Abstract

In this paper, we investigate the local oxidation of titanium thin films under the action of picosecond laser pulses. Periodical structures were recorded by the multi-beam interference scheme utilizing various numbers of laser beams, and the relationship between spatial resolution and the contrast of the structures was studied. The Raman spectra of the laser processing regions confirmed the oxidation even under the action of a single picosecond pulse. An analytical simulation of titanium film oxidation in the interference field was provided, and obtained results are correlated with the experimental data. The results of theoretical modeling show that the thermochemical effects of picosecond laser pulses allow recording periodic structures with a period of 0.65 lines per μm. The demonstrated results are important in the adaptation of technological laser systems for the manufacture of diffractive optical elements.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Oxide composition and period variation of thermochemical LIPSS on chromium films with different thickness

A. V. Dostovalov, V. P. Korolkov, K. A. Okotrub, K. A. Bronnikov, and S. A. Babin
Opt. Express 26(6) 7712-7723 (2018)

Laser microstructured metal thin films as promising alternative for indium based transparent electrodes

Sebastian Eckhardt, Mathias Siebold, and Andrés Fabián Lasagni
Opt. Express 24(6) A553-A568 (2016)

Laser-induced periodic surface structures on titanium upon single- and two-color femtosecond double-pulse irradiation

Sandra Höhm, Arkadi Rosenfeld, Jörg Krüger, and Jörn Bonse
Opt. Express 23(20) 25959-25971 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
    [Crossref]
  2. R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, “Arbitrary spin-to–orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
    [Crossref]
  3. R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
    [Crossref]
  4. E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
    [Crossref]
  5. E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip microstructures and their use in the material treatment,” J. Laser Micro/Nanoeng. 11(3), 352–356 (2016).
    [Crossref]
  6. S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
    [Crossref]
  7. V. P. Veiko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical action of laser radiation,” Sov. Phys. Doklady 18, 83–85 (1973).
  8. S. Metev, S. Savtchenko, and K. Stamenov, “Pattern generation by laser-induced oxidation of thin metal films (microcircuit fabrication),” J. Phys. D: Appl. Phys. 13(4), L75–L76 (1980).
    [Crossref]
  9. V. Veiko, E. Shakhno, A. Poleshchuk, V. Korolkov, and V. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
    [Crossref]
  10. V. Veiko, M. Jarchuk, and A. Ivanov, “Diffusionless oxidation and structure modification of thin Cr films by the action of ultrashort laser pulses,” Laser Phys. 22(8), 1310–1316 (2012).
    [Crossref]
  11. V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
    [Crossref]
  12. A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38(8), 1295–1301 (1999).
    [Crossref]
  13. E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
    [Crossref]
  14. E. Shakhno, D. Sinev, and A. Kulazhkin, “Features of laser oxidation of thin films of titanium,” J. Opt. Technol. 81(5), 298–302 (2014).
    [Crossref]
  15. V. P. Veiko, E. A. Shakhno, and D. A. Sinev, “Laser thermochemical writing: pursuing the resolution,” Opt. Quantum Electron. 48(6), 322 (2016).
    [Crossref]
  16. M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
    [Crossref]
  17. E. Molotokaite, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
    [Crossref]
  18. W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl. Phys. A 66(6), 621–627 (1998).
    [Crossref]
  19. R. Merlin and T. Perry, “Growth of amorphous Ti2O3 layers by laser-induced oxidation,” Appl. Phys. Lett. 45(8), 852–853 (1984).
    [Crossref]
  20. V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
    [Crossref]
  21. J. Stringer, “The oxidation of titanium in oxygen at high temperatures,” Acta Metall. 8(11), 758–766 (1960).
    [Crossref]

2019 (1)

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

2017 (2)

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, “Arbitrary spin-to–orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

2016 (4)

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip microstructures and their use in the material treatment,” J. Laser Micro/Nanoeng. 11(3), 352–356 (2016).
[Crossref]

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref]

V. P. Veiko, E. A. Shakhno, and D. A. Sinev, “Laser thermochemical writing: pursuing the resolution,” Opt. Quantum Electron. 48(6), 322 (2016).
[Crossref]

