Abstract

Strain sensing was demonstrated by utilizing electrically conductive silicon-carbide (β-SiC) fabricated by femtosecond-laser-based direct modification of polydimethylsiloxane (PDMS). Depending on the laser scanning direction used for the fabrication procedure, the fabricated structures showed different sensitivity to strain and this difference was discussed by observing the surface morphology at various bending radii using scanning electron microscopy (SEM). The change in electrical conductance at the flat state after repeated bending was also investigated. Furthermore, preliminary demonstration of human motion sensing was performed using the fabricated structures. The presented method will open doors to novel electronic device applications using PDMS.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Stretchable photo sensor using perylene/graphene composite on ridged polydimethylsiloxane substrate

Shawkat Ali, Jinho Bae, and Chong Hyun Lee
Opt. Express 23(24) 30583-30591 (2015)

Silicon three-dimensional structures fabricated by femtosecond laser modification with dry etching

Xue-Qing Liu, Lei Yu, Zhuo-Chen Ma, and Qi-Dai Chen
Appl. Opt. 56(8) 2157-2161 (2017)

SiO2-based nonplanar structures fabricated using femtosecond laser lithography

Hiroaki Nishiyama, Mizue Mizoshiri, Toshio Kawahara, Junji Nishii, and Yoshinori Hirata
Opt. Express 16(22) 17288-17294 (2008)

References

  • View by:
  • |
  • |
  • |

  1. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
    [Crossref]
  2. L. M. Castano and A. B. Flatau, “Smart fabric sensors and e-textile technologies: A review,” Smart Mater. Struct. 23(5), 053001 (2014).
    [Crossref]
  3. I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct. 15(3), 737–748 (2006).
    [Crossref]
  4. Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromech. Microeng. 20(12), 125029 (2010).
    [Crossref]
  5. M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
    [Crossref]
  6. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
    [Crossref]
  7. T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
    [Crossref]
  8. P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
    [Crossref]
  9. T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
    [Crossref]
  10. L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
    [Crossref]
  11. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire – elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
    [Crossref]
  12. Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
    [Crossref]
  13. C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
    [Crossref]
  14. Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
    [Crossref]
  15. S. Yao and Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale 6(4), 2345–2352 (2014).
    [Crossref]
  16. J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
    [Crossref]
  17. L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
    [Crossref]
  18. H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
    [Crossref]
  19. J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
    [Crossref]
  20. S. Luo, P. T. Hoang, and T. Liu, “Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays,” Carbon 96, 522–531 (2016).
    [Crossref]
  21. R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
    [Crossref]
  22. Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
    [Crossref]
  23. Y. Nakajima, S. Hayashi, A. Katayama, N. Nedyalkov, and M. Terakawa, “Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide,” Nanomaterials 8(7), 558 (2018).
    [Crossref]
  24. M. G. Kang, C. Kim, Y. J. Lee, S. Y. Kim, and H. Lee, “Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility,” Opt. Laser Technol. 82, 183–190 (2016).
    [Crossref]
  25. K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
    [Crossref]

2019 (2)

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
[Crossref]

2018 (1)

Y. Nakajima, S. Hayashi, A. Katayama, N. Nedyalkov, and M. Terakawa, “Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide,” Nanomaterials 8(7), 558 (2018).
[Crossref]

2017 (2)

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

2016 (3)

M. G. Kang, C. Kim, Y. J. Lee, S. Y. Kim, and H. Lee, “Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility,” Opt. Laser Technol. 82, 183–190 (2016).
[Crossref]

S. Luo, P. T. Hoang, and T. Liu, “Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays,” Carbon 96, 522–531 (2016).
[Crossref]

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

2015 (2)

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref]

K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
[Crossref]

2014 (8)

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire – elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref]

S. Yao and Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale 6(4), 2345–2352 (2014).
[Crossref]

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

L. M. Castano and A. B. Flatau, “Smart fabric sensors and e-textile technologies: A review,” Smart Mater. Struct. 23(5), 053001 (2014).
[Crossref]

2013 (1)

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

2012 (1)

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

2011 (2)

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

2010 (1)

Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromech. Microeng. 20(12), 125029 (2010).
[Crossref]

2006 (1)

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct. 15(3), 737–748 (2006).
[Crossref]

2004 (1)

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
[Crossref]

Amjadi, M.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire – elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref]

Backes, C.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Bae, J.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Bérard, P.

Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromech. Microeng. 20(12), 125029 (2010).
[Crossref]

Boland, C. S.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Castano, L. M.

L. M. Castano and A. B. Flatau, “Smart fabric sensors and e-textile technologies: A review,” Smart Mater. Struct. 23(5), 053001 (2014).
[Crossref]

Chen, W.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Chen, Y.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Chen, Z.

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

Cho, H.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Chung, D.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Coleman, J. N.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Cui, Y.

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

Dai, K.

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Dalton, A. B.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Deng, H.

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

Duane, S.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Flatau, A. B.

L. M. Castano and A. B. Flatau, “Smart fabric sensors and e-textile technologies: A review,” Smart Mater. Struct. 23(5), 053001 (2014).
[Crossref]

Fu, Q.

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

Futaba, D. N.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

Gao, Y.

Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
[Crossref]

Gong, S.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Hata, K.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

Hayamizu, Y.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

Hayashi, S.

Y. Nakajima, S. Hayashi, A. Katayama, N. Nedyalkov, and M. Terakawa, “Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide,” Nanomaterials 8(7), 558 (2018).
[Crossref]

Hoang, P. T.

S. Luo, P. T. Hoang, and T. Liu, “Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays,” Carbon 96, 522–531 (2016).
[Crossref]

Hou, M. T.

K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
[Crossref]

Huang, C.

K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
[Crossref]

Iba, S.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
[Crossref]

Im, J.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Izadi-Najafabadi, A.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

Jeon, S.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Jeong, U.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Ji, M.

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

Jiang, X.

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Ju, Z.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

Jurewicz, I.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Kang, I.

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct. 15(3), 737–748 (2006).
[Crossref]

Kang, M. G.

M. G. Kang, C. Kim, Y. J. Lee, S. Y. Kim, and H. Lee, “Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility,” Opt. Laser Technol. 82, 183–190 (2016).
[Crossref]

Kashyap, K.

K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
[Crossref]

Katayama, A.

Y. Nakajima, S. Hayashi, A. Katayama, N. Nedyalkov, and M. Terakawa, “Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide,” Nanomaterials 8(7), 558 (2018).
[Crossref]

Kato, Y.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
[Crossref]

Kawaguchi, H.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
[Crossref]

Khan, U.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Kim, C.

M. G. Kang, C. Kim, Y. J. Lee, S. Y. Kim, and H. Lee, “Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility,” Opt. Laser Technol. 82, 183–190 (2016).
[Crossref]

Kim, J. H.

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct. 15(3), 737–748 (2006).
[Crossref]

Kim, K.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Kim, S. Y.

M. G. Kang, C. Kim, Y. J. Lee, S. Y. Kim, and H. Lee, “Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility,” Opt. Laser Technol. 82, 183–190 (2016).
[Crossref]

Kolesky, D. B.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

Kramer, R.

Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromech. Microeng. 20(12), 125029 (2010).
[Crossref]

Kumar, A.

K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
[Crossref]

Lao, J.

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Lee, H.

M. G. Kang, C. Kim, Y. J. Lee, S. Y. Kim, and H. Lee, “Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility,” Opt. Laser Technol. 82, 183–190 (2016).
[Crossref]

Lee, S.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire – elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref]

Lee, Y. J.

M. G. Kang, C. Kim, Y. J. Lee, S. Y. Kim, and H. Lee, “Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility,” Opt. Laser Technol. 82, 183–190 (2016).
[Crossref]

Lewis, J. A.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

Li, Q.

Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
[Crossref]

Li, X.

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

Li, Z.

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Lin, J.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

Lin, L.

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

Lin, S.

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Lin, Y.

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
[Crossref]

Liu, C.

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Liu, S.

