Abstract

The suitability for optical amplification in the C + L band of a new zirconia-yttria–alumina-baria silica glass fiber is evaluated. The gain and noise figure are characterized using this fiber as the gain medium. A flat gain of 25 dB with a variation of less than 3 dB in the range of 1525 to 1565 nm with a significantly low noise figure less than 4.2 dB at small signal input power, are achieved using a short length of fiber with only 1 m. The performance of the amplifier can be improved with higher pump powers and longer fiber lengths.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Brillouin spectroscopy of a novel baria-doped silica glass optical fiber

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato
Opt. Express 21(9) 10924-10941 (2013)

Fabrication and application of zirconia-erbium doped fibers

H. Ahmad, K. Thambiratnam, M. C. Paul, A. Z. Zulkifli, Z. A. Ghani, and S. W. Harun
Opt. Mater. Express 2(12) 1690-1701 (2012)

Bismuth-doped hafnia-yttria-alumina-silica based fiber: spectral characterization in NIR to mid-IR

A. V. Kir’yanov, S. H. Siddiki, Y. O. Barmenkov, D. Dutta, A. Dhar, S. Das, and M. C. Paul
Opt. Mater. Express 7(10) 3548-3560 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Foschini and I. M. I. Habbab, “Capacity of broadcast channels in the near-future CATV architecture,” J. Lightwave Technol. 13(3), 507–516 (1995).
    [Crossref]
  2. T. Otani, K. Goto, T. Kawazawa, H. Abe, and M. Tanaka, “Effect of span loss increase on the optically amplified communication system,” J. Lightwave Technol. 15(5), 737–742 (1997).
    [Crossref]
  3. C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, and P. C. Becker, “2-Gbit/s signal amplification at lambda = 1.53 mu m in an erbium-doped single-mode fiber amplifier,” J. Lightwave Technol. 7(4), 651–656 (1989).
    [Crossref]
  4. E. Desurvire, C. R. Giles, and J. R. Simpson, “Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at lambda = 1.53 µm,” J. Lightwave Technol. 7(12), 2095–2104 (1989).
    [Crossref]
  5. O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
    [Crossref]
  6. M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
    [Crossref]
  7. A. M. Vengsarkar, N. S. Bergano, C. R. Davidson, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336 (1996).
    [Crossref]
  8. H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 10(6), 790–792 (1998).
    [Crossref]
  9. B. Wang, G. Pub, R. Osnato, and B. Palsdottir, “Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum,” Proc. SPIE 5280, 161 (2004).
    [Crossref]
  10. M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
    [Crossref]
  11. A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
    [Crossref]
  12. E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amsterdam, Neth.) 5(3), 159–167 (1996).
    [Crossref]
  13. D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53(5), 2334–2344 (1996).
    [Crossref]
  14. V. C. Costa, M. J. Lochhead, and K. L. Bray, “Fluorescence Line-Narrowing Study of Eu 3+ -Doped Sol−Gel Silica: Effect of Modifying Cations on the Clustering of Eu3+,” Chem. Mater. 8(3), 783–790 (1996).
    [Crossref]
  15. M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett. 35(17), 2882 (2010).
    [Crossref]
  16. L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
    [Crossref]
  17. A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
    [Crossref]
  18. L. Yuliantini, M. Djamal, R. Hidayat, K. Boonin, and J. Kaewkhao, Spectroscopy Properties of Er 3+ Ion Doped ZnO-Al2O3-BaO-B2O3 Glass for Photonic Application (Wiley,2018), Vol. 5.
  19. M. Pokhrel, G. A. Kumar, S. Balaji, R. Debnath, and D. K. Sardar, “Optical characterization of Er 3 þ and Yb 3 þ co-doped barium fluorotellurite glass,” J. Lumin. 132(8), 1910–1916 (2012).
    [Crossref]
  20. M. Pal, M. C. Paul, S. K. Bhadra, S. Das, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Study of Multichannel Amplification in Erbium-Doped Zirconia-Yttria- Alumino-Silicate Fiber,” J. Lightwave Technol. 29(14), 2109–2115 (2011).
    [Crossref]
  21. M. C. Paul, S. Bysakh, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Nano-Engineered Yb 2 O 3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review,” Sci. Adv. Mater. 4(2), 292–321 (2012).
    [Crossref]
  22. D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
    [Crossref]
  23. S. X. Shen and A. Jha, “Raman Spectroscopic and DTA Studies of TeO2-ZnO-Na2O Tellurite Glasses,” Adv. Mater. Res. 39–40, 159–164 (2008).
    [Crossref]
  24. N. H. Ray, “Composition—property relationships in inorganic oxide glasses,” J. Non-Cryst. Solids 15(3), 423–434 (1974).
    [Crossref]