2015 (1)

2014 (2)

E. Shakhno, D. Sinev, and A. Kulazhkin, “Features of laser oxidation of thin films of titanium,” J. Opt. Technol. 81(5), 298–302 (2014).
[Crossref]

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

2012 (1)

V. Veiko, M. Jarchuk, and A. Ivanov, “Diffusionless oxidation and structure modification of thin Cr films by the action of ultrashort laser pulses,” Laser Phys. 22(8), 1310–1316 (2012).
[Crossref]

2011 (1)

V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
[Crossref]

2010 (1)

E. Molotokaite, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

2008 (1)

V. Veiko, E. Shakhno, A. Poleshchuk, V. Korolkov, and V. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
[Crossref]

1999 (1)

1998 (1)

W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl. Phys. A 66(6), 621–627 (1998).
[Crossref]

1984 (1)

R. Merlin and T. Perry, “Growth of amorphous Ti2O3 layers by laser-induced oxidation,” Appl. Phys. Lett. 45(8), 852–853 (1984).
[Crossref]

1981 (1)

S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
[Crossref]

1980 (1)

S. Metev, S. Savtchenko, and K. Stamenov, “Pattern generation by laser-induced oxidation of thin metal films (microcircuit fabrication),” J. Phys. D: Appl. Phys. 13(4), L75–L76 (1980).
[Crossref]

1973 (1)

V. P. Veiko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical action of laser radiation,” Sov. Phys. Doklady 18, 83–85 (1973).

1960 (1)

J. Stringer, “The oxidation of titanium in oxygen at high temperatures,” Acta Metall. 8(11), 758–766 (1960).
[Crossref]

Ambrosio, A.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, “Arbitrary spin-to–orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Capasso, F.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, “Arbitrary spin-to–orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

Chen, W. T.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

Cherkashin, V. V.

Churin, E. G.

Devlin, R. C.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, “Arbitrary spin-to–orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

Garliauskas, M.

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip microstructures and their use in the material treatment,” J. Laser Micro/Nanoeng. 11(3), 352–356 (2016).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref]

Gedvilas, M.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref]

E. Molotokaite, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

Girdauskas, V.

E. Molotokaite, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

Hua, Y.

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Indrišiunas, S.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Ivanov, A.

V. Veiko, M. Jarchuk, and A. Ivanov, “Diffusionless oxidation and structure modification of thin Cr films by the action of ultrashort laser pulses,” Laser Phys. 22(8), 1310–1316 (2012).
[Crossref]

Jarchuk, M.

V. Veiko, M. Jarchuk, and A. Ivanov, “Diffusionless oxidation and structure modification of thin Cr films by the action of ultrashort laser pulses,” Laser Phys. 22(8), 1310–1316 (2012).
[Crossref]

Kharissov, A. A.

Khorasaninejad, M.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

Kiryanov, A. V.

Kiryanov, V. P.

Kokarev, S. A.

Korol’kov, V. P.

V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
[Crossref]

Korolkov, V.

V. Veiko, E. Shakhno, A. Poleshchuk, V. Korolkov, and V. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
[Crossref]

Korolkov, V. P.

Koronkevich, V. P.

Kotov, G.

S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
[Crossref]

Kotov, G. A.

V. P. Veiko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical action of laser radiation,” Sov. Phys. Doklady 18, 83–85 (1973).

Kulazhkin, A.

Li, H.

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Libenson, M. N.

V. P. Veiko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical action of laser radiation,” Sov. Phys. Doklady 18, 83–85 (1973).

Lu, Z.

W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl. Phys. A 66(6), 621–627 (1998).
[Crossref]

Ma, W.

W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl. Phys. A 66(6), 621–627 (1998).
[Crossref]

Massari, M.

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref]

Matyzhonok, V.

V. Veiko, E. Shakhno, A. Poleshchuk, V. Korolkov, and V. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
[Crossref]

Merlin, R.

