chan, “Influence of Annealing on ZnO Nanorod∕NiO LEDs,” AIP. Conference. Proceedings. 1199, 513–514 (2010).

Xia, X. H.

F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, and H. F. Chen, “Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application,” J. Power Sources 264, 161–167 (2014).
[Crossref]

Xiang, W. F.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

W. F. Xiang, Y. Liu, M. H. Hu, and H. Z. Guo, “Tunable terahertz transmission properties of aligned Ni-nanowire arrays,” Opt. Express 25(24), 30606–30610 (2017).
[Crossref]

Xing, L.

Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
[Crossref]

Xu, H.

D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
[Crossref]

Xu, H. Y.

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

Xu, Q.

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

Xue, X.

Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
[Crossref]

Yang, G.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Yang, H. L.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Yang, P. Y.

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Yang, X.

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Yao, F.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Yin, B.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Yu, B.

Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
[Crossref]

Yuan, S. A.

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

Yue, W. Z.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

Zang, J. H.

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

Zavvari, M.

S. Mohammadi and M. Zavvari, “High performance n-ZnO/ p-metal-oxides UV detector grown in low-temperature aqueous solution bath,” Thin Solid Films 626, 173–177 (2017).
[Crossref]

Zhadan, D. O.

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Zhan, H. H.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

Zhang, H. L.

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

Zhang, H. Q.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Zhang, J.

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
[Crossref]

Zhang, Z.

Z. Zhang, Y. Ning, and X. Fang, “From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetector,” J. Mater. Chem. C 7(2), 223–229 (2019).
[Crossref]

Zhang, Z. M.

L. X. Zheng, F. Teng, Z. M. Zhang, B. Zhao, and X. S. Fang, “Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions,” J. Mater. Chem. C 4(42), 10032–10039 (2016).
[Crossref]

Zhao, B.

L. X. Zheng, F. Teng, Z. M. Zhang, B. Zhao, and X. S. Fang, “Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions,” J. Mater. Chem. C 4(42), 10032–10039 (2016).
[Crossref]

Zhao, J. L.

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

Zhao, Q.

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

Zhao, Y.

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

Zheng, G. H. J.

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

Zheng, L.

F. Teng, W. Ouyang, Y. Li, L. Zheng, and X. S. Fang, “Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film,” Small 13(22), 1700156 (2017).
[Crossref]

Zheng, L. X.

L. X. Zheng, F. Teng, Z. M. Zhang, B. Zhao, and X. S. Fang, “Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions,” J. Mater. Chem. C 4(42), 10032–10039 (2016).
[Crossref]

Zhi, Y. S.

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Zhong, F.

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Zhou, H. P.

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

Zhu, X. J.

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Zhu, X. M.

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

Zhu, Z. Q.

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

ACS Photonics (1)

J. R. D. Retamal, C. Y. Chen, D. H. Lien, M. R. S. Huang, C. A. Lin, C. P. Liu, and J. H. He, “Concurrent Improvement in Photogain and Speed of a Metal Oxide Nanowire Photodetector through Enhancing Surface Band Bending via Incorporating a Nanoscale Heterojunction,” ACS Photonics 1(4), 354–359 (2014).
[Crossref]

Adv. Mater. (1)

H. W. Tan, G. Liu, X. J. Zhu, H. L. Yang, B. Chen, X. X. Chen, S. Jie, W. D. Lu, Y. H. Wu, and R. W. Li, “An Optoelectronic Resistive Switching Memory with Integrated Demodulating and Arithmetic Functions,” Adv. Mater. 27(17), 2797–2803 (2015).
[Crossref]

Adv. Opt. Mater. (2)

Y. J. Lu, C. N. Lin, and C. X. Shan, “Optoelectronic Diamond: Growth, Properties and Photodetection Applications,” Adv. Opt. Mater. 6(20), 1800359 (2018).
[Crossref]

C. N. Lin, Y. J. Lu, X. Yang, Y. Z. Tian, C. J. Gao, J. L. Sun, L. Dong, F. Zhong, W. D. Hu, and C. X. Shan, “Diamond-Based All-Carbon Photodetectors for Solar-Blind Imaging,” Adv. Opt. Mater. 6(15), 1800068 (2018).
[Crossref]

Appl. Phys. Lett. (1)

Z. Chen, B. R. Li, X. M. Mo, S. Z. Li, J. Wen, H. W. Lei, Z. Q. Zhu, G. Yang, P. B. Gui, and F. Yao, “Self-powered narrowband p-NiO/n-ZnO nanowire ultraviolet photodetector with interface modification of Al2O3,” Appl. Phys. Lett. 110(12), 123504 (2017).
[Crossref]

