Abstract

Transient absorption is studied in Fe-doped lithium niobate single crystals with the goal to control and probe a blue absorption feature related with excitonic states bound to Fe$_\textrm {Li}$ defect centers. The exciton absorption is deduced from the comparison of ns-pump, supercontinuum-probe spectra obtained in crystals with different Fe-concentration and Fe$^{2+/3+}_\textrm {Li}$-ratio, at different pulse peak and photon energies as well as by signal separation taking well-known small polaron absorption bands into account. As a result, a broad-band absorption feature is deduced being characterized by an absorption cross-section of up to $\sigma ^\textrm {max}(2.85$ eV$) = (4\pm 2)\cdot 10^{-22}$ m$^{2}$. The band peaks at about 2.85 eV and can be reconstructed by the sum of two Gaussians centered at 2.2 eV (width $\approx 0.5$ eV) and 2.9 eV (width $\approx 0.4$ eV), respectively. The appropriate build-up and decay properties strongly depend on the crystals’ composition as well as the incident pulse parameters. All findings are comprehensively analyzed and discussed within the model of $\textrm {Fe}^{2+}_{\textrm {Li}}-\textrm {O}^{-}-\textrm {V}_{\textrm {Li}}$ excitonic states.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Picosecond near-to-mid-infrared absorption of pulse-injected small polarons in magnesium doped lithium niobate

Felix Freytag, Phillip Booker, Gábor Corradi, Simon Messerschmidt, Andreas Krampf, and Mirco Imlau
Opt. Mater. Express 8(6) 1505-1514 (2018)

Hologram recording via spatial density modulation of NbLi4+/5+ antisites in lithium niobate

M. Imlau, H. Brüning, B. Schoke, R.-S. Hardt, D. Conradi, and C. Merschjann
Opt. Express 19(16) 15322-15338 (2011)

Photorefractive properties of iron-doped stoichiometric lithium niobate

Y. Furukawa, K. Kitamura, Y. Ji, G. Montemezzani, M. Zgonik, C. Medrano, and P. Günter
Opt. Lett. 22(8) 501-503 (1997)

References

  • View by:
  • |
  • |
  • |

  1. R. Batchko, G. Miller, A. Alexandrovski, M. Fejer, and R. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” Tech. Dig. Summ. Pap. Present. at Conf. on Lasers Electro-Optics. Conf. Ed. 1998 Tech. Dig. Series, Vol. 6 (IEEE Cat. No.98CH36178) (1998).
  2. H. M. Yochum, K. B. Üçer, R. T. Williams, L. Grigorjeva, D. Millers, and G. Corradi, “Subpicosecond Laser Spectroscopy of Blue-Light-Induced Absorption in KNbO3 and LiNbO3,” Defects Surface-Induced Eff. Adv. Perovskites pp. 125–138 (2000).
  3. M. Imlau, H. Badorreck, and C. Merschjann, “Optical nonlinearities of small polarons in lithium niobate,” Appl. Phys. Rev. 2(4), 040606 (2015).
    [Crossref]
  4. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
    [Crossref]
  5. P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
    [Crossref]
  6. O. F. Schirmer, “O− bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18(43), R667–R704 (2006).
    [Crossref]
  7. N. Waasem, A. Markosyan, M. M. Fejer, and K. Buse, “Green-induced blue absorption in MgO-doped lithium niobate crystals,” Opt. Lett. 38(16), 2953 (2013).
    [Crossref]
  8. D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
    [Crossref]
  9. S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
    [Crossref]
  10. D. M. Krol, G. Blasse, and R. C. Powell, “The influence of the Li/Nb ratio on the luminescence properties of LiNbO3,” J. Chem. Phys. 73(1), 163–166 (1980).
    [Crossref]
  11. M. Wiegel, M. Emond, E. Stobbe, and G. Blasse, “Luminescence of alkali tantalates and niobates,” J. Phys. Chem. Solids 55(8), 773–778 (1994).
    [Crossref]
  12. M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
    [Crossref]
  13. P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
    [Crossref]
  14. T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
    [Crossref]
  15. C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
    [Crossref]
  16. O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
    [Crossref]
  17. A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
    [Crossref]
  18. M. G. Clark, F. J. DiSalvo, A. M. Glass, and G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59(12), 6209–6219 (1973).
    [Crossref]
  19. B. Dischler, J. Herrington, A. Räuber, and H. Kurz, “Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra,” Solid State Commun. 14(11), 1233–1236 (1974).
    [Crossref]
  20. L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
    [Crossref]
  21. J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and Crystal Growth of Lithium Niobate,” J. Appl. Phys. 42(5), 1846–1851 (1971).
    [Crossref]
  22. T. Volk and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer Series in Materials Science (Springer Berlin Heidelberg, 2008).
  23. H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
    [Crossref]
  24. D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
    [Crossref]
  25. F. Klose, M. Wöhlecke, and S. Kapphan, “UV-excited luminescence of LiNbO3 and LiNbO3:Mg,” Ferroelectrics 92(1), 181–187 (1989).
    [Crossref]
  26. P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
    [Crossref]
  27. M. V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas, and C. Sada, “Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption,” Appl. Spectrosc. 65(2), 216–220 (2011).
    [Crossref]
  28. R. T. Williams and M. N. Kabler, “Excited-state absorption spectroscopy of self-trapped excitons in alkali halides,” Phys. Rev. B 9(4), 1897–1907 (1974).
    [Crossref]
  29. R. Williams and K. Song, “The self-trapped exciton,” J. Phys. Chem. Solids 51(7), 679–716 (1990).
    [Crossref]
  30. P. Li, S. Gridin, K. B. Ucer, R. T. Williams, and P. R. Menge, “Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce,” Phys. Rev. B 97(14), 144303 (2018).
    [Crossref]