R. Merlin and T. Perry, “Growth of amorphous Ti2O3 layers by laser-induced oxidation,” Appl. Phys. Lett. 45(8), 852–853 (1984).
[Crossref]

Metev, S.

S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
[Crossref]

S. Metev, S. Savtchenko, and K. Stamenov, “Pattern generation by laser-induced oxidation of thin metal films (microcircuit fabrication),” J. Phys. D: Appl. Phys. 13(4), L75–L76 (1980).
[Crossref]

Molotokaite, E.

E. Molotokaite, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

Mueller, J. B.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, “Arbitrary spin-to–orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Nikitin, M. N.

V. P. Veiko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical action of laser radiation,” Sov. Phys. Doklady 18, 83–85 (1973).

Niu, J.

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Oh, J.

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

Perry, T.

R. Merlin and T. Perry, “Growth of amorphous Ti2O3 layers by laser-induced oxidation,” Appl. Phys. Lett. 45(8), 852–853 (1984).
[Crossref]

Poleshchuk, A.

V. Veiko, E. Shakhno, A. Poleshchuk, V. Korolkov, and V. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
[Crossref]

Poleshchuk, A. G.

V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
[Crossref]

A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, V. P. Korolkov, A. A. Kharissov, V. V. Cherkashin, V. P. Kiryanov, A. V. Kiryanov, S. A. Kokarev, and A. G. Verhoglyad, “Polar coordinate laser pattern generator for fabrication of diffractive optical elements with arbitrary structure,” Appl. Opt. 38(8), 1295–1301 (1999).
[Crossref]

Raciukaitis, G.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip microstructures and their use in the material treatment,” J. Laser Micro/Nanoeng. 11(3), 352–356 (2016).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref]

E. Molotokaite, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

Romanato, F.

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref]

Rubin, N. A.

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, “Arbitrary spin-to–orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Ruffato, G.

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref]

Sametov, A. R.

V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
[Crossref]

Savtchenko, S.

S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
[Crossref]

S. Metev, S. Savtchenko, and K. Stamenov, “Pattern generation by laser-induced oxidation of thin metal films (microcircuit fabrication),” J. Phys. D: Appl. Phys. 13(4), L75–L76 (1980).
[Crossref]

Shakhno, E.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

E. Shakhno, D. Sinev, and A. Kulazhkin, “Features of laser oxidation of thin films of titanium,” J. Opt. Technol. 81(5), 298–302 (2014).
[Crossref]

V. Veiko, E. Shakhno, A. Poleshchuk, V. Korolkov, and V. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
[Crossref]

Shakhno, E. A.

V. P. Veiko, E. A. Shakhno, and D. A. Sinev, “Laser thermochemical writing: pursuing the resolution,” Opt. Quantum Electron. 48(6), 322 (2016).
[Crossref]

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
[Crossref]

Shandibina, G.

S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
[Crossref]

Shi, L.

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Sinev, D.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

E. Shakhno, D. Sinev, and A. Kulazhkin, “Features of laser oxidation of thin films of titanium,” J. Opt. Technol. 81(5), 298–302 (2014).
[Crossref]

Sinev, D. A.

V. P. Veiko, E. A. Shakhno, and D. A. Sinev, “Laser thermochemical writing: pursuing the resolution,” Opt. Quantum Electron. 48(6), 322 (2016).
[Crossref]

Stamenov, K.

S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
[Crossref]

S. Metev, S. Savtchenko, and K. Stamenov, “Pattern generation by laser-induced oxidation of thin metal films (microcircuit fabrication),” J. Phys. D: Appl. Phys. 13(4), L75–L76 (1980).
[Crossref]

Stankevicius, E.

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip microstructures and their use in the material treatment,” J. Laser Micro/Nanoeng. 11(3), 352–356 (2016).
[Crossref]

E. Stankevičius, M. Garliauskas, M. Gedvilas, and G. Račiukaitis, “Bessel-like beam array formation by periodical arrangement of the polymeric round-tip microstructures,” Opt. Express 23(22), 28557–28566 (2015).
[Crossref]

Stringer, J.