2016 (1)

A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
[Crossref]

2015 (1)

D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
[Crossref]

2012 (2)

M. C. Paul, S. Bysakh, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Nano-Engineered Yb 2 O 3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review,” Sci. Adv. Mater. 4(2), 292–321 (2012).
[Crossref]

M. Pokhrel, G. A. Kumar, S. Balaji, R. Debnath, and D. K. Sardar, “Optical characterization of Er 3 þ and Yb 3 þ co-doped barium fluorotellurite glass,” J. Lumin. 132(8), 1910–1916 (2012).
[Crossref]

2011 (1)

2010 (1)

2008 (1)

S. X. Shen and A. Jha, “Raman Spectroscopic and DTA Studies of TeO2-ZnO-Na2O Tellurite Glasses,” Adv. Mater. Res. 39–40, 159–164 (2008).
[Crossref]

2007 (1)

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

2004 (1)

B. Wang, G. Pub, R. Osnato, and B. Palsdottir, “Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum,” Proc. SPIE 5280, 161 (2004).
[Crossref]

2003 (1)

L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
[Crossref]

2000 (1)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

1998 (1)

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

1997 (1)

T. Otani, K. Goto, T. Kawazawa, H. Abe, and M. Tanaka, “Effect of span loss increase on the optically amplified communication system,” J. Lightwave Technol. 15(5), 737–742 (1997).
[Crossref]

1996 (5)

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

A. M. Vengsarkar, N. S. Bergano, C. R. Davidson, J. R. Pedrazzani, J. B. Judkins, and P. J. Lemaire, “Long-period fiber-grating-based gain equalizers,” Opt. Lett. 21(5), 336 (1996).
[Crossref]

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amsterdam, Neth.) 5(3), 159–167 (1996).
[Crossref]

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53(5), 2334–2344 (1996).
[Crossref]

V. C. Costa, M. J. Lochhead, and K. L. Bray, “Fluorescence Line-Narrowing Study of Eu 3+ -Doped Sol−Gel Silica: Effect of Modifying Cations on the Clustering of Eu3+,” Chem. Mater. 8(3), 783–790 (1996).
[Crossref]

1995 (1)

G. J. Foschini and I. M. I. Habbab, “Capacity of broadcast channels in the near-future CATV architecture,” J. Lightwave Technol. 13(3), 507–516 (1995).
[Crossref]

1993 (1)

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

1989 (2)

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, and P. C. Becker, “2-Gbit/s signal amplification at lambda = 1.53 mu m in an erbium-doped single-mode fiber amplifier,” J. Lightwave Technol. 7(4), 651–656 (1989).
[Crossref]

E. Desurvire, C. R. Giles, and J. R. Simpson, “Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at lambda = 1.53 µm,” J. Lightwave Technol. 7(12), 2095–2104 (1989).
[Crossref]

1974 (1)

N. H. Ray, “Composition—property relationships in inorganic oxide glasses,” J. Non-Cryst. Solids 15(3), 423–434 (1974).
[Crossref]

Abe, H.

T. Otani, K. Goto, T. Kawazawa, H. Abe, and M. Tanaka, “Effect of span loss increase on the optically amplified communication system,” J. Lightwave Technol. 15(5), 737–742 (1997).
[Crossref]

Ahmad, H.

Balaji, S.

M. Pokhrel, G. A. Kumar, S. Balaji, R. Debnath, and D. K. Sardar, “Optical characterization of Er 3 þ and Yb 3 þ co-doped barium fluorotellurite glass,” J. Lumin. 132(8), 1910–1916 (2012).
[Crossref]

Bandyopadhyay, S.

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Becker, P. C.

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, and P. C. Becker, “2-Gbit/s signal amplification at lambda = 1.53 mu m in an erbium-doped single-mode fiber amplifier,” J. Lightwave Technol. 7(4), 651–656 (1989).
[Crossref]

Bergano, N. S.