2019 (1)

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

2018 (2)

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

P. Li, S. Gridin, K. B. Ucer, R. T. Williams, and P. R. Menge, “Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce,” Phys. Rev. B 97(14), 144303 (2018).
[Crossref]

2016 (1)

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

2015 (2)

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

M. Imlau, H. Badorreck, and C. Merschjann, “Optical nonlinearities of small polarons in lithium niobate,” Appl. Phys. Rev. 2(4), 040606 (2015).
[Crossref]

2013 (1)

2011 (2)

M. V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas, and C. Sada, “Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption,” Appl. Spectrosc. 65(2), 216–220 (2011).
[Crossref]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

2009 (1)

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
[Crossref]

2008 (1)

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
[Crossref]

2006 (1)

O. F. Schirmer, “O− bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18(43), R667–R704 (2006).
[Crossref]

2005 (2)

P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
[Crossref]

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref]

2001 (1)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

2000 (1)

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[Crossref]

1997 (1)

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

1994 (2)

M. Wiegel, M. Emond, E. Stobbe, and G. Blasse, “Luminescence of alkali tantalates and niobates,” J. Phys. Chem. Solids 55(8), 773–778 (1994).
[Crossref]

M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
[Crossref]

1990 (1)

R. Williams and K. Song, “The self-trapped exciton,” J. Phys. Chem. Solids 51(7), 679–716 (1990).
[Crossref]

1989 (1)

F. Klose, M. Wöhlecke, and S. Kapphan, “UV-excited luminescence of LiNbO3 and LiNbO3:Mg,” Ferroelectrics 92(1), 181–187 (1989).
[Crossref]

1980 (1)

D. M. Krol, G. Blasse, and R. C. Powell, “The influence of the Li/Nb ratio on the luminescence properties of LiNbO3,” J. Chem. Phys. 73(1), 163–166 (1980).
[Crossref]

1977 (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

1974 (2)

B. Dischler, J. Herrington, A. Räuber, and H. Kurz, “Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra,” Solid State Commun. 14(11), 1233–1236 (1974).
[Crossref]

R. T. Williams and M. N. Kabler, “Excited-state absorption spectroscopy of self-trapped excitons in alkali halides,” Phys. Rev. B 9(4), 1897–1907 (1974).
[Crossref]

1973 (1)

M. G. Clark, F. J. DiSalvo, A. M. Glass, and G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59(12), 6209–6219 (1973).
[Crossref]

1971 (1)

J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and Crystal Growth of Lithium Niobate,” J. Appl. Phys. 42(5), 1846–1851 (1971).
[Crossref]

Alexandrovski, A.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

R. Batchko, G. Miller, A. Alexandrovski, M. Fejer, and R. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” Tech. Dig. Summ. Pap. Present. at Conf. on Lasers Electro-Optics. Conf. Ed. 1998 Tech. Dig. Series, Vol. 6 (IEEE Cat. No.98CH36178) (1998).

