Abstract

A successful realization of photonic systems with characteristics of the Morpho butterfly coloration is reported using two-photon polymerization. Submicron structure features have been fabricated through the interference of the incident beam and the reflected beam in a thin polymer film. Furthermore, the influence of the lateral microstructure organization on the color formation has been studied in detail. The design of the polymerized structures was validated by scanning electron microscopy. The optical properties were analyzed using an angle-resolved spectrometer. Tunable angle-independence, based on reflection intensity modulation, has been investigated by using photonic structures with less degree of symmetry. Finally, these findings were used to demonstrate the high potential of two-photon polymerization in the field of biomimetic research and for technical application, e.g. for sensing and anti-counterfeiting.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Range and stability of structural colors generated by Morpho-inspired color reflectors

Kyungjae Chung and Jung H. Shin
J. Opt. Soc. Am. A 30(5) 962-968 (2013)

Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies

Radwanul Hasan Siddique, Silvia Diewald, Juerg Leuthold, and Hendrik Hölscher
Opt. Express 21(12) 14351-14361 (2013)

Color generation in butte y wings and fabrication of such structures

Teh-Hwa Wong, Mool C. Gupta, Bruce Robins, and Thomas L. Levendusky
Opt. Lett. 28(23) 2342-2344 (2003)

References

  • View by:
  • |
  • |
  • |

  1. B. P. Meier, P. R. D’Agostino, A. J. Elliot, M. A. Maier, and B. M. Wilkowski, “Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior,” PLoS One 7(7), e40333 (2012).
    [Crossref]
  2. W. Wickler, “Mimicry and the Evolution of Animal Communication,” Nature 208(5010), 519–521 (1965).
    [Crossref]
  3. L. M. Arenas, J. Troscianko, and M. Stevens, “Color contrast and stability as key elements for effective warning signals,” Front. Ecol. Evol. 2, 1544 (2014).
    [Crossref]
  4. T. D. Schultz and O. M. Fincke, “Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly,” Funct. Ecol. 23(4), 724–732 (2009).
    [Crossref]
  5. P. A. Lewis, ed., Properties and Economics, vol. Vol. 1 of Pigment Handbook (Wiley, 1988), 2nd ed.
  6. M. Yusuf, “Agro-Industrial Waste Materials and their Recycled Value-Added Applications: Review,” in Handbook of Ecomaterials, vol. 159 L. M. T. Martínez, O. V. Kharissova, and B. I. Kharisov, eds. (Springer International Publishing, Cham, 2017), pp. 1–11.
  7. P. Møller and H. Wallin, “Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene,” Mutat. Res. 462(1), 13–30 (2000).
    [Crossref]
  8. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [Crossref]
  9. S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).
  10. P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 266(1427), 1403–1411 (1999).
    [Crossref]
  11. M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. 202(5), 381–388 (2016).
    [Crossref]
  12. S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 269(1499), 1417–1421 (2002).
    [Crossref]
  13. S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 271(1539), 581–587 (2004).
    [Crossref]
  14. B.-K. Hsiung, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity,” Sci. Adv. 1(10), e1500709 (2015).
    [Crossref]
  15. K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
    [Crossref]
  16. J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862 (2013).
    [Crossref]
  17. S. L. Burg and A. J. Parnell, “Self-assembling structural colour in nature,” J. Phys.: Condens. Matter 30(41), 413001 (2018).
    [Crossref]
  18. S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
    [Crossref]
  19. A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
    [Crossref]
  20. O. Karthaus, Biomimetics in Photonics, vol. 13 of Series in optics and optoelectronics (Taylor & Francis, 2012).
  21. B. Bhushan, “Biomimetics: lessons from nature–an overview,” Philos. Trans. R. Soc., A 367(1893), 1445–1486 (2009).
    [Crossref]
  22. R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
    [Crossref]
  23. R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
    [Crossref]
  24. S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
    [Crossref]
  25. K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
    [Crossref]
  26. M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
    [Crossref]
  27. K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant Blue Observation from a Morpho -Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
    [Crossref]
  28. Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
    [Crossref]
  29. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref]
  30. M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401(3), 273–294 (1931).
    [Crossref]
  31. Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
    [Crossref]
  32. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [Crossref]
  33. M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
    [Crossref]
  34. M. Nawrot, L. Zinkiewicz, B. Włodarczyk, and P. Wasylczyk, “Transmission phase gratings fabricated with direct laser writing as color filters in the visible,” Opt. Express 21(26), 31919–31924 (2013).
    [Crossref]
  35. B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
    [Crossref]
  36. B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
    [Crossref]
  37. G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
    [Crossref]
  38. T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
    [Crossref]
  39. G. Kostovski, A. Mitchell, A. Holland, E. Fardin, and M. Austin, “Nanolithography by elastomeric scattering mask: An application of photolithographic standing waves,” Appl. Phys. Lett. 88(13), 133128 (2006).
    [Crossref]
  40. Q.-Q. Liu, Y.-Y. Zhao, M.-L. Zheng, and X.-M. Duan, “Tunable multilayer submicrostructures fabricated by interference assisted two-photon polymerization,” Appl. Phys. Lett. 111(22), 223102 (2017).
    [Crossref]
  41. B. Mills, D. Kundys, M. Farsari, S. Mailis, and R. W. Eason, “Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams,” Appl. Phys. A 108(3), 651–655 (2012).
    [Crossref]
  42. S. Kinoshita and S. Yoshioka, “Structural colorsole of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
    [Crossref]
  43. H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011).
    [Crossref]
  44. M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 2016), 7th ed.
  45. J. W. Strutt, “XV. On the light from the sky, its polarization and colour,” The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 41(271), 107–120 (1871).
    [Crossref]
  46. B. Song, V. E. Johansen, O. Sigmund, and J. H. Shin, “Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection,” Sci. Rep. 7(1), 46023 (2017).
    [Crossref]
  47. F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).
  48. J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
    [Crossref]
  49. E. P. Chan, J. J. Walish, E. L. Thomas, and C. M. Stafford, “Block copolymer photonic gel for mechanochromic sensing,” Adv. Mater. 23(40), 4702–4706 (2011).
    [Crossref]
  50. Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
    [Crossref]
  51. H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
    [Crossref]