Bhadra, S. K.

M. C. Paul, S. Bysakh, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Nano-Engineered Yb 2 O 3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review,” Sci. Adv. Mater. 4(2), 292–321 (2012).
[Crossref]

M. Pal, M. C. Paul, S. K. Bhadra, S. Das, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Study of Multichannel Amplification in Erbium-Doped Zirconia-Yttria- Alumino-Silicate Fiber,” J. Lightwave Technol. 29(14), 2109–2115 (2011).
[Crossref]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett. 35(17), 2882 (2010).
[Crossref]

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Biswas, P.

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Bjarklev, A.

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

Boonin, K.

L. Yuliantini, M. Djamal, R. Hidayat, K. Boonin, and J. Kaewkhao, Spectroscopy Properties of Er 3+ Ion Doped ZnO-Al2O3-BaO-B2O3 Glass for Photonic Application (Wiley,2018), Vol. 5.

Boyland, A. J.

Bray, K. L.

V. C. Costa, M. J. Lochhead, and K. L. Bray, “Fluorescence Line-Narrowing Study of Eu 3+ -Doped Sol−Gel Silica: Effect of Modifying Cations on the Clustering of Eu3+,” Chem. Mater. 8(3), 783–790 (1996).
[Crossref]

Bysakh, S.

D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
[Crossref]

M. C. Paul, S. Bysakh, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Nano-Engineered Yb 2 O 3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review,” Sci. Adv. Mater. 4(2), 292–321 (2012).
[Crossref]

Costa, V. C.

V. C. Costa, M. J. Lochhead, and K. L. Bray, “Fluorescence Line-Narrowing Study of Eu 3+ -Doped Sol−Gel Silica: Effect of Modifying Cations on the Clustering of Eu3+,” Chem. Mater. 8(3), 783–790 (1996).
[Crossref]

Courrol, L. C.

L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
[Crossref]

Dahl-Petersen, S.

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

Das, S.

D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
[Crossref]

M. C. Paul, S. Bysakh, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Nano-Engineered Yb 2 O 3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review,” Sci. Adv. Mater. 4(2), 292–321 (2012).
[Crossref]

M. Pal, M. C. Paul, S. K. Bhadra, S. Das, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Study of Multichannel Amplification in Erbium-Doped Zirconia-Yttria- Alumino-Silicate Fiber,” J. Lightwave Technol. 29(14), 2109–2115 (2011).
[Crossref]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett. 35(17), 2882 (2010).
[Crossref]

Das Chowdhury, S.

A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
[Crossref]

Dasgupta, K.

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Davidson, C. R.

Debnath, R.

M. Pokhrel, G. A. Kumar, S. Balaji, R. Debnath, and D. K. Sardar, “Optical characterization of Er 3 þ and Yb 3 þ co-doped barium fluorotellurite glass,” J. Lumin. 132(8), 1910–1916 (2012).
[Crossref]

Debroy, R.

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Desurvire, E.

E. Desurvire, C. R. Giles, and J. R. Simpson, “Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at lambda = 1.53 µm,” J. Lightwave Technol. 7(12), 2095–2104 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, and P. C. Becker, “2-Gbit/s signal amplification at lambda = 1.53 mu m in an erbium-doped single-mode fiber amplifier,” J. Lightwave Technol. 7(4), 651–656 (1989).
[Crossref]

Dhar, A.

A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
[Crossref]

D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
[Crossref]

Djamal, M.

L. Yuliantini, M. Djamal, R. Hidayat, K. Boonin, and J. Kaewkhao, Spectroscopy Properties of Er 3+ Ion Doped ZnO-Al2O3-BaO-B2O3 Glass for Photonic Application (Wiley,2018), Vol. 5.

Dutta, D.

D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
[Crossref]

Foschini, G. J.

G. J. Foschini and I. M. I. Habbab, “Capacity of broadcast channels in the near-future CATV architecture,” J. Lightwave Technol. 13(3), 507–516 (1995).
[Crossref]

Fukumoto, M. E.

L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
[Crossref]

Giles, C. R.