Argiolas, N.

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

M. V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas, and C. Sada, “Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption,” Appl. Spectrosc. 65(2), 216–220 (2011).
[Crossref]

Badorreck, H.

M. Imlau, H. Badorreck, and C. Merschjann, “Optical nonlinearities of small polarons in lithium niobate,” Appl. Phys. Rev. 2(4), 040606 (2015).
[Crossref]

Batchko, R.

R. Batchko, G. Miller, A. Alexandrovski, M. Fejer, and R. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” Tech. Dig. Summ. Pap. Present. at Conf. on Lasers Electro-Optics. Conf. Ed. 1998 Tech. Dig. Series, Vol. 6 (IEEE Cat. No.98CH36178) (1998).

Bazzan, M.

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

M. V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas, and C. Sada, “Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption,” Appl. Spectrosc. 65(2), 216–220 (2011).
[Crossref]

Berben, D.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[Crossref]

Blasse, G.

M. Wiegel, M. Emond, E. Stobbe, and G. Blasse, “Luminescence of alkali tantalates and niobates,” J. Phys. Chem. Solids 55(8), 773–778 (1994).
[Crossref]

M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
[Crossref]

D. M. Krol, G. Blasse, and R. C. Powell, “The influence of the Li/Nb ratio on the luminescence properties of LiNbO3,” J. Chem. Phys. 73(1), 163–166 (1980).
[Crossref]

Bridenbaugh, P. M.

J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and Crystal Growth of Lithium Niobate,” J. Appl. Phys. 42(5), 1846–1851 (1971).
[Crossref]

Buse, K.

N. Waasem, A. Markosyan, M. M. Fejer, and K. Buse, “Green-induced blue absorption in MgO-doped lithium niobate crystals,” Opt. Lett. 38(16), 2953 (2013).
[Crossref]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[Crossref]

Byer, R.

R. Batchko, G. Miller, A. Alexandrovski, M. Fejer, and R. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” Tech. Dig. Summ. Pap. Present. at Conf. on Lasers Electro-Optics. Conf. Ed. 1998 Tech. Dig. Series, Vol. 6 (IEEE Cat. No.98CH36178) (1998).

Carruthers, J. R.

J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and Crystal Growth of Lithium Niobate,” J. Appl. Phys. 42(5), 1846–1851 (1971).
[Crossref]

Ciampolillo, M. V.

Clark, M. G.

M. G. Clark, F. J. DiSalvo, A. M. Glass, and G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59(12), 6209–6219 (1973).
[Crossref]

Conradi, D.

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
[Crossref]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
[Crossref]

Corradi, G.

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
[Crossref]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

H. M. Yochum, K. B. Üçer, R. T. Williams, L. Grigorjeva, D. Millers, and G. Corradi, “Subpicosecond Laser Spectroscopy of Blue-Light-Induced Absorption in KNbO3 and LiNbO3,” Defects Surface-Induced Eff. Adv. Perovskites pp. 125–138 (2000).

DiSalvo, F. J.

M. G. Clark, F. J. DiSalvo, A. M. Glass, and G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59(12), 6209–6219 (1973).
[Crossref]

Dischler, B.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

B. Dischler, J. Herrington, A. Räuber, and H. Kurz, “Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra,” Solid State Commun. 14(11), 1233–1236 (1974).
[Crossref]

Emond, M.

M. Wiegel, M. Emond, E. Stobbe, and G. Blasse, “Luminescence of alkali tantalates and niobates,” J. Phys. Chem. Solids 55(8), 773–778 (1994).
[Crossref]

Eng, L.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

Eng, L. M.

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

Engelmann, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Fejer, M.

R. Batchko, G. Miller, A. Alexandrovski, M. Fejer, and R. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” Tech. Dig. Summ. Pap. Present. at Conf. on Lasers Electro-Optics. Conf. Ed. 1998 Tech. Dig. Series, Vol. 6 (IEEE Cat. No.98CH36178) (1998).

Fejer, M. M.

N. Waasem, A. Markosyan, M. M. Fejer, and K. Buse, “Green-induced blue absorption in MgO-doped lithium niobate crystals,” Opt. Lett. 38(16), 2953 (2013).
[Crossref]

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Foulon, G.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Freytag, F.

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

Furukawa, Y.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Glass, A. M.