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

Liu, T.

S. Luo, P. T. Hoang, and T. Liu, “Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays,” Carbon 96, 522–531 (2016).
[Crossref]

Liu, Y.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Long, M.

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

Lu, Y.

Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
[Crossref]

Luo, N.

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

Luo, S.

S. Luo, P. T. Hoang, and T. Liu, “Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays,” Carbon 96, 522–531 (2016).
[Crossref]

Majidi, C.

Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromech. Microeng. 20(12), 125029 (2010).
[Crossref]

McCauley, J.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Mengüç, Y.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

Mi, W.

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

Min, Y.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Muth, J. T.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

Nakajima, Y.

Y. Nakajima, S. Hayashi, A. Katayama, N. Nedyalkov, and M. Terakawa, “Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide,” Nanomaterials 8(7), 558 (2018).
[Crossref]

Nedyalkov, N.

Y. Nakajima, S. Hayashi, A. Katayama, N. Nedyalkov, and M. Terakawa, “Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide,” Nanomaterials 8(7), 558 (2018).
[Crossref]

O’Neill, A.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Ochoa, M.

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref]

Pang, Y.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

Park, I.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire – elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref]

Park, J.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Park, M.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Park, S.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Park, Y.

Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromech. Microeng. 20(12), 125029 (2010).
[Crossref]

Peng, Z.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

Pichitpajongkit, A.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire – elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref]

Rahimi, R.

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref]

Ren, T.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

Ruiz-Zepeda, F.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

Ryu, S.

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire – elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref]

Sakurai, T.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
[Crossref]

Samuel, E. L. G.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

Schulz, M. J.

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct. 15(3), 737–748 (2006).
[Crossref]

Schwalb, W.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Sekitani, T.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
[Crossref]

Sha, J.

Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
[Crossref]

Shanker, R.

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Shanov, V.

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct. 15(3), 737–748 (2006).
[Crossref]

Shen, C.

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Shi, D.

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct. 15(3), 737–748 (2006).
[Crossref]

Shi, J.

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Shi, Z.

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

Shim, M.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Shin, M.

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Shirinzadeh, B.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Shu, Y.

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

Si, J.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Someya, T.

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
[Crossref]

Tang, Y.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Tao, L.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

Terakawa, M.

Y. Nakajima, S. Hayashi, A. Katayama, N. Nedyalkov, and M. Terakawa, “Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide,” Nanomaterials 8(7), 558 (2018).
[Crossref]

Tian, H.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

Tour, J. M.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

Truby, R. L.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

Vogt, D. M.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

Wang, D.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

Wang, E.

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

Wang, N.

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Wang, Y.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

Wang, Z.

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

Wei, X.

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Wood, R. J.

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromech. Microeng. 20(12), 125029 (2010).
[Crossref]

Wu, R.

Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
[Crossref]

Xie, D.

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

Xu, J.

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

Xuan, F.

Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
[Crossref]

Yacaman, M. J.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

Yakobson, B. I.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

Yamada, T.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

Yamamoto, Y.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

Yang, R.

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

Yang, T.

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Yang, Y.

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

Yao, S.

S. Yao and Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale 6(4), 2345–2352 (2014).
[Crossref]

Ye, R.

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

Yeh, J. A.

K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
[Crossref]

Yomogida, Y.

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

Yu, W.

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref]

Zhai, W.

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Zhan, P.

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Zhang, G.

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

Zhang, L.

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

Zhang, Q.

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

Zhao, N.

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

Zhen, Z.

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Zheng, G.

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Zhu, H.

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Zhu, Y.

S. Yao and Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale 6(4), 2345–2352 (2014).
[Crossref]

Ziaie, B.