E. Desurvire, C. R. Giles, and J. R. Simpson, “Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at lambda = 1.53 µm,” J. Lightwave Technol. 7(12), 2095–2104 (1989).
[Crossref]

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, and P. C. Becker, “2-Gbit/s signal amplification at lambda = 1.53 mu m in an erbium-doped single-mode fiber amplifier,” J. Lightwave Technol. 7(4), 651–656 (1989).
[Crossref]

Gill, D. M.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53(5), 2334–2344 (1996).
[Crossref]

Goto, K.

T. Otani, K. Goto, T. Kawazawa, H. Abe, and M. Tanaka, “Effect of span loss increase on the optically amplified communication system,” J. Lightwave Technol. 15(5), 737–742 (1997).
[Crossref]

Habbab, I. M. I.

G. J. Foschini and I. M. I. Habbab, “Capacity of broadcast channels in the near-future CATV architecture,” J. Lightwave Technol. 13(3), 507–516 (1995).
[Crossref]

Hamzah, A.

Harun, S. W.

Hidayat, R.

L. Yuliantini, M. Djamal, R. Hidayat, K. Boonin, and J. Kaewkhao, Spectroscopy Properties of Er 3+ Ion Doped ZnO-Al2O3-BaO-B2O3 Glass for Photonic Application (Wiley,2018), Vol. 5.

Huri, N. A. D.

Jha, A.

S. X. Shen and A. Jha, “Raman Spectroscopic and DTA Studies of TeO2-ZnO-Na2O Tellurite Glasses,” Adv. Mater. Res. 39–40, 159–164 (2008).
[Crossref]

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Judkins, J. B.

Kaewkhao, J.

L. Yuliantini, M. Djamal, R. Hidayat, K. Boonin, and J. Kaewkhao, Spectroscopy Properties of Er 3+ Ion Doped ZnO-Al2O3-BaO-B2O3 Glass for Photonic Application (Wiley,2018), Vol. 5.

Kalita, M. P.

Kanamori, T.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

Kassab, L. R. P.

L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
[Crossref]

Kawazawa, T.

T. Otani, K. Goto, T. Kawazawa, H. Abe, and M. Tanaka, “Effect of span loss increase on the optically amplified communication system,” J. Lightwave Technol. 15(5), 737–742 (1997).
[Crossref]

Kik, P. G.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amsterdam, Neth.) 5(3), 159–167 (1996).
[Crossref]

Kim, B. Y.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Kim, H. K.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Kim, H. S.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Kir’yanov, A. V.

D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
[Crossref]

Kumar, G. A.

M. Pokhrel, G. A. Kumar, S. Balaji, R. Debnath, and D. K. Sardar, “Optical characterization of Er 3 þ and Yb 3 þ co-doped barium fluorotellurite glass,” J. Lumin. 132(8), 1910–1916 (2012).
[Crossref]

Lemaire, P. J.

Lochhead, M. J.

V. C. Costa, M. J. Lochhead, and K. L. Bray, “Fluorescence Line-Narrowing Study of Eu 3+ -Doped Sol−Gel Silica: Effect of Modifying Cations on the Clustering of Eu3+,” Chem. Mater. 8(3), 783–790 (1996).
[Crossref]

Lumholt, O.

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

McCaughan, L.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53(5), 2334–2344 (1996).
[Crossref]

Morimoto, N. I.

L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
[Crossref]

Naftaly, M.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Oikawa, K.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

Osnato, R.

B. Wang, G. Pub, R. Osnato, and B. Palsdottir, “Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum,” Proc. SPIE 5280, 161 (2004).
[Crossref]

Otani, T.

T. Otani, K. Goto, T. Kawazawa, H. Abe, and M. Tanaka, “Effect of span loss increase on the optically amplified communication system,” J. Lightwave Technol. 15(5), 737–742 (1997).
[Crossref]

Pal, A.

A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
[Crossref]

Pal, M.

A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
[Crossref]

M. C. Paul, S. Bysakh, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Nano-Engineered Yb 2 O 3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review,” Sci. Adv. Mater. 4(2), 292–321 (2012).
[Crossref]

M. Pal, M. C. Paul, S. K. Bhadra, S. Das, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Study of Multichannel Amplification in Erbium-Doped Zirconia-Yttria- Alumino-Silicate Fiber,” J. Lightwave Technol. 29(14), 2109–2115 (2011).
[Crossref]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett. 35(17), 2882 (2010).
[Crossref]

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Palsdottir, B.