2018 (2)

S. L. Burg and A. J. Parnell, “Self-assembling structural colour in nature,” J. Phys.: Condens. Matter 30(41), 413001 (2018).
[Crossref]

Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
[Crossref]

2017 (6)

B. Song, V. E. Johansen, O. Sigmund, and J. H. Shin, “Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection,” Sci. Rep. 7(1), 46023 (2017).
[Crossref]

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

Q.-Q. Liu, Y.-Y. Zhao, M.-L. Zheng, and X.-M. Duan, “Tunable multilayer submicrostructures fabricated by interference assisted two-photon polymerization,” Appl. Phys. Lett. 111(22), 223102 (2017).
[Crossref]

2016 (1)

M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. 202(5), 381–388 (2016).
[Crossref]

2015 (5)

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
[Crossref]

B.-K. Hsiung, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity,” Sci. Adv. 1(10), e1500709 (2015).
[Crossref]

2014 (1)

L. M. Arenas, J. Troscianko, and M. Stevens, “Color contrast and stability as key elements for effective warning signals,” Front. Ecol. Evol. 2, 1544 (2014).
[Crossref]

2013 (3)

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862 (2013).
[Crossref]

M. Nawrot, L. Zinkiewicz, B. Włodarczyk, and P. Wasylczyk, “Transmission phase gratings fabricated with direct laser writing as color filters in the visible,” Opt. Express 21(26), 31919–31924 (2013).
[Crossref]

2012 (7)

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

B. Mills, D. Kundys, M. Farsari, S. Mailis, and R. W. Eason, “Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams,” Appl. Phys. A 108(3), 651–655 (2012).
[Crossref]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

B. P. Meier, P. R. D’Agostino, A. J. Elliot, M. A. Maier, and B. M. Wilkowski, “Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior,” PLoS One 7(7), e40333 (2012).
[Crossref]

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
[Crossref]

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

2011 (5)

E. P. Chan, J. J. Walish, E. L. Thomas, and C. M. Stafford, “Block copolymer photonic gel for mechanochromic sensing,” Adv. Mater. 23(40), 4702–4706 (2011).
[Crossref]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011).
[Crossref]

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[Crossref]

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

2009 (2)

B. Bhushan, “Biomimetics: lessons from nature–an overview,” Philos. Trans. R. Soc., A 367(1893), 1445–1486 (2009).
[Crossref]