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref]

ACS Appl. Mater. Interfaces (2)

L. Lin, S. Liu, Q. Zhang, X. Li, M. Ji, H. Deng, and Q. Fu, “Towards tunable sensitivity of electrical property to strain for conductive polymer composites based on thermoplastic elastomer,” ACS Appl. Mater. Interfaces 5(12), 5815–5824 (2013).
[Crossref]

R. Rahimi, M. Ochoa, W. Yu, and B. Ziaie, “Highly stretchable and sensitive unidirectional strain sensor via laser carbonization,” ACS Appl. Mater. Interfaces 7(8), 4463–4470 (2015).
[Crossref]

ACS Nano (4)

M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, and I. Park, “Highly stretchable and sensitive strain sensor based on silver nanowire – elastomer nanocomposite,” ACS Nano 8(5), 5154–5163 (2014).
[Crossref]

Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J. Xu, “Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures,” ACS Nano 11(5), 4507–4513 (2017).
[Crossref]

C. S. Boland, U. Khan, C. Backes, A. O’Neill, J. McCauley, S. Duane, R. Shanker, Y. Liu, I. Jurewicz, A. B. Dalton, and J. N. Coleman, “Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites,” ACS Nano 8(9), 8819–8830 (2014).
[Crossref]

Y. Wang, R. Yang, Z. Shi, L. Zhang, D. Shi, E. Wang, and G. Zhang, “Super-elastic graphene ripples for flexible strain sensors,” ACS Nano 5(5), 3645–3650 (2011).
[Crossref]

Adv. Funct. Mater. (1)

Y. Gao, Q. Li, R. Wu, J. Sha, Y. Lu, and F. Xuan, “Laser direct writing of ultrahigh sensitive SiC-based strain sensor arrays on elastomer towards electronic skins,” Adv. Funct. Mater. 29, 1806786 (2019).
[Crossref]

Adv. Mater. (1)

J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, and J. A. Lewis, “Embedded 3D printing of strain sensors within highly stretchable elastomers,” Adv. Mater. 26(36), 6307–6312 (2014).
[Crossref]

Carbon (1)

S. Luo, P. T. Hoang, and T. Liu, “Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays,” Carbon 96, 522–531 (2016).
[Crossref]

J. Micromech. Microeng. (1)

Y. Park, C. Majidi, R. Kramer, P. Bérard, and R. J. Wood, “Hyperelastic pressure sensing with a liquid-embedded elastomer,” J. Micromech. Microeng. 20(12), 125029 (2010).
[Crossref]

Mater. Horiz. (1)

T. Yang, X. Li, X. Jiang, S. Lin, J. Lao, J. Shi, Z. Zhen, Z. Li, and H. Zhu, “Structural engineering of gold thin films with channel cracks for ultrasensitive strain sensing,” Mater. Horiz. 3(3), 248–255 (2016).
[Crossref]

Mater. Lett. (1)

P. Zhan, W. Zhai, N. Wang, X. Wei, G. Zheng, K. Dai, C. Liu, and C. Shen, “Electrically conductive carbon black/electrospun polyamide 6/poly (vinyl alcohol) composite based strain sensor with ultrahigh sensitivity and favorable repeatability,” Mater. Lett. 236, 60–63 (2019).
[Crossref]

Nanomaterials (1)

Y. Nakajima, S. Hayashi, A. Katayama, N. Nedyalkov, and M. Terakawa, “Femtosecond laser-based modification of PDMS to electrically conductive silicon carbide,” Nanomaterials 8(7), 558 (2018).
[Crossref]

Nanoscale (3)

L. Tao, D. Wang, H. Tian, Z. Ju, Y. Liu, Y. Pang, Y. Chen, Y. Yang, and T. Ren, “Self-adapted and tunable graphene strain sensors for detecting both subtle and large human motions,” Nanoscale 9(24), 8266–8273 (2017).
[Crossref]

H. Tian, Y. Shu, Y. Cui, W. Mi, Y. Yang, D. Xie, and T. Ren, “Scalable fabrication of high-performance and flexible graphene strain sensors,” Nanoscale 6(2), 699–705 (2014).
[Crossref]

S. Yao and Y. Zhu, “Wearable multifunctional sensors using printed stretchable conductors made of silver nanowires,” Nanoscale 6(4), 2345–2352 (2014).
[Crossref]

Nat. Commun. (2)