B. Wang, G. Pub, R. Osnato, and B. Palsdottir, “Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum,” Proc. SPIE 5280, 161 (2004).
[Crossref]

Park, N.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Paul, M. C.

A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
[Crossref]

D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
[Crossref]

M. C. Paul, S. Bysakh, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Nano-Engineered Yb 2 O 3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review,” Sci. Adv. Mater. 4(2), 292–321 (2012).
[Crossref]

M. Pal, M. C. Paul, S. K. Bhadra, S. Das, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Study of Multichannel Amplification in Erbium-Doped Zirconia-Yttria- Alumino-Silicate Fiber,” J. Lightwave Technol. 29(14), 2109–2115 (2011).
[Crossref]

M. C. Paul, S. W. Harun, N. A. D. Huri, A. Hamzah, S. Das, M. Pal, S. K. Bhadra, H. Ahmad, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Performance comparison of Zr-based and Bi-based erbium-doped fiber amplifiers,” Opt. Lett. 35(17), 2882 (2010).
[Crossref]

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Pedrazzani, J. R.

Pokhrel, M.

M. Pokhrel, G. A. Kumar, S. Balaji, R. Debnath, and D. K. Sardar, “Optical characterization of Er 3 þ and Yb 3 þ co-doped barium fluorotellurite glass,” J. Lumin. 132(8), 1910–1916 (2012).
[Crossref]

Polman, A.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amsterdam, Neth.) 5(3), 159–167 (1996).
[Crossref]

Povlsen, J. H.

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

Pub, G.

B. Wang, G. Pub, R. Osnato, and B. Palsdottir, “Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum,” Proc. SPIE 5280, 161 (2004).
[Crossref]

Rasmussen, T.

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

Ray, N. H.

N. H. Ray, “Composition—property relationships in inorganic oxide glasses,” J. Non-Cryst. Solids 15(3), 423–434 (1974).
[Crossref]

Rottwitt, K.

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

Sagawa, K.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

Sahu, J. K.

Sardar, D. K.

M. Pokhrel, G. A. Kumar, S. Balaji, R. Debnath, and D. K. Sardar, “Optical characterization of Er 3 þ and Yb 3 þ co-doped barium fluorotellurite glass,” J. Lumin. 132(8), 1910–1916 (2012).
[Crossref]

Schusler, K.

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

Sen, R.

A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
[Crossref]

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Shen, S.

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

Shen, S. X.

S. X. Shen and A. Jha, “Raman Spectroscopic and DTA Studies of TeO2-ZnO-Na2O Tellurite Glasses,” Adv. Mater. Res. 39–40, 159–164 (2008).
[Crossref]

Shimizu, M.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

Simpson, J. R.

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, and P. C. Becker, “2-Gbit/s signal amplification at lambda = 1.53 mu m in an erbium-doped single-mode fiber amplifier,” J. Lightwave Technol. 7(4), 651–656 (1989).
[Crossref]

E. Desurvire, C. R. Giles, and J. R. Simpson, “Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at lambda = 1.53 µm,” J. Lightwave Technol. 7(12), 2095–2104 (1989).
[Crossref]

Snoeks, E.

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amsterdam, Neth.) 5(3), 159–167 (1996).
[Crossref]

Sudo, S.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

Talman, J. R.

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, and P. C. Becker, “2-Gbit/s signal amplification at lambda = 1.53 mu m in an erbium-doped single-mode fiber amplifier,” J. Lightwave Technol. 7(4), 651–656 (1989).
[Crossref]

Tanaka, M.

T. Otani, K. Goto, T. Kawazawa, H. Abe, and M. Tanaka, “Effect of span loss increase on the optically amplified communication system,” J. Lightwave Technol. 15(5), 737–742 (1997).
[Crossref]

Tatumi, S. H.

L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
[Crossref]

Terunuma, Y.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

Vengsarkar, A. M.

Wang, B.

B. Wang, G. Pub, R. Osnato, and B. Palsdottir, “Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum,” Proc. SPIE 5280, 161 (2004).
[Crossref]

Wetter, N. U.

L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
[Crossref]

Wright, J. C.

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53(5), 2334–2344 (1996).
[Crossref]

Yamada, M.

