Abstract

Disordered transverse Anderson localizing optical fibers have shown great promise in various applications from image transport to random lasing. Their success is due to their novel waveguiding behavior, which is enabled by the transverse Anderson localization of light. The strong transverse scattering from the transversely disordered refractive index structure results in transversely confined modes that can freely propagate in the longitudinal direction. Therefore, these fibers behave like large-core highly multimode optical fibers, with the peculiar property that most modes are highly localized. This property makes them ideal for such applications as image transport and spatial beam multiplexing. In this review paper, we will explore some of the recent advances in these fibers, especially those related to the material structure and fabrication methods.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Modal area statistics for transverse Anderson localization in disordered optical fibers

Behnam Abaie and Arash Mafi
Opt. Lett. 43(16) 3834-3837 (2018)

Transverse Anderson localization in a disordered glass optical fiber

Salman Karbasi, Thomas Hawkins, John Ballato, Karl W. Koch, and Arash Mafi
Opt. Mater. Express 2(11) 1496-1503 (2012)

Transverse Anderson localization of light: a tutorial

Arash Mafi
Adv. Opt. Photon. 7(3) 459-515 (2015)

References

  • View by:
  • |
  • |
  • |

  1. S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett. 37(12), 2304–2306 (2012).
    [Crossref]
  2. P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).
    [Crossref]
  3. A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty-years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
    [Crossref]
  4. P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd ed (Springer-Verlag, Berlin, Germany, 2006).
  5. C. M. Soukoulis and E. N. Economou, “Electronic localization in disordered systems,” Waves in Random Media 9(2), 255–269 (1999).
    [Crossref]
  6. J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
    [Crossref]
  7. Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105(16), 163905 (2010).
    [Crossref]
  8. A. F. Abouraddy, G. Di Giuseppe, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization and colocalization of spatially entangled photons,” Phys. Rev. A 86(4), 040302 (2012).
    [Crossref]
  9. R. Weaver, “Anderson localization of ultrasound,” Wave Motion 12(2), 129–142 (1990).
    [Crossref]
  10. I. S. Graham, L. Piché, and M. Grant, “Experimental evidence for localization of acoustic waves in three dimensions,” Phys. Rev. Lett. 64(26), 3135–3138 (1990).
    [Crossref]
  11. H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4(12), 945–948 (2008).
    [Crossref]
  12. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).
    [Crossref]
  13. A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404(6780), 850–853 (2000).
    [Crossref]
  14. R. G. S. El-Dardiry, S. Faez, and A. Lagendijk, “Snapshots of Anderson localization beyond the ensemble average,” Phys. Rev. B 86(12), 125132 (2012).
    [Crossref]
  15. P. W. Anderson, “The question of classical localization a theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).
    [Crossref]
  16. S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
    [Crossref]
  17. Y. S. Mordechai Segev and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
    [Crossref]
  18. A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
    [Crossref]
  19. S. S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiofizika 23, 766–767 (1980).
  20. H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
    [Crossref]
  21. T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
    [Crossref]
  22. Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
    [Crossref]
  23. A. Mafi, J. Ballato, K. W. Koch, and A. Schulzgen, “Disordered anderson localization optical fibers for image transport-a review,” arXiv preprint arXiv:1902.00433 (2019).
  24. S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
    [Crossref]
  25. B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
    [Crossref]
  26. S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Opt. Express 20(17), 18692–18706 (2012).
    [Crossref]
  27. S. Karbasi, R. J. Frazier, C. R. Mirr, K. W. Koch, and A. Mafi, “Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light,” J. Visualized Exp. 77, e50679 (2013).
    [Crossref]
  28. S. Karbasi, K. W. Koch, and A. Mafi, “Multiple-beam propagation in an Anderson localized optical fiber,” Opt. Express 21(1), 305–313 (2013).
    [Crossref]
  29. S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
    [Crossref]
  30. M. Chen and M.-J. Li, “Observing transverse Anderson localization in random air line based fiber,” in Photonic and Phononic Properties of Engineered Nanostructures IV, Vol. 8994 (International Society for Optics and Photonics, 201489941S
  31. J. Zhao, J. E. Antonio-Lopez, R. A. Correa, A. Mafi, M. Windeck, and A. Schülzgen, “Image transport through silica-air random core optical fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. JTu5A.91.
  32. J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
    [Crossref]
  33. J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
    [Crossref]
  34. H. T. Tong, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Characterization of an all-solid disordered tellurite glass optical fiber and its near-infrared optical image transport,” Jpn. J. Appl. Phys. 58, 032005 (2019).
    [Crossref]
  35. T. P. Seward, “Elongation and spheroidization of phase-separated particles in glass,” J. Non-Cryst. Solids 15(3), 487–504 (1974).
    [Crossref]
  36. T. Seward, “Some unusual optical properties of elongated phases in glasses,” The Phys. Non-Crystalline Solids; Trans Tech Publ. Aedermannsdorf, Switz.342–347 (1977).
  37. J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
    [Crossref]
  38. B. Abaie and A. Mafi, “Scaling analysis of transverse Anderson localization in a disordered optical waveguide,” Phys. Rev. B 94(6), 064201 (2016).
    [Crossref]
  39. B. Abaie and A. Mafi, “Modal area statistics for transverse Anderson localization in disordered optical fibers,” Opt. Lett. 43(16), 3834–3837 (2018).
    [Crossref]
  40. W. Schirmacher, B. Abaie, A. Mafi, G. Ruocco, and M. Leonetti, “What is the right theory for Anderson localization of light? an experimental test,” Phys. Rev. Lett. 120(6), 067401 (2018).
    [Crossref]
  41. M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Light focusing in the Anderson regime,” Nat. Commun. 5(1), 4534 (2014).
    [Crossref]
  42. M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Observation of migrating transverse Anderson localizations of light in nonlocal media,” Phys. Rev. Lett. 112(19), 193902 (2014).
    [Crossref]
  43. M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Experimental observation of disorder induced self-focusing in optical fibers,” Appl. Phys. Lett. 105(17), 171102 (2014).
    [Crossref]
  44. M. Leonetti, S. Karbasi, A. Mafi, E. DelRe, and C. Conti, “Secure information transport by transverse localization of light,” Sci. Rep. 6(1), 29918 (2016).
    [Crossref]
  45. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