T. D. Schultz and O. M. Fincke, “Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly,” Funct. Ecol. 23(4), 724–732 (2009).
[Crossref]

2006 (1)

G. Kostovski, A. Mitchell, A. Holland, E. Fardin, and M. Austin, “Nanolithography by elastomeric scattering mask: An application of photolithographic standing waves,” Appl. Phys. Lett. 88(13), 133128 (2006).
[Crossref]

2005 (2)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant Blue Observation from a Morpho -Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[Crossref]

S. Kinoshita and S. Yoshioka, “Structural colorsole of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[Crossref]

2004 (1)

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 271(1539), 581–587 (2004).
[Crossref]

2003 (2)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref]

2002 (1)

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

2000 (1)

P. Møller and H. Wallin, “Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene,” Mutat. Res. 462(1), 13–30 (2000).
[Crossref]

1999 (2)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

1965 (1)

W. Wickler, “Mimicry and the Evolution of Animal Communication,” Nature 208(5010), 519–521 (1965).
[Crossref]

1931 (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401(3), 273–294 (1931).
[Crossref]

1871 (1)

J. W. Strutt, “XV. On the light from the sky, its polarization and colour,” The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 41(271), 107–120 (1871).
[Crossref]

Allen, M. C.

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Arenas, L. M.

L. M. Arenas, J. Troscianko, and M. Stevens, “Color contrast and stability as key elements for effective warning signals,” Front. Ecol. Evol. 2, 1544 (2014).
[Crossref]

Aryal, M.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
[Crossref]

Asche, T. S.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Austin, M.

G. Kostovski, A. Mitchell, A. Holland, E. Fardin, and M. Austin, “Nanolithography by elastomeric scattering mask: An application of photolithographic standing waves,” Appl. Phys. Lett. 88(13), 133128 (2006).
[Crossref]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Beck, C.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Behrens, P.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Bhatia, A. B.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 2016), 7th ed.

Bhushan, B.

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862 (2013).
[Crossref]

B. Bhushan, “Biomimetics: lessons from nature–an overview,” Philos. Trans. R. Soc., A 367(1893), 1445–1486 (2009).
[Crossref]

Blackledge, T. A.

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

B.-K. Hsiung, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity,” Sci. Adv. 1(10), e1500709 (2015).
[Crossref]

Bonam, R. K.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Born, M.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 2016), 7th ed.

Bunning, T.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Burg, S. L.

S. L. Burg and A. J. Parnell, “Self-assembling structural colour in nature,” J. Phys.: Condens. Matter 30(41), 413001 (2018).
[Crossref]

Burmeister, F.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Cerullo, G.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Chan, E. P.

E. P. Chan, J. J. Walish, E. L. Thomas, and C. M. Stafford, “Block copolymer photonic gel for mechanochromic sensing,” Adv. Mater. 23(40), 4702–4706 (2011).
[Crossref]

Chen, Q.-W.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Chen, Y.

S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
[Crossref]

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Chung, K.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

D’Agostino, P. R.

B. P. Meier, P. R. D’Agostino, A. J. Elliot, M. A. Maier, and B. M. Wilkowski, “Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior,” PLoS One 7(7), e40333 (2012).
[Crossref]

Deheyn, D. D.

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

B.-K. Hsiung, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity,” Sci. Adv. 1(10), e1500709 (2015).
[Crossref]

Deng, T.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Desai, M. S.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Duan, X.-M.

Q.-Q. Liu, Y.-Y. Zhao, M.-L. Zheng, and X.-M. Duan, “Tunable multilayer submicrostructures fabricated by interference assisted two-photon polymerization,” Appl. Phys. Lett. 111(22), 223102 (2017).
[Crossref]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Eason, R. W.

B. Mills, D. Kundys, M. Farsari, S. Mailis, and R. W. Eason, “Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams,” Appl. Phys. A 108(3), 651–655 (2012).
[Crossref]

Eaton, S. M.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Elliot, A. J.

B. P. Meier, P. R. D’Agostino, A. J. Elliot, M. A. Maier, and B. M. Wilkowski, “Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior,” PLoS One 7(7), e40333 (2012).
[Crossref]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Esen, C.

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

Fan, B.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Fan, T.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Fardin, E.

G. Kostovski, A. Mitchell, A. Holland, E. Fardin, and M. Austin, “Nanolithography by elastomeric scattering mask: An application of photolithographic standing waves,” Appl. Phys. Lett. 88(13), 133128 (2006).
[Crossref]

Farsari, M.