M. G. Clark, F. J. DiSalvo, A. M. Glass, and G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59(12), 6209–6219 (1973).
[Crossref]

Gonser, U.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Granzow, T.

P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
[Crossref]

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref]

Grasso, M.

J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and Crystal Growth of Lithium Niobate,” J. Appl. Phys. 42(5), 1846–1851 (1971).
[Crossref]

Gridin, S.

P. Li, S. Gridin, K. B. Ucer, R. T. Williams, and P. R. Menge, “Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce,” Phys. Rev. B 97(14), 144303 (2018).
[Crossref]

Grigorjeva, L.

H. M. Yochum, K. B. Üçer, R. T. Williams, L. Grigorjeva, D. Millers, and G. Corradi, “Subpicosecond Laser Spectroscopy of Blue-Light-Induced Absorption in KNbO3 and LiNbO3,” Defects Surface-Induced Eff. Adv. Perovskites pp. 125–138 (2000).

Haußmann, A.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

Herrington, J.

B. Dischler, J. Herrington, A. Räuber, and H. Kurz, “Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra,” Solid State Commun. 14(11), 1233–1236 (1974).
[Crossref]

Herth, P.

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref]

P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
[Crossref]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[Crossref]

Imlau, M.

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

M. Imlau, H. Badorreck, and C. Merschjann, “Optical nonlinearities of small polarons in lithium niobate,” Appl. Phys. Rev. 2(4), 040606 (2015).
[Crossref]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
[Crossref]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
[Crossref]

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref]

P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
[Crossref]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[Crossref]

Kabler, M. N.

R. T. Williams and M. N. Kabler, “Excited-state absorption spectroscopy of self-trapped excitons in alkali halides,” Phys. Rev. B 9(4), 1897–1907 (1974).
[Crossref]

Kämpfe, T.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

Kapphan, S.

F. Klose, M. Wöhlecke, and S. Kapphan, “UV-excited luminescence of LiNbO3 and LiNbO3:Mg,” Ferroelectrics 92(1), 181–187 (1989).
[Crossref]

Keune, W.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Kinomura, N.

M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
[Crossref]

Kitamura, K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Klose, F.

F. Klose, M. Wöhlecke, and S. Kapphan, “UV-excited luminescence of LiNbO3 and LiNbO3:Mg,” Ferroelectrics 92(1), 181–187 (1989).
[Crossref]

Kocsor, L.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

Kovács, L.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Krampf, A.

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

Krätzig, E.

P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
[Crossref]

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref]

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Krol, D. M.

D. M. Krol, G. Blasse, and R. C. Powell, “The influence of the Li/Nb ratio on the luminescence properties of LiNbO3,” J. Chem. Phys. 73(1), 163–166 (1980).
[Crossref]

Kumada, N.

M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
[Crossref]

Kurz, H.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

B. Dischler, J. Herrington, A. Räuber, and H. Kurz, “Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra,” Solid State Commun. 14(11), 1233–1236 (1974).
[Crossref]

Li, P.

P. Li, S. Gridin, K. B. Ucer, R. T. Williams, and P. R. Menge, “Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce,” Phys. Rev. B 97(14), 144303 (2018).
[Crossref]

Markosyan, A.

Mehta, A.

M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
[Crossref]

Menge, P. R.

P. Li, S. Gridin, K. B. Ucer, R. T. Williams, and P. R. Menge, “Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce,” Phys. Rev. B 97(14), 144303 (2018).
[Crossref]

Merschjann, C.

M. Imlau, H. Badorreck, and C. Merschjann, “Optical nonlinearities of small polarons in lithium niobate,” Appl. Phys. Rev. 2(4), 040606 (2015).
[Crossref]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
[Crossref]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
[Crossref]

Messerschmidt, S.

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

Miller, G.

R. Batchko, G. Miller, A. Alexandrovski, M. Fejer, and R. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” Tech. Dig. Summ. Pap. Present. at Conf. on Lasers Electro-Optics. Conf. Ed. 1998 Tech. Dig. Series, Vol. 6 (IEEE Cat. No.98CH36178) (1998).

Millers, D.

H. M. Yochum, K. B. Üçer, R. T. Williams, L. Grigorjeva, D. Millers, and G. Corradi, “Subpicosecond Laser Spectroscopy of Blue-Light-Induced Absorption in KNbO3 and LiNbO3,” Defects Surface-Induced Eff. Adv. Perovskites pp. 125–138 (2000).