2019 (1)

H. T. Tong, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Characterization of an all-solid disordered tellurite glass optical fiber and its near-infrared optical image transport,” Jpn. J. Appl. Phys. 58, 032005 (2019).
[Crossref]

2018 (4)

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

B. Abaie and A. Mafi, “Modal area statistics for transverse Anderson localization in disordered optical fibers,” Opt. Lett. 43(16), 3834–3837 (2018).
[Crossref]

W. Schirmacher, B. Abaie, A. Mafi, G. Ruocco, and M. Leonetti, “What is the right theory for Anderson localization of light? an experimental test,” Phys. Rev. Lett. 120(6), 067401 (2018).
[Crossref]

2017 (1)

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
[Crossref]

2016 (2)

B. Abaie and A. Mafi, “Scaling analysis of transverse Anderson localization in a disordered optical waveguide,” Phys. Rev. B 94(6), 064201 (2016).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, E. DelRe, and C. Conti, “Secure information transport by transverse localization of light,” Sci. Rep. 6(1), 29918 (2016).
[Crossref]

2015 (1)

A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
[Crossref]

2014 (4)

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Light focusing in the Anderson regime,” Nat. Commun. 5(1), 4534 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Observation of migrating transverse Anderson localizations of light in nonlocal media,” Phys. Rev. Lett. 112(19), 193902 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Experimental observation of disorder induced self-focusing in optical fibers,” Appl. Phys. Lett. 105(17), 171102 (2014).
[Crossref]

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref]

2013 (4)

J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

S. Karbasi, R. J. Frazier, C. R. Mirr, K. W. Koch, and A. Mafi, “Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light,” J. Visualized Exp. 77, e50679 (2013).
[Crossref]

S. Karbasi, K. W. Koch, and A. Mafi, “Multiple-beam propagation in an Anderson localized optical fiber,” Opt. Express 21(1), 305–313 (2013).
[Crossref]

Y. S. Mordechai Segev and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

2012 (5)

2010 (1)

Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105(16), 163905 (2010).
[Crossref]

2009 (1)

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty-years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

2008 (3)

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4(12), 945–948 (2008).
[Crossref]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

2007 (1)

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref]

2000 (1)

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404(6780), 850–853 (2000).
[Crossref]

1999 (1)

C. M. Soukoulis and E. N. Economou, “Electronic localization in disordered systems,” Waves in Random Media 9(2), 255–269 (1999).
[Crossref]

1991 (1)

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[Crossref]

1990 (2)