J. Stringer, “The oxidation of titanium in oxygen at high temperatures,” Acta Metall. 8(11), 758–766 (1960).
[Crossref]

Veiko, V.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

V. Veiko, M. Jarchuk, and A. Ivanov, “Diffusionless oxidation and structure modification of thin Cr films by the action of ultrashort laser pulses,” Laser Phys. 22(8), 1310–1316 (2012).
[Crossref]

V. Veiko, E. Shakhno, A. Poleshchuk, V. Korolkov, and V. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
[Crossref]

S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
[Crossref]

Veiko, V. P.

V. P. Veiko, E. A. Shakhno, and D. A. Sinev, “Laser thermochemical writing: pursuing the resolution,” Opt. Quantum Electron. 48(6), 322 (2016).
[Crossref]

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
[Crossref]

V. P. Veiko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical action of laser radiation,” Sov. Phys. Doklady 18, 83–85 (1973).

Verhoglyad, A. G.

Voisiat, B.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Wang, E.

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Xie, C.

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Yakovlev, E. B.

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

Yarchuk, M. V.

V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
[Crossref]

Ye, T.

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Zakoldaev, R.

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Zhang, M.

W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl. Phys. A 66(6), 621–627 (1998).
[Crossref]

Zhu, X.

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Acta Metall. (1)

J. Stringer, “The oxidation of titanium in oxygen at high temperatures,” Acta Metall. 8(11), 758–766 (1960).
[Crossref]

Adv. Opt. Mater. (1)

E. Wang, L. Shi, J. Niu, Y. Hua, H. Li, X. Zhu, C. Xie, and T. Ye, “Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments,” Adv. Opt. Mater. 7(8), 1801415 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. A (1)

W. Ma, Z. Lu, and M. Zhang, “Investigation of structural transformations in nanophase titanium dioxide by Raman spectroscopy,” Appl. Phys. A 66(6), 621–627 (1998).
[Crossref]

Appl. Phys. Lett. (1)

R. Merlin and T. Perry, “Growth of amorphous Ti2O3 layers by laser-induced oxidation,” Appl. Phys. Lett. 45(8), 852–853 (1984).
[Crossref]

IEEE J. Quantum Electron. (1)

S. Metev, S. Savtchenko, K. Stamenov, V. Veiko, G. Kotov, and G. Shandibina, “Thermochemical action of laser radiation on thin metal films,” IEEE J. Quantum Electron. 17(10), 2004–2007 (1981).
[Crossref]

J. Laser Micro/Nanoeng. (3)

E. Stankevicius, M. Garliauskas, and G. Raciukaitis, “Bessel-like beam array generation using round-tip microstructures and their use in the material treatment,” J. Laser Micro/Nanoeng. 11(3), 352–356 (2016).
[Crossref]

E. Molotokaite, M. Gedvilas, G. Raciukaitis, and V. Girdauskas, “Picosecond laser beam interference ablation of thin metal films on glass substrate,” J. Laser Micro/Nanoeng. 5(1), 74–79 (2010).
[Crossref]

V. Veiko, E. Shakhno, A. Poleshchuk, V. Korolkov, and V. Matyzhonok, “Local laser oxidation of thin metal films: ultra-resolution in theory and in practice,” J. Laser Micro/Nanoeng. 3(3), 201–205 (2008).
[Crossref]

J. Opt. Technol. (1)

J. Phys. D: Appl. Phys. (1)

S. Metev, S. Savtchenko, and K. Stamenov, “Pattern generation by laser-induced oxidation of thin metal films (microcircuit fabrication),” J. Phys. D: Appl. Phys. 13(4), L75–L76 (1980).
[Crossref]

Laser Phys. (1)

V. Veiko, M. Jarchuk, and A. Ivanov, “Diffusionless oxidation and structure modification of thin Cr films by the action of ultrashort laser pulses,” Laser Phys. 22(8), 1310–1316 (2012).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (1)

V. P. Veiko, E. A. Shakhno, and D. A. Sinev, “Laser thermochemical writing: pursuing the resolution,” Opt. Quantum Electron. 48(6), 322 (2016).
[Crossref]