Navrotsky, A.

M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
[Crossref]

Peterson, G. E.

M. G. Clark, F. J. DiSalvo, A. M. Glass, and G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59(12), 6209–6219 (1973).
[Crossref]

J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and Crystal Growth of Lithium Niobate,” J. Appl. Phys. 42(5), 1846–1851 (1971).
[Crossref]

Polgár, K.

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
[Crossref]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Powell, R. C.

D. M. Krol, G. Blasse, and R. C. Powell, “The influence of the Li/Nb ratio on the luminescence properties of LiNbO3,” J. Chem. Phys. 73(1), 163–166 (1980).
[Crossref]

Räuber, A.

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

B. Dischler, J. Herrington, A. Räuber, and H. Kurz, “Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra,” Solid State Commun. 14(11), 1233–1236 (1974).
[Crossref]

Reichenbach, P.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

Route, R. K.

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

Ruschhaupt, G.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Sada, C.

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

M. V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas, and C. Sada, “Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption,” Appl. Spectrosc. 65(2), 216–220 (2011).
[Crossref]

Sanna, S.

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

Sanson, A.

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

Schaniel, D.

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref]

P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
[Crossref]

Schirmer, O. F.

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

O. F. Schirmer, “O− bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18(43), R667–R704 (2006).
[Crossref]

Schmidt, W. G.

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

Schoke, B.

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
[Crossref]

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
[Crossref]

Song, K.

R. Williams and K. Song, “The self-trapped exciton,” J. Phys. Chem. Solids 51(7), 679–716 (1990).
[Crossref]

Steudtner, R.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

Stobbe, E.

M. Wiegel, M. Emond, E. Stobbe, and G. Blasse, “Luminescence of alkali tantalates and niobates,” J. Phys. Chem. Solids 55(8), 773–778 (1994).
[Crossref]

Szaller, Z.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

Thiessen, A.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

Ucer, K. B.

P. Li, S. Gridin, K. B. Ucer, R. T. Williams, and P. R. Menge, “Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce,” Phys. Rev. B 97(14), 144303 (2018).
[Crossref]

Üçer, K. B.

H. M. Yochum, K. B. Üçer, R. T. Williams, L. Grigorjeva, D. Millers, and G. Corradi, “Subpicosecond Laser Spectroscopy of Blue-Light-Induced Absorption in KNbO3 and LiNbO3,” Defects Surface-Induced Eff. Adv. Perovskites pp. 125–138 (2000).

Vittadello, L.

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

Volk, T.

T. Volk and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer Series in Materials Science (Springer Berlin Heidelberg, 2008).

Waasem, N.

Wevering, S.

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[Crossref]

Wiegel, M.

M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
[Crossref]

M. Wiegel, M. Emond, E. Stobbe, and G. Blasse, “Luminescence of alkali tantalates and niobates,” J. Phys. Chem. Solids 55(8), 773–778 (1994).
[Crossref]

Williams, R.

R. Williams and K. Song, “The self-trapped exciton,” J. Phys. Chem. Solids 51(7), 679–716 (1990).
[Crossref]

Williams, R. T.

P. Li, S. Gridin, K. B. Ucer, R. T. Williams, and P. R. Menge, “Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce,” Phys. Rev. B 97(14), 144303 (2018).
[Crossref]

R. T. Williams and M. N. Kabler, “Excited-state absorption spectroscopy of self-trapped excitons in alkali halides,” Phys. Rev. B 9(4), 1897–1907 (1974).
[Crossref]

H. M. Yochum, K. B. Üçer, R. T. Williams, L. Grigorjeva, D. Millers, and G. Corradi, “Subpicosecond Laser Spectroscopy of Blue-Light-Induced Absorption in KNbO3 and LiNbO3,” Defects Surface-Induced Eff. Adv. Perovskites pp. 125–138 (2000).

Wöhlecke, M.

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

F. Klose, M. Wöhlecke, and S. Kapphan, “UV-excited luminescence of LiNbO3 and LiNbO3:Mg,” Ferroelectrics 92(1), 181–187 (1989).
[Crossref]

T. Volk and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer Series in Materials Science (Springer Berlin Heidelberg, 2008).

Woike, T.