R. Weaver, “Anderson localization of ultrasound,” Wave Motion 12(2), 129–142 (1990).
[Crossref]

I. S. Graham, L. Piché, and M. Grant, “Experimental evidence for localization of acoustic waves in three dimensions,” Phys. Rev. Lett. 64(26), 3135–3138 (1990).
[Crossref]

1989 (1)

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref]

1985 (1)

P. W. Anderson, “The question of classical localization a theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).
[Crossref]

1984 (1)

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).
[Crossref]

1980 (1)

S. S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiofizika 23, 766–767 (1980).

1974 (1)

T. P. Seward, “Elongation and spheroidization of phase-separated particles in glass,” J. Non-Cryst. Solids 15(3), 487–504 (1974).
[Crossref]

1958 (1)

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).
[Crossref]

Abaie, B.

W. Schirmacher, B. Abaie, A. Mafi, G. Ruocco, and M. Leonetti, “What is the right theory for Anderson localization of light? an experimental test,” Phys. Rev. Lett. 120(6), 067401 (2018).
[Crossref]

B. Abaie and A. Mafi, “Modal area statistics for transverse Anderson localization in disordered optical fibers,” Opt. Lett. 43(16), 3834–3837 (2018).
[Crossref]

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
[Crossref]

B. Abaie and A. Mafi, “Scaling analysis of transverse Anderson localization in a disordered optical waveguide,” Phys. Rev. B 94(6), 064201 (2016).
[Crossref]

Abdullaev, F. K.

S. S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiofizika 23, 766–767 (1980).

Abdullaev, S. S.

S. S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiofizika 23, 766–767 (1980).

Abouraddy, A. F.

A. F. Abouraddy, G. Di Giuseppe, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization and colocalization of spatially entangled photons,” Phys. Rev. A 86(4), 040302 (2012).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

Anderson, P. W.

P. W. Anderson, “The question of classical localization a theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).
[Crossref]

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).
[Crossref]

Antonio-Lopez, J. E.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

J. Zhao, J. E. Antonio-Lopez, R. A. Correa, A. Mafi, M. Windeck, and A. Schülzgen, “Image transport through silica-air random core optical fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. JTu5A.91.

Aspect, A.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Avidan, A.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

Ballato, J.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
[Crossref]

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref]

J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

A. Mafi, J. Ballato, K. W. Koch, and A. Schulzgen, “Disordered anderson localization optical fibers for image transport-a review,” arXiv preprint arXiv:1902.00433 (2019).

Bartal, G.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref]

Bernard, A.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Billy, J.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Bouyer, P.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Bromberg, Y.

Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105(16), 163905 (2010).
[Crossref]

Chabanov, A. A.

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404(6780), 850–853 (2000).
[Crossref]

Chen, M.

M. Chen and M.-J. Li, “Observing transverse Anderson localization in random air line based fiber,” in Photonic and Phononic Properties of Engineered Nanostructures IV, Vol. 8994 (International Society for Optics and Photonics, 201489941S

Christodoulides, D. N.

Y. S. Mordechai Segev and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

A. F. Abouraddy, G. Di Giuseppe, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization and colocalization of spatially entangled photons,” Phys. Rev. A 86(4), 040302 (2012).
[Crossref]

Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105(16), 163905 (2010).
[Crossref]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

Clément, D.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Conti, C.

M. Leonetti, S. Karbasi, A. Mafi, E. DelRe, and C. Conti, “Secure information transport by transverse localization of light,” Sci. Rep. 6(1), 29918 (2016).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Experimental observation of disorder induced self-focusing in optical fibers,” Appl. Phys. Lett. 105(17), 171102 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Light focusing in the Anderson regime,” Nat. Commun. 5(1), 4534 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Observation of migrating transverse Anderson localizations of light in nonlocal media,” Phys. Rev. Lett. 112(19), 193902 (2014).
[Crossref]

Correa, R. A.

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

J. Zhao, J. E. Antonio-Lopez, R. A. Correa, A. Mafi, M. Windeck, and A. Schülzgen, “Image transport through silica-air random core optical fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. JTu5A.91.

De Raedt, H.

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref]

de Vries, P.

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref]

DelRe, E.

M. Leonetti, S. Karbasi, A. Mafi, E. DelRe, and C. Conti, “Secure information transport by transverse localization of light,” Sci. Rep. 6(1), 29918 (2016).
[Crossref]

Di Giuseppe, G.

A. F. Abouraddy, G. Di Giuseppe, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization and colocalization of spatially entangled photons,” Phys. Rev. A 86(4), 040302 (2012).
[Crossref]

Dragic, P.