B. Mills, D. Kundys, M. Farsari, S. Mailis, and R. W. Eason, “Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams,” Appl. Phys. A 108(3), 651–655 (2012).
[Crossref]

Feng, C.

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Fessel, S.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Fincke, O. M.

T. D. Schultz and O. M. Fincke, “Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly,” Funct. Ecol. 23(4), 724–732 (2009).
[Crossref]

Gadisa, A.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
[Crossref]

Gärtner, K.-H.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Giraldo, M. A.

M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. 202(5), 381–388 (2016).
[Crossref]

Gomard, G.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

Göppert-Mayer, M.

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401(3), 273–294 (1931).
[Crossref]

Gorb, S.

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

Grafen, M.

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

Grande, J. C.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Gu, J.

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Gurevich, E. L.

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

Han, M. G.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Han, Z.

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

Hartley, J. G.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Haruyama, Y.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant Blue Observation from a Morpho -Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[Crossref]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Heo, C.-J.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Holland, A.

G. Kostovski, A. Mitchell, A. Holland, E. Fardin, and M. Austin, “Nanolithography by elastomeric scattering mask: An application of photolithographic standing waves,” Appl. Phys. Lett. 88(13), 133128 (2006).
[Crossref]

Hölscher, H.

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

Hoshino, T.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant Blue Observation from a Morpho -Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[Crossref]

Houbertz, R.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Hsiung, B.-K.

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

B.-K. Hsiung, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity,” Sci. Adv. 1(10), e1500709 (2015).
[Crossref]

Hu, H.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Hu, X.

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Hu, X.-Y.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Jiang, L.

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

Jin, H.-E.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Jin, Y.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Johansen, V. E.

B. Song, V. E. Johansen, O. Sigmund, and J. H. Shin, “Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection,” Sci. Rep. 7(1), 46023 (2017).
[Crossref]

Josten, P.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Ju, B.

Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
[Crossref]

Juodkazis, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

Kanda, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant Blue Observation from a Morpho -Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[Crossref]

Karthaus, O.

O. Karthaus, Biomimetics in Photonics, vol. 13 of Series in optics and optoelectronics (Taylor & Francis, 2012).

Kawagoe, K.

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

Kim, S.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Kinoshita, S.

S. Kinoshita and S. Yoshioka, “Structural colorsole of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[Crossref]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 271(1539), 581–587 (2004).
[Crossref]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).

Ko, D.-H.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
[Crossref]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Kondo, T.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

Kostovski, G.

G. Kostovski, A. Mitchell, A. Holland, E. Fardin, and M. Austin, “Nanolithography by elastomeric scattering mask: An application of photolithographic standing waves,” Appl. Phys. Lett. 88(13), 133128 (2006).
[Crossref]

Kovalev, A.

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Kumar, K.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Kundys, D.

B. Mills, D. Kundys, M. Farsari, S. Mailis, and R. W. Eason, “Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams,” Appl. Phys. A 108(3), 651–655 (2012).
[Crossref]

Laganà, M.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Larsen, M.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Lawrence, C. R.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Le Tarte, L. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Lee, H.-S.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Lee, I.-Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Lee, J. H.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Lee, S. Y.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Lee, S.-W.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Leertouwer, H. L.

Li, B.

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

Liu, Q.

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Liu, Q.-Q.

Q.-Q. Liu, Y.-Y. Zhao, M.-L. Zheng, and X.-M. Duan, “Tunable multilayer submicrostructures fabricated by interference assisted two-photon polymerization,” Appl. Phys. Lett. 111(22), 223102 (2017).
[Crossref]

Liu, Y.

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

Lopez, R.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
[Crossref]

Lou, S.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Lu, Y.

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

Lu, Y.-F.

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

Maier, M. A.

B. P. Meier, P. R. D’Agostino, A. J. Elliot, M. A. Maier, and B. M. Wilkowski, “Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior,” PLoS One 7(7), e40333 (2012).
[Crossref]

Mailis, S.

B. Mills, D. Kundys, M. Farsari, S. Mailis, and R. W. Eason, “Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams,” Appl. Phys. A 108(3), 651–655 (2012).
[Crossref]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Matsui, S.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant Blue Observation from a Morpho -Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[Crossref]

Matsuo, S.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Meier, B. P.