Proc. Natl. Acad. Sci. (1)

R. C. Devlin, M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, “Broadband high-efficiency dielectric metasurfaces for the visible spectrum,” Proc. Natl. Acad. Sci. 113(38), 10473–10478 (2016).
[Crossref]

Quantum Electron. (2)

V. P. Veiko, V. P. Korol’kov, A. G. Poleshchuk, A. R. Sametov, E. A. Shakhno, and M. V. Yarchuk, “Study of the spatial resolution of laser thermochemical technology for recording diffraction microstructures,” Quantum Electron. 41(7), 631–636 (2011).
[Crossref]

V. P. Veiko, E. A. Shakhno, and E. B. Yakovlev, “Effective time of thermal effect of ultrashort laser pulses on dielectrics,” Quantum Electron. 44(4), 322–324 (2014).
[Crossref]

Sci. Rep. (1)

G. Ruffato, M. Massari, and F. Romanato, “Diffractive optics for combined spatial- and mode- division demultiplexing of optical vortices: design, fabrication and optical characterization,” Sci. Rep. 6(1), 24760 (2016).
[Crossref]

Science (1)

R. C. Devlin, A. Ambrosio, N. A. Rubin, J. B. Mueller, and F. Capasso, “Arbitrary spin-to–orbital angular momentum conversion of light,” Science 358(6365), 896–901 (2017).
[Crossref]

Sov. Phys. Doklady (1)

V. P. Veiko, G. A. Kotov, M. N. Libenson, and M. N. Nikitin, “Thermochemical action of laser radiation,” Sov. Phys. Doklady 18, 83–85 (1973).

Thin Solid Films (1)

M. Gedvilas, B. Voisiat, S. Indrišiūnas, G. Račiukaitis, V. Veiko, R. Zakoldaev, D. Sinev, and E. Shakhno, “Thermo-chemical microstructuring of thin metal films using multi-beam interference by short (nano-& picosecond) laser pulses,” Thin Solid Films 634, 134–140 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.


Figures (6)

Fig. 1.
Fig. 1. Schematical view of the laser setup for two-beam interference registration on Ti film (a). Macro photo of the irradiated sample in regimes of ablation and oxidation of Ti film (b). Scale bar is 300 µm.
Fig. 2.
Fig. 2. The optical microscope images (made in reflection (a) and transmission (b) mode) of periodical structures after the picosecond laser multi-beam interference irradiation (pulse energy in the range 0.1 < Ep < 0.2 mJ). Low-contrast structures registered on Ti surface by a single-pulse action (a). Multi-pulse action (10,000 pulses per region) allowed to register transparent structures (b). The scale bar is 2 µm.
Fig. 3.
Fig. 3. Optical profilometry investigation with the corresponding fragment of a two-dimensional profile (in accordance with “profile”) of the periodical structures registered on titanium film by two-beams interference field in the oxidation regime: single-pulse (a) and 10,000 pulses (Ep = 0.1 mJ) (b) action.
Fig. 4.
Fig. 4. The Raman spectra of the laser irradiation regions in the ablation (a) and oxidation (b) regimes, formed by 10,000 pulses with Ep = 0.22 mJ and Ep = 0.1 mJ, respectively.
Fig. 5.
Fig. 5. Spatial distribution of the oxide layer thickness on titanium film after exposure with 1, 10, 100, and 10,000 laser pulses of various energies.
Fig. 6.
Fig. 6. Influence of the number of pulses (Emax = 8 mJ) on geometrical (a) and optical (b) properties of structures.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

q ( x ) = q 0 [ 1 + cos ( 2 π x d ) ] ,
T h e a t = q ( x ) A ( x ) t ρ c h ( 1 1 + β t )
β = π 2 ρ Π c Π a Π ρ c h
d H d t = B H exp ( T a T ) ,
t e T max 2 T a { 1 T | t 0 0 + 1 | T | | t 0 + 0 } ,
H = [ 2 B exp ( T a / T a T M T M ) ] 1 / 1 2 2 t e .