J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

Economou, E. N.

C. M. Soukoulis and E. N. Economou, “Electronic localization in disordered systems,” Waves in Random Media 9(2), 255–269 (1999).
[Crossref]

El-Dardiry, R. G. S.

R. G. S. El-Dardiry, S. Faez, and A. Lagendijk, “Snapshots of Anderson localization beyond the ensemble average,” Phys. Rev. B 86(12), 125132 (2012).
[Crossref]

Faez, S.

R. G. S. El-Dardiry, S. Faez, and A. Lagendijk, “Snapshots of Anderson localization beyond the ensemble average,” Phys. Rev. B 86(12), 125132 (2012).
[Crossref]

Fishman, S.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref]

Frazier, R. J.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref]

S. Karbasi, R. J. Frazier, C. R. Mirr, K. W. Koch, and A. Mafi, “Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light,” J. Visualized Exp. 77, e50679 (2013).
[Crossref]

S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett. 37(12), 2304–2306 (2012).
[Crossref]

S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Opt. Express 20(17), 18692–18706 (2012).
[Crossref]

Genack, A. Z.

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404(6780), 850–853 (2000).
[Crossref]

Graham, I. S.

I. S. Graham, L. Piché, and M. Grant, “Experimental evidence for localization of acoustic waves in three dimensions,” Phys. Rev. Lett. 64(26), 3135–3138 (1990).
[Crossref]

Grant, M.

I. S. Graham, L. Piché, and M. Grant, “Experimental evidence for localization of acoustic waves in three dimensions,” Phys. Rev. Lett. 64(26), 3135–3138 (1990).
[Crossref]

Hambrecht, B.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Hawkins, T.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
[Crossref]

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

Hu, H.

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4(12), 945–948 (2008).
[Crossref]

John, S.

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[Crossref]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).
[Crossref]

Josse, V.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Karbasi, S.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, E. DelRe, and C. Conti, “Secure information transport by transverse localization of light,” Sci. Rep. 6(1), 29918 (2016).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Experimental observation of disorder induced self-focusing in optical fibers,” Appl. Phys. Lett. 105(17), 171102 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Observation of migrating transverse Anderson localizations of light in nonlocal media,” Phys. Rev. Lett. 112(19), 193902 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Light focusing in the Anderson regime,” Nat. Commun. 5(1), 4534 (2014).
[Crossref]

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref]

S. Karbasi, R. J. Frazier, C. R. Mirr, K. W. Koch, and A. Mafi, “Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light,” J. Visualized Exp. 77, e50679 (2013).
[Crossref]

S. Karbasi, K. W. Koch, and A. Mafi, “Multiple-beam propagation in an Anderson localized optical fiber,” Opt. Express 21(1), 305–313 (2013).
[Crossref]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Opt. Express 20(17), 18692–18706 (2012).
[Crossref]

S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett. 37(12), 2304–2306 (2012).
[Crossref]

Koch, K. W.

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref]

S. Karbasi, R. J. Frazier, C. R. Mirr, K. W. Koch, and A. Mafi, “Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light,” J. Visualized Exp. 77, e50679 (2013).
[Crossref]

S. Karbasi, K. W. Koch, and A. Mafi, “Multiple-beam propagation in an Anderson localized optical fiber,” Opt. Express 21(1), 305–313 (2013).
[Crossref]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Opt. Express 20(17), 18692–18706 (2012).
[Crossref]

S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett. 37(12), 2304–2306 (2012).
[Crossref]

A. Mafi, J. Ballato, K. W. Koch, and A. Schulzgen, “Disordered anderson localization optical fibers for image transport-a review,” arXiv preprint arXiv:1902.00433 (2019).

Kuroyanagi, S.

H. T. Tong, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Characterization of an all-solid disordered tellurite glass optical fiber and its near-infrared optical image transport,” Jpn. J. Appl. Phys. 58, 032005 (2019).
[Crossref]

Lagendijk, A.

R. G. S. El-Dardiry, S. Faez, and A. Lagendijk, “Snapshots of Anderson localization beyond the ensemble average,” Phys. Rev. B 86(12), 125132 (2012).
[Crossref]

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty-years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref]

Lahini, Y.

Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105(16), 163905 (2010).
[Crossref]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

Leonetti, M.