J. Lin, Z. Peng, Y. Liu, F. Ruiz-Zepeda, R. Ye, E. L. G. Samuel, M. J. Yacaman, B. I. Yakobson, and J. M. Tour, “Laser-induced porous graphene films from commercial polymers,” Nat. Commun. 5(1), 5714 (2014).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Chen, “A wearable and highly sensitive pressure sensor with ultrathin gold nanowires,” Nat. Commun. 5(1), 3132 (2014).
[Crossref]

Nat. Nanotechnol. (2)

T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, and K. Hata, “A stretchable carbon nanotube strain sensor for human-motion detection,” Nat. Nanotechnol. 6(5), 296–301 (2011).
[Crossref]

M. Park, J. Im, M. Shin, Y. Min, J. Park, H. Cho, S. Park, M. Shim, S. Jeon, D. Chung, J. Bae, J. Park, U. Jeong, and K. Kim, “Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres,” Nat. Nanotechnol. 7(12), 803–809 (2012).
[Crossref]

Opt. Laser Technol. (1)

M. G. Kang, C. Kim, Y. J. Lee, S. Y. Kim, and H. Lee, “Picosecond UV laser induced scribing of polyethylene terephthalate (PET) films for the enhancement of their flexibility,” Opt. Laser Technol. 82, 183–190 (2016).
[Crossref]

Proc. Natl. Acad. Sci. (1)

T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, “A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications,” Proc. Natl. Acad. Sci. 101(27), 9966–9970 (2004).
[Crossref]

Sci. Rep. (1)

K. Kashyap, A. Kumar, C. Huang, Y. Lin, M. T. Hou, and J. A. Yeh, “Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture,” Sci. Rep. 5(1), 10869 (2015).
[Crossref]

Smart Mater. Struct. (2)

L. M. Castano and A. B. Flatau, “Smart fabric sensors and e-textile technologies: A review,” Smart Mater. Struct. 23(5), 053001 (2014).
[Crossref]

I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, “A carbon nanotube strain sensor for structural health monitoring,” Smart Mater. Struct. 15(3), 737–748 (2006).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Schematic of the two 8 mm x 3 mm structures fabricated with different laser scanning directions. (a) S1 was fabricated by scanning in the longitudinal direction (8 mm) and (b) S2 was fabricated by scanning in the transversal direction (3 mm). (c) Schematic of the fabricated structures with gold electrodes on both sides.
Fig. 2.
Fig. 2. SEM, (a), and cross-sectional SEM, (b) and (c), images of the fabricated structures on a PDMS substrate. (b) Cross-section of the structures when cut perpendicular to the laser scanning direction, and (c) cross-section of the structures when cut parallel to the laser scanning direction. The green double-headed arrow in (a) indicates the laser scanning direction.
Fig. 3.
Fig. 3. Electrical conductance measurements of the fabricated structures, S1 and S2. (a) I-V curve of the fabricated structures at the flat state. (b) ${\rm{R}}/{\rm{R}}_{0}$ of the fabricated structures for various bending radii.
Fig. 4.
Fig. 4. SEM images of the surface morphology of the fabricated structures at various bending radii. S1: (a) 134 mm, (b) 83 mm, (c) 38 mm, and (d) 19 mm. S2: (f) 134 mm, (g) 83 mm, (h) 38 mm, and (i) 19 mm. (e)(j) SEM images of the surface when returned to the flat state for S1 and S2, respectively. Cracks can be observed on the surface in (c) and (d), indicated by the red arrows. The green double-headed arrows indicate the laser scanning direction.
Fig. 5.
Fig. 5. Change in flat-state electrical resistance of the fabricated structures, S1 and S2, with repeated bending (10 cycles) to different bending radii (35 mm, 83 mm, 134 mm).
Fig. 6.
Fig. 6. LED, connected to the fabricated structures, showing different brightness at various bending radii: (a) Flat state, (b) 159 mm, (c) 83 mm, (d) 38 mm, and (e) 11 mm. Prototype strain sensor using fabricated structures, (f), displaying changes in brightness with applied strain: (g) non-strained state and (h) strained state.

Metrics