B. P. Meier, P. R. D’Agostino, A. J. Elliot, M. A. Maier, and B. M. Wilkowski, “Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior,” PLoS One 7(7), e40333 (2012).
[Crossref]

Meng, Y.

Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
[Crossref]

Mills, B.

B. Mills, D. Kundys, M. Farsari, S. Mailis, and R. W. Eason, “Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams,” Appl. Phys. A 108(3), 651–655 (2012).
[Crossref]

Misawa, H.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

Mitchell, A.

G. Kostovski, A. Mitchell, A. Holland, E. Fardin, and M. Austin, “Nanolithography by elastomeric scattering mask: An application of photolithographic standing waves,” Appl. Phys. Lett. 88(13), 133128 (2006).
[Crossref]

Mizeikis, V.

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

Møller, P.

P. Møller and H. Wallin, “Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene,” Mutat. Res. 462(1), 13–30 (2000).
[Crossref]

Monteiro, D. A.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Mu, Z.

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

Naik, R. R.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Nava, M. M.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Nawrot, M.

Nickel, J.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Niu, S.

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

Nolte, S.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Obel, K.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Osellame, R.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Ostendorf, A.

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

Otto, J. C.

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

Palacios, M. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Park, N.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Parker, A. R.

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Parnell, A. J.

S. L. Burg and A. J. Parnell, “Self-assembling structural colour in nature,” J. Phys.: Condens. Matter 30(41), 413001 (2018).
[Crossref]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Potyrailo, R. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Qin, J.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Qiu, J.

Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
[Crossref]

Raimondi, M. T.

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

Ren, L.

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

Röckel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Saito, A.

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[Crossref]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Samdin, T. D.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Samulski, E. T.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
[Crossref]

Scheideler, O.

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Schneider, A. M.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Schultz, T. D.

T. D. Schultz and O. M. Fincke, “Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly,” Funct. Ecol. 23(4), 724–732 (2009).
[Crossref]

Shawkey, M. D.

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

B.-K. Hsiung, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity,” Sci. Adv. 1(10), e1500709 (2015).
[Crossref]

Shi, K.

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Shim, J. W.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Shin, J. H.

B. Song, V. E. Johansen, O. Sigmund, and J. H. Shin, “Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection,” Sci. Rep. 7(1), 46023 (2017).
[Crossref]

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Siddique, R. H.

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

Sigmund, O.

B. Song, V. E. Johansen, O. Sigmund, and J. H. Shin, “Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection,” Sci. Rep. 7(1), 46023 (2017).
[Crossref]

Song, B.

B. Song, V. E. Johansen, O. Sigmund, and J. H. Shin, “Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection,” Sci. Rep. 7(1), 46023 (2017).
[Crossref]

Stafford, C. M.

E. P. Chan, J. J. Walish, E. L. Thomas, and C. M. Stafford, “Block copolymer photonic gel for mechanochromic sensing,” Adv. Mater. 23(40), 4702–4706 (2011).
[Crossref]

Starkey, T. A.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Stavenga, D. G.

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. 202(5), 381–388 (2016).
[Crossref]

H. L. Leertouwer, B. D. Wilts, and D. G. Stavenga, “Refractive index and dispersion of butterfly chitin and bird keratin measured by polarizing interference microscopy,” Opt. Express 19(24), 24061–24066 (2011).
[Crossref]

Steenhusen, S.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Stevens, M.

L. M. Arenas, J. Troscianko, and M. Stevens, “Color contrast and stability as key elements for effective warning signals,” Front. Ecol. Evol. 2, 1544 (2014).
[Crossref]

Strutt, J. W.

J. W. Strutt, “XV. On the light from the sky, its polarization and colour,” The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 41(271), 107–120 (1871).
[Crossref]

Su, H.

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Sun, J.

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862 (2013).
[Crossref]

Tan, Y.

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Tang, B.

Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
[Crossref]

Tang, J.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Tang, Z.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Thomas, E. L.

E. P. Chan, J. J. Walish, E. L. Thomas, and C. M. Stafford, “Block copolymer photonic gel for mechanochromic sensing,” Adv. Mater. 23(40), 4702–4706 (2011).
[Crossref]

Tong, J.

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862 (2013).
[Crossref]

Troscianko, J.