W. Schirmacher, B. Abaie, A. Mafi, G. Ruocco, and M. Leonetti, “What is the right theory for Anderson localization of light? an experimental test,” Phys. Rev. Lett. 120(6), 067401 (2018).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, E. DelRe, and C. Conti, “Secure information transport by transverse localization of light,” Sci. Rep. 6(1), 29918 (2016).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Light focusing in the Anderson regime,” Nat. Commun. 5(1), 4534 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Observation of migrating transverse Anderson localizations of light in nonlocal media,” Phys. Rev. Lett. 112(19), 193902 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Experimental observation of disorder induced self-focusing in optical fibers,” Appl. Phys. Lett. 105(17), 171102 (2014).
[Crossref]

Li, M.-J.

M. Chen and M.-J. Li, “Observing transverse Anderson localization in random air line based fiber,” in Photonic and Phononic Properties of Engineered Nanostructures IV, Vol. 8994 (International Society for Optics and Photonics, 201489941S

Lopez, J. E. A.

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

Lugan, P.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Mafi, A.

W. Schirmacher, B. Abaie, A. Mafi, G. Ruocco, and M. Leonetti, “What is the right theory for Anderson localization of light? an experimental test,” Phys. Rev. Lett. 120(6), 067401 (2018).
[Crossref]

B. Abaie and A. Mafi, “Modal area statistics for transverse Anderson localization in disordered optical fibers,” Opt. Lett. 43(16), 3834–3837 (2018).
[Crossref]

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
[Crossref]

B. Abaie and A. Mafi, “Scaling analysis of transverse Anderson localization in a disordered optical waveguide,” Phys. Rev. B 94(6), 064201 (2016).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, E. DelRe, and C. Conti, “Secure information transport by transverse localization of light,” Sci. Rep. 6(1), 29918 (2016).
[Crossref]

A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
[Crossref]

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Experimental observation of disorder induced self-focusing in optical fibers,” Appl. Phys. Lett. 105(17), 171102 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Observation of migrating transverse Anderson localizations of light in nonlocal media,” Phys. Rev. Lett. 112(19), 193902 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Light focusing in the Anderson regime,” Nat. Commun. 5(1), 4534 (2014).
[Crossref]

S. Karbasi, R. J. Frazier, C. R. Mirr, K. W. Koch, and A. Mafi, “Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light,” J. Visualized Exp. 77, e50679 (2013).
[Crossref]

S. Karbasi, K. W. Koch, and A. Mafi, “Multiple-beam propagation in an Anderson localized optical fiber,” Opt. Express 21(1), 305–313 (2013).
[Crossref]

S. Karbasi, C. R. Mirr, R. J. Frazier, P. G. Yarandi, K. W. Koch, and A. Mafi, “Detailed investigation of the impact of the fiber design parameters on the transverse Anderson localization of light in disordered optical fibers,” Opt. Express 20(17), 18692–18706 (2012).
[Crossref]

S. Karbasi, T. Hawkins, J. Ballato, K. W. Koch, and A. Mafi, “Transverse Anderson localization in a disordered glass optical fiber,” Opt. Mater. Express 2(11), 1496–1503 (2012).
[Crossref]

S. Karbasi, C. R. Mirr, P. G. Yarandi, R. J. Frazier, K. W. Koch, and A. Mafi, “Observation of transverse Anderson localization in an optical fiber,” Opt. Lett. 37(12), 2304–2306 (2012).
[Crossref]

J. Zhao, J. E. Antonio-Lopez, R. A. Correa, A. Mafi, M. Windeck, and A. Schülzgen, “Image transport through silica-air random core optical fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. JTu5A.91.

A. Mafi, J. Ballato, K. W. Koch, and A. Schulzgen, “Disordered anderson localization optical fibers for image transport-a review,” arXiv preprint arXiv:1902.00433 (2019).

Mirr, C. R.

Mobini, E.

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
[Crossref]

Morandotti, R.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

Mordechai Segev, Y. S.

Y. S. Mordechai Segev and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Nagasaka, K.

H. T. Tong, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Characterization of an all-solid disordered tellurite glass optical fiber and its near-infrared optical image transport,” Jpn. J. Appl. Phys. 58, 032005 (2019).
[Crossref]

Ohishi, Y.

H. T. Tong, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Characterization of an all-solid disordered tellurite glass optical fiber and its near-infrared optical image transport,” Jpn. J. Appl. Phys. 58, 032005 (2019).
[Crossref]

Page, J. H.

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4(12), 945–948 (2008).
[Crossref]

Pang, S.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

Piché, L.