Cancer (1)

R. G. Freeman, “Carcinogenic effects of solar radiation and prevention measures,” Cancer 21(6), 1114–1120 (1968).
[Crossref]

Data. In. Brief. (1)

M. Patel, S. H. Park, and Kim, “Optical, electrical and photoresponse data of flexible and high-performing NiO/ZnO ultraviolet photodetector,” Data. In. Brief. 17, 520–525 (2018).
[Crossref]

IEEE Electron Device Lett. (1)

Y. R. Li, C. Y. Wan, C. T. Chang, Y. C. Huang, W. L. Tsai, I. C. Lee, and H. C. Cheng, “Sensitivity Enhancement of Ultraviolet Photodetectors With the Structure of p-NiO/Insulator-SiO2/n-ZnO Nanowires,” IEEE Electron Device Lett. 36(8), 850–852 (2015).
[Crossref]

J. Alloys Compd. (1)

X. San, M. Li, D. Liu, G. Wang, Y. Shen, D. Meng, and F. Meng, “A facile one-step hydrothermal synthesis of NiO/ZnO heterojunction microflowers for the enhanced formaldehyde sensing properties,” J. Alloys Compd. 739, 260–269 (2018).
[Crossref]

J. Colloid Interface Sci. (1)

Y. C. Liang, K. K. Liu, X. Y. Wu, X. L. Lu, Y. J. Lu, Q. Zhao, and C. X. Shan, “Multi-zinc oxide-cores@uni-barium sulfate-shell with improved photo-, thermal-, and ambient-stability: Non-equilibrium sorption fabrication and light-emitting diodes application,” J. Colloid Interface Sci. 529, 1–10 (2018).
[Crossref]

J. Electrochem. Soc. (1)

C. M. Liu, C. Chen, and Y. C. Tseng, “Core-Shell Ni-NiO Nano Arrays for UV Photodetection without an External Bias,” J. Electrochem. Soc. 159(4), K78–K82 (2012).
[Crossref]

J. Invest. Dermatol. (1)

D. D. Bikle, J. Invest, and V. D. Receptor, “UVR, and Skin Cancer: A Potential Protective Mechanism,” J. Invest. Dermatol. 128(10), 2357–2361 (2008).
[Crossref]

J. Mater. Chem. (1)

B. S. Mashford, T. L. Nguyen, G. J. Wilson, and P. Mulvaney, “All-inorganic quantum-dot light-emitting devices formed via low-cost, wet-chemical processing,” J. Mater. Chem. 20(1), 167–172 (2010).
[Crossref]

J. Mater. Chem. C (8)

Y. C. Chen, Y. J. Lu, Q. Liu, C. N. Lin, J. Guo, J. H. Zang, Y. Z. Tian, and C. X. Shan, “Ga2O3 photodetector arrays for solar-blind imaging,” J. Mater. Chem. C 7(9), 2557–2562 (2019).
[Crossref]

Z. W. Qiu, H. B. Gong, G. H. J. Zheng, S. A. Yuan, H. L. Zhang, X. M. Zhu, H. P. Zhou, and B. Q. Cao, “Enhanced physical properties of pulsed laser deposited NiO films via annealing and lithium doping for improving perovskite solar cell efficiency,” J. Mater. Chem. C 5(28), 7084–7094 (2017).
[Crossref]

L. X. Zheng, F. Teng, Z. M. Zhang, B. Zhao, and X. S. Fang, “Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions,” J. Mater. Chem. C 4(42), 10032–10039 (2016).
[Crossref]

Y. C. Chen, Y. J. Lu, C. N. Lin, Y. Z. Tian, C. J. Gao, L. Dong, and C. X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6(21), 5727–5732 (2018).
[Crossref]

Z. Zhang, Y. Ning, and X. Fang, “From nanofibers to ordered ZnO/NiO heterojunction arrays for self-powered and transparent UV photodetector,” J. Mater. Chem. C 7(2), 223–229 (2019).
[Crossref]

P. G. Li, H. Z. Shi, K. Chen, D. Y. Guo, W. Cui, Y. S. Zhi, S. L. Wang, Z. P. Wu, Z. W. Chen, and W. H. Tang, “Construction of GaN/Ga2O3 p-n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5(40), 10562–10570 (2017).
[Crossref]

Z. P. Wu, L. Jiao, X. L. Wang, D. Y. Guo, W. H. Li, L. H. Li, F. Huang, and W. H. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5(34), 8688–8693 (2017).
[Crossref]

P. N. Ni, C. X. Shan, S. P. Wang, X. Y. Liu, and D. Z. Shen, “Self-powered spectrum-selective photodetectors fabricated from n-ZnO/p-NiO core–shell nanowire arrays,” J. Mater. Chem. C 1(29), 4445–4449 (2013).
[Crossref]