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
[Crossref]

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[Crossref]

Yochum, H. M.

H. M. Yochum, K. B. Üçer, R. T. Williams, L. Grigorjeva, D. Millers, and G. Corradi, “Subpicosecond Laser Spectroscopy of Blue-Light-Induced Absorption in KNbO3 and LiNbO3,” Defects Surface-Induced Eff. Adv. Perovskites pp. 125–138 (2000).

Zaltron, A.

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

M. V. Ciampolillo, A. Zaltron, M. Bazzan, N. Argiolas, and C. Sada, “Quantification of Iron (Fe) in Lithium Niobate by Optical Absorption,” Appl. Spectrosc. 65(2), 216–220 (2011).
[Crossref]

Appl. Phys. (1)

H. Kurz, E. Krätzig, W. Keune, H. Engelmann, U. Gonser, B. Dischler, and A. Räuber, “Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods,” Appl. Phys. 12(4), 355–368 (1977).
[Crossref]

Appl. Phys. Lett. (2)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, “Green-induced infrared absorption in MgO doped LiNbO3,” Appl. Phys. Lett. 78(14), 1970–1972 (2001).
[Crossref]

L. Kovács, G. Ruschhaupt, K. Polgár, G. Corradi, and M. Wöhlecke, “Composition dependence of the ultraviolet absorption edge in lithium niobate,” Appl. Phys. Lett. 70(21), 2801–2803 (1997).
[Crossref]

Appl. Phys. Rev. (1)

M. Imlau, H. Badorreck, and C. Merschjann, “Optical nonlinearities of small polarons in lithium niobate,” Appl. Phys. Rev. 2(4), 040606 (2015).
[Crossref]

Appl. Spectrosc. (1)

Crystals (1)

P. Reichenbach, T. Kämpfe, A. Haußmann, A. Thiessen, T. Woike, R. Steudtner, L. Kocsor, Z. Szaller, L. Kovács, and L. Eng, “Polaron-Mediated Luminescence in Lithium Niobate and Lithium Tantalate and Its Domain Contrast,” Crystals 8(5), 214 (2018).
[Crossref]

Ferroelectrics (1)

F. Klose, M. Wöhlecke, and S. Kapphan, “UV-excited luminescence of LiNbO3 and LiNbO3:Mg,” Ferroelectrics 92(1), 181–187 (1989).
[Crossref]

J. Appl. Phys. (2)

J. R. Carruthers, G. E. Peterson, M. Grasso, and P. M. Bridenbaugh, “Nonstoichiometry and Crystal Growth of Lithium Niobate,” J. Appl. Phys. 42(5), 1846–1851 (1971).
[Crossref]

D. Berben, K. Buse, S. Wevering, P. Herth, M. Imlau, and T. Woike, “Lifetime of small polarons in iron-doped lithium–niobate crystals,” J. Appl. Phys. 87(3), 1034–1041 (2000).
[Crossref]

J. Chem. Phys. (2)

M. G. Clark, F. J. DiSalvo, A. M. Glass, and G. E. Peterson, “Electronic structure and optical index damage of iron-doped lithium niobate,” J. Chem. Phys. 59(12), 6209–6219 (1973).
[Crossref]

D. M. Krol, G. Blasse, and R. C. Powell, “The influence of the Li/Nb ratio on the luminescence properties of LiNbO3,” J. Chem. Phys. 73(1), 163–166 (1980).
[Crossref]

J. Phys. Chem. Solids (2)

M. Wiegel, M. Emond, E. Stobbe, and G. Blasse, “Luminescence of alkali tantalates and niobates,” J. Phys. Chem. Solids 55(8), 773–778 (1994).
[Crossref]

R. Williams and K. Song, “The self-trapped exciton,” J. Phys. Chem. Solids 51(7), 679–716 (1990).
[Crossref]

J. Phys.: Condens. Matter (3)

O. F. Schirmer, “O− bound small polarons in oxide materials,” J. Phys.: Condens. Matter 18(43), R667–R704 (2006).
[Crossref]

S. Messerschmidt, A. Krampf, F. Freytag, M. Imlau, L. Vittadello, M. Bazzan, and G. Corradi, “The role of self-trapped excitons in polaronic recombination processes in lithium niobate,” J. Phys.: Condens. Matter 31(6), 065701 (2019).
[Crossref]