I. S. Graham, L. Piché, and M. Grant, “Experimental evidence for localization of acoustic waves in three dimensions,” Phys. Rev. Lett. 64(26), 3135–3138 (1990).
[Crossref]

Pozzi, F.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

Ruocco, G.

W. Schirmacher, B. Abaie, A. Mafi, G. Ruocco, and M. Leonetti, “What is the right theory for Anderson localization of light? an experimental test,” Phys. Rev. Lett. 120(6), 067401 (2018).
[Crossref]

Saleh, B. E. A.

A. F. Abouraddy, G. Di Giuseppe, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization and colocalization of spatially entangled photons,” Phys. Rev. A 86(4), 040302 (2012).
[Crossref]

Sanchez-Palencia, L.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

Schirmacher, W.

W. Schirmacher, B. Abaie, A. Mafi, G. Ruocco, and M. Leonetti, “What is the right theory for Anderson localization of light? an experimental test,” Phys. Rev. Lett. 120(6), 067401 (2018).
[Crossref]

Schulzgen, A.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

A. Mafi, J. Ballato, K. W. Koch, and A. Schulzgen, “Disordered anderson localization optical fibers for image transport-a review,” arXiv preprint arXiv:1902.00433 (2019).

Schülzgen, A.

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

J. Zhao, J. E. Antonio-Lopez, R. A. Correa, A. Mafi, M. Windeck, and A. Schülzgen, “Image transport through silica-air random core optical fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. JTu5A.91.

Schwartz, T.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref]

Segev, M.

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref]

Seward, T.

T. Seward, “Some unusual optical properties of elongated phases in glasses,” The Phys. Non-Crystalline Solids; Trans Tech Publ. Aedermannsdorf, Switz.342–347 (1977).

Seward, T. P.

T. P. Seward, “Elongation and spheroidization of phase-separated particles in glass,” J. Non-Cryst. Solids 15(3), 487–504 (1974).
[Crossref]

Sheng, P.

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd ed (Springer-Verlag, Berlin, Germany, 2006).

Silberberg, Y.

Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105(16), 163905 (2010).
[Crossref]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

Skipetrov, S. E.

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4(12), 945–948 (2008).
[Crossref]

Sorel, M.

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

Soukoulis, C. M.

C. M. Soukoulis and E. N. Economou, “Electronic localization in disordered systems,” Waves in Random Media 9(2), 255–269 (1999).
[Crossref]

Stoytchev, M.

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404(6780), 850–853 (2000).
[Crossref]

Strybulevych, A.

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4(12), 945–948 (2008).
[Crossref]

Sun, Y.

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Suzuki, T.

H. T. Tong, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Characterization of an all-solid disordered tellurite glass optical fiber and its near-infrared optical image transport,” Jpn. J. Appl. Phys. 58, 032005 (2019).
[Crossref]

Tong, H. T.

H. T. Tong, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Characterization of an all-solid disordered tellurite glass optical fiber and its near-infrared optical image transport,” Jpn. J. Appl. Phys. 58, 032005 (2019).
[Crossref]

van Tiggelen, B.

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty-years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

van Tiggelen, B. A.

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4(12), 945–948 (2008).
[Crossref]

Weaver, R.

R. Weaver, “Anderson localization of ultrasound,” Wave Motion 12(2), 129–142 (1990).
[Crossref]

Wiersma, D. S.

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty-years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

Windeck, M.

J. Zhao, J. E. Antonio-Lopez, R. A. Correa, A. Mafi, M. Windeck, and A. Schülzgen, “Image transport through silica-air random core optical fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. JTu5A.91.

Yarandi, P. G.

Zhao, J.

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

J. Zhao, J. E. Antonio-Lopez, R. A. Correa, A. Mafi, M. Windeck, and A. Schülzgen, “Image transport through silica-air random core optical fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. JTu5A.91.

Zheng, D.

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

Zhu, Z.

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Zuo, Z.