J. Mater. Sci.: Mater. Electron. (1)

Y. M. Luo, B. Yin, H. Q. Zhang, Y. Qui, J. X. Lei, Y. Chang, Y. Zhao, J. Y. Ji, and L. Z. Hu, “Fabrication of p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors via thermal oxidation and hydrothermal growth processes,” J. Mater. Sci.: Mater. Electron. 27(3), 2342–2348 (2016).
[Crossref]

J. Power Sources (1)

F. Cao, G. X. Pan, X. H. Xia, P. S. Tang, and H. F. Chen, “Synthesis of hierarchical porous NiO nanotube arrays for supercapacitor application,” J. Power Sources 264, 161–167 (2014).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Ohteki and M. Sugiyama, “Electrical properties of ZnO:H films fabricated by RF sputtering deposition and fabrication of p-NiO/n-ZnO heterojunction devices,” Jpn. J. Appl. Phys. 57(7), 071101 (2018).
[Crossref]

Mater. Lett. (1)

M. A. Abbasi, Z. H. Ibupoto, A. Khan, O. Nur, and M. Willander, “Fabrication of UV photo-detector based on coral reef like p-NiO/n-ZnO nanocomposite structures,” Mater. Lett. 108, 149–152 (2013).
[Crossref]

Mater. Res. Bull. (1)

H. Kim, M. D. Kumar, M. Patel, and J. Kim, “ITO nanowires-embedding transparent NiO/ZnO photodetector,” Mater. Res. Bull. 83, 35–40 (2016).
[Crossref]

Materials (1)

W. F. Xiang, Z. B. Dong, Y. Luo, J. L. Zhao, J. O. Wang, K. Ibrahim, H. H. Zhan, W. Z. Yue, and H. Z. Guo, “Synthesis of NiO Nanotubes via a Dynamic Thermal Oxidation Process,” Materials 12(5), 805 (2019).
[Crossref]

Nanotechnology (1)

J. D. Hwang, H. Y. Chen, Y. H. Chen, and T. H. Ho, “Effect of nickel diffusion and oxygen behavior on heterojunction Schottky diodes of Au/NiO/ZnO with a NiO interlayer prepared by radio-frequency magnetron sputtering,” Nanotechnology 29(29), 295705 (2018).
[Crossref]

Opt. Express (2)

Photochem. Photobiol. Sci. (1)

G. P. Pfeifer and A. Besaratinia, “UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer,” Photochem. Photobiol. Sci. 11(1), 90–97 (2012).
[Crossref]

Phys. Status Solidi A (1)

R. Karsthof, P. Räcke, H. Wenckstern, and M. Grundmann, “Semi-transparent NiO/ZnO UV photovoltaic cells,” Phys. Status Solidi A 213(1), 30–37 (2016).
[Crossref]

Proc. Phys. Soc. (2)

J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
[Crossref]

J. H. Boer and E. J. W. Verwey, “Semi-conductors with partially and with completely filled 3D-lattice bands,” Proc. Phys. Soc. 49(4S), 59–71 (1937).
[Crossref]

Semicond. Sci. Technol. (1)

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18(4), R33–R51 (2003).
[Crossref]

Sens. Actuators, B (5)

D. X. Ju, H. Y. Xu, Q. Xu, H. B. Gong, Z. W. Qiu, J. Guo, J. Zhang, and B. Q. Cao, “High triethylamine-sensing properties of NiO/SnO2 hollow sphere P-N heterojunction sensors,” Sens. Actuators, B 215, 39–44 (2015).
[Crossref]

H. J. Kim and J. H. Lee, “Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview,” Sens. Actuators, B 192, 607–627 (2014).
[Crossref]

Y. Liu, G. Li, R. Mi, C. Deng, and P. Gao, “An environment-benign method for the synthesis of p-NiO/n-ZnO heterostructure with excellent performance for gas sensing and photocatalysis,” Sens. Actuators, B 191, 537–544 (2014).
[Crossref]

D. Ju, H. Xu, Z. Qiu, J. Guo, J. Zhang, and B. Cao, “Highly sensitive and selective triethylamine-sensing properties of nanosheets directly grown on ceramic tube by forming NiO/ZnO PN heterojunction,” Sens. Actuators, B 200, 288–296 (2014).
[Crossref]

Z. Qu, Y. Fu, B. Yu, P. Deng, L. Xing, and X. Xue, “High and fast H2S response of NiO/ZnO nanowire nanogenerator as a self-powered gas sensor,” Sens. Actuators, B 222, 78–86 (2016).
[Crossref]