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

Yoo, S.

Yuliantini, L.

L. Yuliantini, M. Djamal, R. Hidayat, K. Boonin, and J. Kaewkhao, Spectroscopy Properties of Er 3+ Ion Doped ZnO-Al2O3-BaO-B2O3 Glass for Photonic Application (Wiley,2018), Vol. 5.

Yun, S. H.

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

Adv. Mater. Res. (1)

S. X. Shen and A. Jha, “Raman Spectroscopic and DTA Studies of TeO2-ZnO-Na2O Tellurite Glasses,” Adv. Mater. Res. 39–40, 159–164 (2008).
[Crossref]

Chem. Mater. (1)

V. C. Costa, M. J. Lochhead, and K. L. Bray, “Fluorescence Line-Narrowing Study of Eu 3+ -Doped Sol−Gel Silica: Effect of Modifying Cations on the Clustering of Eu3+,” Chem. Mater. 8(3), 783–790 (1996).
[Crossref]

IEEE Photonics Technol. Lett. (2)

H. S. Kim, S. H. Yun, H. K. Kim, N. Park, and B. Y. Kim, “Actively gain-flattened erbium-doped fiber amplifier over 35 nm by using all-fiber acoustooptic tunable filters,” IEEE Photonics Technol. Lett. 10(6), 790–792 (1998).
[Crossref]

M. Yamada, T. Kanamori, Y. Terunuma, K. Oikawa, M. Shimizu, S. Sudo, and K. Sagawa, “Fluoride-based erbium-doped fiber amplifier with inherently flat gain spectrum,” IEEE Photonics Technol. Lett. 8(7), 882–884 (1996).
[Crossref]

J. Lightwave Technol. (6)

G. J. Foschini and I. M. I. Habbab, “Capacity of broadcast channels in the near-future CATV architecture,” J. Lightwave Technol. 13(3), 507–516 (1995).
[Crossref]

T. Otani, K. Goto, T. Kawazawa, H. Abe, and M. Tanaka, “Effect of span loss increase on the optically amplified communication system,” J. Lightwave Technol. 15(5), 737–742 (1997).
[Crossref]

C. R. Giles, E. Desurvire, J. R. Talman, J. R. Simpson, and P. C. Becker, “2-Gbit/s signal amplification at lambda = 1.53 mu m in an erbium-doped single-mode fiber amplifier,” J. Lightwave Technol. 7(4), 651–656 (1989).
[Crossref]

E. Desurvire, C. R. Giles, and J. R. Simpson, “Gain saturation effects in high-speed, multichannel erbium-doped fiber amplifiers at lambda = 1.53 µm,” J. Lightwave Technol. 7(12), 2095–2104 (1989).
[Crossref]

O. Lumholt, J. H. Povlsen, K. Schusler, A. Bjarklev, S. Dahl-Petersen, T. Rasmussen, and K. Rottwitt, “Quantum limited noise figure operation of high gain erbium doped fiber amplifiers,” J. Lightwave Technol. 11(8), 1344–1352 (1993).
[Crossref]

M. Pal, M. C. Paul, S. K. Bhadra, S. Das, S. Yoo, M. P. Kalita, A. J. Boyland, and J. K. Sahu, “Study of Multichannel Amplification in Erbium-Doped Zirconia-Yttria- Alumino-Silicate Fiber,” J. Lightwave Technol. 29(14), 2109–2115 (2011).
[Crossref]

J. Lumin. (2)

L. C. Courrol, L. R. P. Kassab, M. E. Fukumoto, N. U. Wetter, S. H. Tatumi, and N. I. Morimoto, “Spectroscopic properties of heavy metal oxide glasses doped with erbium,” J. Lumin. 102–103, 91–95 (2003).
[Crossref]

M. Pokhrel, G. A. Kumar, S. Balaji, R. Debnath, and D. K. Sardar, “Optical characterization of Er 3 þ and Yb 3 þ co-doped barium fluorotellurite glass,” J. Lumin. 132(8), 1910–1916 (2012).
[Crossref]

J. Non-Cryst. Solids (1)

N. H. Ray, “Composition—property relationships in inorganic oxide glasses,” J. Non-Cryst. Solids 15(3), 423–434 (1974).
[Crossref]