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

ACS Photonics (1)

J. Zhao, Y. Sun, Z. Zhu, J. E. Antonio-Lopez, R. A. Correa, S. Pang, and A. Schulzgen, “Deep learning imaging through fully-flexible glass-air disordered fiber,” ACS Photonics 5(10), 3930–3935 (2018).
[Crossref]

Adv. Opt. Photonics (1)

A. Mafi, “Transverse Anderson localization of light: a tutorial,” Adv. Opt. Photonics 7(3), 459–515 (2015).
[Crossref]

Appl. Phys. Lett. (1)

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Experimental observation of disorder induced self-focusing in optical fibers,” Appl. Phys. Lett. 105(17), 171102 (2014).
[Crossref]

J. Am. Ceram. Soc. (1)

J. Ballato and P. Dragic, “Rethinking optical fiber: New demands, old glasses,” J. Am. Ceram. Soc. 96(9), 2675–2692 (2013).
[Crossref]

J. Non-Cryst. Solids (1)

T. P. Seward, “Elongation and spheroidization of phase-separated particles in glass,” J. Non-Cryst. Solids 15(3), 487–504 (1974).
[Crossref]

J. Visualized Exp. (1)

S. Karbasi, R. J. Frazier, C. R. Mirr, K. W. Koch, and A. Mafi, “Fabrication and characterization of disordered polymer optical fibers for transverse Anderson localization of light,” J. Visualized Exp. 77, e50679 (2013).
[Crossref]

Jpn. J. Appl. Phys. (1)

H. T. Tong, S. Kuroyanagi, K. Nagasaka, T. Suzuki, and Y. Ohishi, “Characterization of an all-solid disordered tellurite glass optical fiber and its near-infrared optical image transport,” Jpn. J. Appl. Phys. 58, 032005 (2019).
[Crossref]

Light: Sci. Appl. (1)

B. Abaie, E. Mobini, S. Karbasi, T. Hawkins, J. Ballato, and A. Mafi, “Random lasing in an Anderson localizing optical fiber,” Light: Sci. Appl. 6(8), e17041 (2017).
[Crossref]

Nat. Commun. (2)

S. Karbasi, R. J. Frazier, K. W. Koch, T. Hawkins, J. Ballato, and A. Mafi, “Image transport through a disordered optical fibre mediated by transverse Anderson localization,” Nat. Commun. 5(1), 3362 (2014).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Light focusing in the Anderson regime,” Nat. Commun. 5(1), 4534 (2014).
[Crossref]

Nat. Photonics (1)

Y. S. Mordechai Segev and D. N. Christodoulides, “Anderson localization of light,” Nat. Photonics 7(3), 197–204 (2013).
[Crossref]

Nat. Phys. (1)

H. Hu, A. Strybulevych, J. H. Page, S. E. Skipetrov, and B. A. van Tiggelen, “Localization of ultrasound in a three-dimensional elastic network,” Nat. Phys. 4(12), 945–948 (2008).
[Crossref]

Nature (3)

A. A. Chabanov, M. Stoytchev, and A. Z. Genack, “Statistical signatures of photon localization,” Nature 404(6780), 850–853 (2000).
[Crossref]

J. Billy, V. Josse, Z. Zuo, A. Bernard, B. Hambrecht, P. Lugan, D. Clément, L. Sanchez-Palencia, P. Bouyer, and A. Aspect, “Direct observation of Anderson localization of matter waves in a controlled disorder,” Nature 453(7197), 891–894 (2008).
[Crossref]

T. Schwartz, G. Bartal, S. Fishman, and M. Segev, “Transport and Anderson localization in disordered two-dimensional photonic lattices,” Nature 446(7131), 52–55 (2007).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Philos. Mag. B (1)

P. W. Anderson, “The question of classical localization a theory of white paint?” Philos. Mag. B 52(3), 505–509 (1985).
[Crossref]

Phys. Rev. (1)

P. W. Anderson, “Absence of diffusion in certain random lattices,” Phys. Rev. 109(5), 1492–1505 (1958).
[Crossref]

Phys. Rev. A (1)

A. F. Abouraddy, G. Di Giuseppe, D. N. Christodoulides, and B. E. A. Saleh, “Anderson localization and colocalization of spatially entangled photons,” Phys. Rev. A 86(4), 040302 (2012).
[Crossref]

Phys. Rev. B (2)

R. G. S. El-Dardiry, S. Faez, and A. Lagendijk, “Snapshots of Anderson localization beyond the ensemble average,” Phys. Rev. B 86(12), 125132 (2012).
[Crossref]

B. Abaie and A. Mafi, “Scaling analysis of transverse Anderson localization in a disordered optical waveguide,” Phys. Rev. B 94(6), 064201 (2016).
[Crossref]

Phys. Rev. Lett. (7)

W. Schirmacher, B. Abaie, A. Mafi, G. Ruocco, and M. Leonetti, “What is the right theory for Anderson localization of light? an experimental test,” Phys. Rev. Lett. 120(6), 067401 (2018).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, and C. Conti, “Observation of migrating transverse Anderson localizations of light in nonlocal media,” Phys. Rev. Lett. 112(19), 193902 (2014).
[Crossref]