Small (2)

W. Ouyang, F. Teng, M. Jiang, and X. S. Fang, “ZnO Film UV Photodetector with Enhanced Performance: Heterojunction with CdMoO4 Microplates and the Hot Electron Injection Effect of Au Nanoparticles,” Small 13(39), 1702177 (2017).
[Crossref]

F. Teng, W. Ouyang, Y. Li, L. Zheng, and X. S. Fang, “Novel Structure for High Performance UV Photodetector Based on BiOCl/ZnO Hybrid Film,” Small 13(22), 1700156 (2017).
[Crossref]

Sol. Energy (1)

N. P. Klochko, V. R. Kopach, I. I. Tyukhov, D. O. Zhadan, K. S. Klepikova, G. S. Khrypunov, S. I. Petrushenko, V. M. Lyubov, M. V. Kirichenko, S. V. Dukarov, and A. L. Khrypunova, “Metal oxide heterojunction (NiO/ZnO) prepared by low temperature solution growth for UV-photodetector and semi-transparent solar cell,” Sol. Energy 164, 149–159 (2018).
[Crossref]

Solid-State Electron. (1)

S. Y. Tsai, M. H. Hon, and Y.-M. Lu, “Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors,” Solid-State Electron. 63(1), 37–41 (2011).
[Crossref]

Thin Solid Films (1)

S. Mohammadi and M. Zavvari, “High performance n-ZnO/ p-metal-oxides UV detector grown in low-temperature aqueous solution bath,” Thin Solid Films 626, 173–177 (2017).
[Crossref]

Vacuum (1)

Y. R. Li, C. Y. Wan, C. T. Chang, W. L. Tsai, Y. C. Huang, K. Y. Wang, P. Y. Yang, and H. C. Cheng, “Thickness effect of NiO on the performance of ultraviolet sensors with p-NiO/n-ZnO nanowire heterojunction structure,” Vacuum 118, 48–54 (2015).
[Crossref]

Other (1)

Y. F. Hsu, Y. Y. Xi, A. B. Djurii, A. M. C. Ng, and W. K. Chan, “Influence of Annealing on ZnO Nanorod∕NiO LEDs,” AIP. Conference. Proceedings. 1199, 513–514 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) The SEM morphology of the Ni nanowire. (b) The SEM morphology of the Ni@NiO nanowire. (c) XRD patterns of the Ni@NiO nanowire. (d) The TEM morphology of the Ni@NiO nanowire, and the inset showing the low resolution TEM morphology of the Ni@NiO nanowire.
Fig. 2.
Fig. 2. (a) XRD scan of the ZnO layer grown on sapphire substrate. (b) AFM morphology of the ZnO layer surface. (c) The thickness of the ZnO layers ≈ 60 nm. The inset is the AFM image of the step of the ZnO layer. (d) The thickness of the Pt electrode ≈ 100 nm. The inset is the AFM image of the step of the Pt electrode. (e) The schematic structure of heterojunction device and the section model composed of nickel oxide coated nickel nanowires and zinc oxide. (f) SEM image of the NiO@ZnO-nanowire-heterojunction UV photodetector.
Fig. 3.
Fig. 3. (a) I-V characteristic curve of Ni/NiO/Ni. (b) I-V characteristic curve of In/ZnO/In. (c) I-V characteristic curves of the heterojunction structure in dark environment (black dots and line) and under the light (365 nm, 0.23 mW/mm2, blue dots and line). (d) The logarithmic form from Fig. (c).
Fig. 4.
Fig. 4. (a) The I-t characteristic curve under the light with 365 nm wavelength and intensity of 0.23 mW/mm2 on-off repeatedly at 0 V bias. (b) The optical response spectrum characteristic curve of the NiO@ZnO-nanowire-heterojunction under 0 V bias. (c) The NiO@ZnO-heterojunction energy band model diagram. (d) Principle of detecting UV light at 0 V bias.
Fig. 5.
Fig. 5. (a) The I-t characteristic curve under the light with 365 nm wavelength and intensity of 0.23 mW/mm2 on-off repeatedly at −5 V voltage. (b) The decay time under the illumination condition of the same fig. (a). (c) The I-t characteristic curve under the light with 365 nm wavelength and intensity of 0.23 mW/mm2 on-off repeatedly at different voltage. (d) The I-t characteristic curve under the light with 365 nm wavelength with different intensities of light on-off repeatedly at −5 V voltage.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

y ( t ) = y 0 + A 1 × e t t 1 + A 2 × e t t 2 .
O 2 + 2 e O 2 2 , O 2 2 + 2 h + O 2 .