Opt. Lett. (2)

Opt. Mater. (Amsterdam, Neth.) (1)

E. Snoeks, P. G. Kik, and A. Polman, “Concentration quenching in erbium implanted alkali silicate glasses,” Opt. Mater. (Amsterdam, Neth.) 5(3), 159–167 (1996).
[Crossref]

Opt. Quantum Electron. (1)

M. Pal, S. Bandyopadhyay, P. Biswas, R. Debroy, M. C. Paul, R. Sen, K. Dasgupta, and S. K. Bhadra, “Study of gain flatness for multi-channel amplification in single stage EDFA for WDM applications,” Opt. Quantum Electron. 39(14), 1231–1243 (2007).
[Crossref]

Phys. Rev. B (2)

A. Jha, S. Shen, and M. Naftaly, “Structural origin of spectral broadening of 1.5-µm emission in Er3+-doped tellurite glasses,” Phys. Rev. B 62(10), 6215–6227 (2000).
[Crossref]

D. M. Gill, L. McCaughan, and J. C. Wright, “Spectroscopic site determinations in erbium-doped lithium niobate,” Phys. Rev. B 53(5), 2334–2344 (1996).
[Crossref]

Phys. Status Solidi A (2)

A. Dhar, M. C. Paul, S. Das Chowdhury, M. Pal, A. Pal, and R. Sen, “Fabrication and properties of rare-earth-doped optical fiber using barium as an alternate codopant,” Phys. Status Solidi A 213(11), 3039–3045 (2016).
[Crossref]

D. Dutta, A. Dhar, A. V. Kir’yanov, S. Das, S. Bysakh, and M. C. Paul, “Fabrication and characterization of chromium-doped nanophase separated yttria-alumina-silica glass-based optical fibers,” Phys. Status Solidi A 212, 1836–1844 (2015).
[Crossref]

Proc. SPIE (1)

B. Wang, G. Pub, R. Osnato, and B. Palsdottir, “Characterization of gain spectral variation of erbium-doped fibers codoped with aluminum,” Proc. SPIE 5280, 161 (2004).
[Crossref]

Sci. Adv. Mater. (1)

M. C. Paul, S. Bysakh, S. Das, M. Pal, S. K. Bhadra, S. Yoo, A. J. Boyland, and J. K. Sahu, “Nano-Engineered Yb 2 O 3 Doped Optical Fiber: Fabrication, Material Characterizations, Spectroscopic Properties and Lasing Characteristics: A Review,” Sci. Adv. Mater. 4(2), 292–321 (2012).
[Crossref]

Other (1)

L. Yuliantini, M. Djamal, R. Hidayat, K. Boonin, and J. Kaewkhao, Spectroscopy Properties of Er 3+ Ion Doped ZnO-Al2O3-BaO-B2O3 Glass for Photonic Application (Wiley,2018), Vol. 5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. TEM picture (a), HTEM (b) and electron diffraction pattern (c) of optical fiber preform sample.
Fig. 2.
Fig. 2. TEM picture of optical fiber sample (a), HTEM (b) and electron diffraction pattern (c).
Fig. 3.
Fig. 3. FESEM picture of optical fiber preform samples (a) without and (b) with doping of BaO.
Fig. 4.
Fig. 4. Cross sectional view of fiber (a) and elemental distribution profile along the core diameter of fiber (b).
Fig. 5.
Fig. 5. Attenuation spectrum of ZYAB-EDF.
Fig. 6.
Fig. 6. Emission spectra of various lengths of ZYAB-EDF under 980 nm laser excitation with powers of 100 mW (a) and 398 mW (b).
Fig. 7.
Fig. 7. Emission spectra of various lengths of I-25 fiber under 980 nm laser excitation with powers of 100 mW (a) and 398 mW (b).
Fig. 8.
Fig. 8. . Experimental setup scheme of the optical amplifier.
Fig. 9.
Fig. 9. Gain as a function of the pump power for two ZYAB-EDF lengths using a transmission signal of 1550 nm (a) and 1590 nm (b) of wavelength and -25 dBm of power.
Fig. 10.
Fig. 10. Gain and noise figure spectra for input signal power of -25 dBm and a pump power of 100 mW.

Tables (1)

Tables Icon

Table 1. Fiber data and composition

Metrics