S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett. 53(22), 2169–2172 (1984).
[Crossref]

I. S. Graham, L. Piché, and M. Grant, “Experimental evidence for localization of acoustic waves in three dimensions,” Phys. Rev. Lett. 64(26), 3135–3138 (1990).
[Crossref]

Y. Lahini, Y. Bromberg, D. N. Christodoulides, and Y. Silberberg, “Quantum correlations in two-particle Anderson localization,” Phys. Rev. Lett. 105(16), 163905 (2010).
[Crossref]

Y. Lahini, A. Avidan, F. Pozzi, M. Sorel, R. Morandotti, D. N. Christodoulides, and Y. Silberberg, “Anderson localization and nonlinearity in one-dimensional disordered photonic lattices,” Phys. Rev. Lett. 100(1), 013906 (2008).
[Crossref]

H. De Raedt, A. Lagendijk, and P. de Vries, “Transverse localization of light,” Phys. Rev. Lett. 62(1), 47–50 (1989).
[Crossref]

Phys. Today (2)

A. Lagendijk, B. van Tiggelen, and D. S. Wiersma, “Fifty-years of Anderson localization,” Phys. Today 62(8), 24–29 (2009).
[Crossref]

S. John, “Localization of light,” Phys. Today 44(5), 32–40 (1991).
[Crossref]

Radiofizika (1)

S. S. Abdullaev and F. K. Abdullaev, “On propagation of light in fiber bundles with random parameters,” Radiofizika 23, 766–767 (1980).

Sci. Rep. (2)

J. Zhao, J. E. A. Lopez, Z. Zhu, D. Zheng, S. Pang, R. A. Correa, and A. Schülzgen, “Image transport through meter-long randomly disordered silica-air optical fiber,” Sci. Rep. 8(1), 3065 (2018).
[Crossref]

M. Leonetti, S. Karbasi, A. Mafi, E. DelRe, and C. Conti, “Secure information transport by transverse localization of light,” Sci. Rep. 6(1), 29918 (2016).
[Crossref]

Wave Motion (1)

R. Weaver, “Anderson localization of ultrasound,” Wave Motion 12(2), 129–142 (1990).
[Crossref]

Waves in Random Media (1)

C. M. Soukoulis and E. N. Economou, “Electronic localization in disordered systems,” Waves in Random Media 9(2), 255–269 (1999).
[Crossref]

Other (6)

P. Sheng, Introduction to Wave Scattering, Localization and Mesoscopic Phenomena, 2nd ed (Springer-Verlag, Berlin, Germany, 2006).

M. Chen and M.-J. Li, “Observing transverse Anderson localization in random air line based fiber,” in Photonic and Phononic Properties of Engineered Nanostructures IV, Vol. 8994 (International Society for Optics and Photonics, 201489941S

J. Zhao, J. E. Antonio-Lopez, R. A. Correa, A. Mafi, M. Windeck, and A. Schülzgen, “Image transport through silica-air random core optical fiber,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2017), p. JTu5A.91.

A. Mafi, J. Ballato, K. W. Koch, and A. Schulzgen, “Disordered anderson localization optical fibers for image transport-a review,” arXiv preprint arXiv:1902.00433 (2019).

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic Press, 2013).

T. Seward, “Some unusual optical properties of elongated phases in glasses,” The Phys. Non-Crystalline Solids; Trans Tech Publ. Aedermannsdorf, Switz.342–347 (1977).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. A conceptual sketch of the longitudinally invariant and transversely random dielectric waveguide is shown. This structure which was proposed by De Raedt et al. [20] is the basis of TALOFs discussed in this paper. In the transverse plane, the refractive index is pixelated into tiny squares, and the refractive index of each pixel is randomly selected to be $n_1$ or $n_2$ with equal probabilities.
Fig. 2.
Fig. 2. (a) Cross section of the polymer TALOF from Ref. [1] with a nearly square profile and an approximate side-width of 250 µm, (b) A zoomed-in SEM image of a 24 µm-wide region on the tip of the fiber, exposed to a solvent to differentiate between PMMA and PS polymer components, (c) SEM image of the glass TALOF reported in Ref. [29], (d) A zoomed-in SEM image of the glass TALOF. Reprinted/Reproduced with permission from Optics Letters, 2012 [1] and Optical Material Express, 2012 [29], and the Optical Society.