C. Merschjann, B. Schoke, D. Conradi, M. Imlau, G. Corradi, and K. Polgár, “Absorption cross sections and number densities of electron and hole polarons in congruently melting LiNbO3,” J. Phys.: Condens. Matter 21(1), 015906 (2009).
[Crossref]

J. Solid State Chem. (1)

M. Wiegel, G. Blasse, A. Navrotsky, A. Mehta, N. Kumada, and N. Kinomura, “Luminescence of the Ilmenite Phase of LiNbO3,” J. Solid State Chem. 109(2), 413–415 (1994).
[Crossref]

Opt. Lett. (1)

Phys. Rev. B (6)

R. T. Williams and M. N. Kabler, “Excited-state absorption spectroscopy of self-trapped excitons in alkali halides,” Phys. Rev. B 9(4), 1897–1907 (1974).
[Crossref]

P. Li, S. Gridin, K. B. Ucer, R. T. Williams, and P. R. Menge, “Picosecond absorption spectroscopy of self-trapped excitons and transient Ce states in LaBr3 and LaBr3:Ce,” Phys. Rev. B 97(14), 144303 (2018).
[Crossref]

O. F. Schirmer, M. Imlau, and C. Merschjann, “Bulk photovoltaic effect of LiNbO3:Fe and its small-polaron-based microscopic interpretation,” Phys. Rev. B 83(16), 165106 (2011).
[Crossref]

A. Sanson, A. Zaltron, N. Argiolas, C. Sada, M. Bazzan, W. G. Schmidt, and S. Sanna, “Polaronic deformation at the Fe$^{2+/3+}$2+/3+ impurity site in Fe:LiNbO3 crystals,” Phys. Rev. B 91(9), 094109 (2015).
[Crossref]

T. Kämpfe, A. Haußmann, L. M. Eng, P. Reichenbach, A. Thiessen, T. Woike, and R. Steudtner, “Time-resolved photoluminescence spectroscopy of Nb$_{\textrm {Nb}}^{4+}$Nb4+ and O− polarons in LiNbO3 single crystals,” Phys. Rev. B 93(17), 174116 (2016).
[Crossref]

P. Herth, D. Schaniel, T. Woike, T. Granzow, M. Imlau, and E. Krätzig, “Polarons generated by laser pulses in doped LiNbO3,” Phys. Rev. B 71(12), 125128 (2005).
[Crossref]

Phys. Rev. Lett. (1)

P. Herth, T. Granzow, D. Schaniel, T. Woike, M. Imlau, and E. Krätzig, “Evidence for Light-Induced Hole Polarons in LiNbO3,” Phys. Rev. Lett. 95(6), 067404 (2005).
[Crossref]

Phys. Status Solidi RRL (1)

D. Conradi, C. Merschjann, B. Schoke, M. Imlau, G. Corradi, and K. Polgár, “Influence of Mg doping on the behaviour of polaronic light-induced absorption in LiNbO3,” Phys. Status Solidi RRL 2(6), 284–286 (2008).
[Crossref]

Solid State Commun. (1)

B. Dischler, J. Herrington, A. Räuber, and H. Kurz, “Correlation of the photorefractive sensitivity in doped LiNbO3 with chemically induced changes in the optical absorption spectra,” Solid State Commun. 14(11), 1233–1236 (1974).
[Crossref]

Other (3)

T. Volk and M. Wöhlecke, Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, Springer Series in Materials Science (Springer Berlin Heidelberg, 2008).

R. Batchko, G. Miller, A. Alexandrovski, M. Fejer, and R. Byer, “Limitations of high-power visible wavelength periodically poled lithium niobate devices due to green-induced infrared absorption and thermal lensing,” Tech. Dig. Summ. Pap. Present. at Conf. on Lasers Electro-Optics. Conf. Ed. 1998 Tech. Dig. Series, Vol. 6 (IEEE Cat. No.98CH36178) (1998).

H. M. Yochum, K. B. Üçer, R. T. Williams, L. Grigorjeva, D. Millers, and G. Corradi, “Subpicosecond Laser Spectroscopy of Blue-Light-Induced Absorption in KNbO3 and LiNbO3,” Defects Surface-Induced Eff. Adv. Perovskites pp. 125–138 (2000).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Sketch of the ns-pump, supercontinuum-probe spectrometer applied in this study. The sample is pumped by a single pulse of a ns-pump pulse laser. Detection of the transient absorption is performed (i) using a diode (D$_1$) for the detection of the dynamic transmission change of a continuous wave probe laser transmitted through the sample (for a better visibility, only one cw-probe beam is shown) or (ii) by means of a supercontinuum. Here, the ns-pump pulse can be delayed for a certain time by a delay generator with respect to the supercontinuum probe pulse. The transmission change per wavelength is detected with two different spectrometers, one for the near-infrared part and one for the visible part of the supercontinuum pulse. L$_{1,2,3}$: lenses, F$_{1,2}$: optical filters, M: mirror, CM: cold mirror, P: polarizing beamsplitter cube, D$_{\textrm {T}}$: trigger diode for setup (i), BD: beam dump, PDA: photodiode array. The reader is referred to the text for further details.
Fig. 2.
Fig. 2. Left: Transient absorption after an incident ns-pulse ($E=2.33$ eV, $I_{\textrm {P}}\approx 30$ MW/cm$^2$) in the sample Fe:LN_1. The color coding of the light-induced absorption change is given in the legend on the right. Black lines indicate contour lines for steps of $\Delta \alpha _\textrm {li}=15$ m$^{-1}$. Boxed white areas refer to the regions where spectral detection is not possible. Right: Excitation and recombination scheme for the case of optical excitation via the iron D-band. For details see text.
Fig. 3.
Fig. 3. Left: Transient absorption after an incident ns-pump pulse ($E=3.49$ eV, $I_{\textrm {P}}\approx 27$ MW/cm$^2$) in the sample Fe:LN_2. Color coding according to the legend on the right. The contour plot marks steps of $\Delta \alpha _\textrm {li}= 70$ m$^{-1}$. Boxed white areas refer to the regions where spectral detection is not possible. Right: Excitation and recombination scheme for optical excitation via the iron C-band. For details see text.
Fig. 4.
Fig. 4. Left: Supercontinuum transient absorption after 3.49 eV pulse exposure ($I_{\textrm {P}}\approx 12$ MW/cm$^2$) in the sample Fe:LN_3 for the case of optical excitation via the D-band, C-Band and two-photon absorption. See legend on the right for color coding. The contour lines indicate steps of $\Delta \alpha _\textrm {li}=25$ m$^{-1}$. Boxed white areas refer to the regions where spectral detection is not possible. Right: Excitation and recombination scheme after excitation via a two-photon-absorption. For details see text.
Fig. 5.
Fig. 5. Spectra of the long-lived blue absorption as deduced from the data in Fig. 3 and Fig. 4 by normalizing the data points at every delay position to the spectral maximum of the light-induced absorption and averaging the data set over the time interval from $t>\,1\cdot 10^{-3}$ s to 10 s. The yellow line represents a converging result of fitting Eq. (1) to the data. The dashed yellow lines refer to the individual Gaussians as given in Table 2. The blue data point is an experimentally determined value of the absorption cross-section at 2.54 eV and serves as scaling factor for the $y$-axis on the right.
Fig. 6.
Fig. 6. Maximum amplitude of the long-lived blue absorption probed at 2.54 eV after pulse exposure at 3.49 eV for various intensities in the sample Fe:LN_4. The orange line is a fit of Eq. (2) to the data.

Tables (2)

Tables Icon

Table 1. Fe-doped LN crystals used in this study as obtained from MolTech GmbH (Fe:LN_1) and the University of Padova (Fe:LN_2, Fe:LN_3, and Fe:LN_4). The Fe$_\textrm {Li}^{2+}$-concentrations were determined by optical absorption measurements [23,24]. $d$ is denoting the thickness of the sample and $\alpha (2.6\,$eV$)$ the steady-state absorption at 2.6 eV.

Tables Icon

Table 2. Parameters obtained from fitting the sum of two Gaussian functions (Eq. (1)) to the experimental data set for the case of two distinct absorption bands as sketched in Fig. 5. The fitting procedure reveals two solutions with a root mean square error of $\textrm {RMSE}=0.0387$.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

α li ( E ) α li max = a 1 exp [ ( E b 1 ) 2 2 c 1 2 ] + a 2 exp [ ( E b 2 ) 2 2 c 2 2 ] ,
α li max ( E , I ) = α li max ( E , I ) [ 1 exp ( I 2 I α 2 ) ] ,