L. M. Arenas, J. Troscianko, and M. Stevens, “Color contrast and stability as key elements for effective warning signals,” Front. Ecol. Evol. 2, 1544 (2014).
[Crossref]

Tucher, N.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Tumbleston, J. R.

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
[Crossref]

Tünnermann, A.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Vasudev, M.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Vukusic, P.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref]

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Walish, J. J.

E. P. Chan, J. J. Walish, E. L. Thomas, and C. M. Stafford, “Block copolymer photonic gel for mechanochromic sensing,” Adv. Mater. 23(40), 4702–4706 (2011).
[Crossref]

Walles, H.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Wallin, H.

P. Møller and H. Wallin, “Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene,” Mutat. Res. 462(1), 13–30 (2000).
[Crossref]

Wasylczyk, P.

Watanabe, K.

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant Blue Observation from a Morpho -Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[Crossref]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Wickler, W.

W. Wickler, “Mimicry and the Evolution of Animal Communication,” Nature 208(5010), 519–521 (1965).
[Crossref]

Wilkowski, B. M.

B. P. Meier, P. R. D’Agostino, A. J. Elliot, M. A. Maier, and B. M. Wilkowski, “Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior,” PLoS One 7(7), e40333 (2012).
[Crossref]

Wilts, B. D.

Wlodarczyk, B.

Wolf, E.

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 2016), 7th ed.

Wolter, H.

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

Wootton, R. J.

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

Wu, S.

Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
[Crossref]

Wu, X.-L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Xu, L.

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Xu, W.

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Yang, J. K. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Yang, M.

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

Yang, S.-M.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Yoshioka, S.

S. Kinoshita and S. Yoshioka, “Structural colorsole of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[Crossref]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 271(1539), 581–587 (2004).
[Crossref]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

Yu, K.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Yu, S.

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Yusuf, M.

M. Yusuf, “Agro-Industrial Waste Materials and their Recycled Value-Added Applications: Review,” in Handbook of Ecomaterials, vol. 159 L. M. T. Martínez, O. V. Kharissova, and B. I. Kharisov, eds. (Springer International Publishing, Cham, 2017), pp. 1–11.

Zang, X.

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Zhang, D.

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Zhang, J.

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

Zhang, S.

Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
[Crossref]

S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
[Crossref]

Zhang, W.

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Zhao, Y.-Y.

Q.-Q. Liu, Y.-Y. Zhao, M.-L. Zheng, and X.-M. Duan, “Tunable multilayer submicrostructures fabricated by interference assisted two-photon polymerization,” Appl. Phys. Lett. 111(22), 223102 (2017).
[Crossref]

Zheng, M.-L.

Q.-Q. Liu, Y.-Y. Zhao, M.-L. Zheng, and X.-M. Duan, “Tunable multilayer submicrostructures fabricated by interference assisted two-photon polymerization,” Appl. Phys. Lett. 111(22), 223102 (2017).
[Crossref]

Zhong, S.

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

Zhou, X.-H.

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

Zhu, S.

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

Zinkiewicz, L.

Zyla, G.

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Y. Meng, J. Qiu, S. Wu, B. Ju, S. Zhang, and B. Tang, “Biomimetic Structural Color Films with a Bilayer Inverse Heterostructure for Anticounterfeiting Applications,” ACS Appl. Mater. Interfaces 10(44), 38459–38465 (2018).
[Crossref]

ACS Nano (1)

J. H. Lee, B. Fan, T. D. Samdin, D. A. Monteiro, M. S. Desai, O. Scheideler, H.-E. Jin, S. Kim, and S.-W. Lee, “Phage-Based Structural Color Sensors and Their Pattern Recognition Sensing System,” ACS Nano 11(4), 3632–3641 (2017).
[Crossref]

Adv. Mater. (2)

E. P. Chan, J. J. Walish, E. L. Thomas, and C. M. Stafford, “Block copolymer photonic gel for mechanochromic sensing,” Adv. Mater. 23(40), 4702–4706 (2011).
[Crossref]

K. Chung, S. Yu, C.-J. Heo, J. W. Shim, S.-M. Yang, M. G. Han, H.-S. Lee, Y. Jin, S. Y. Lee, N. Park, and J. H. Shin, “Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings,” Adv. Mater. 24(18), 2375–2379 (2012).
[Crossref]

Adv. Opt. Mater. (1)

B.-K. Hsiung, R. H. Siddique, L. Jiang, Y. Liu, Y. Lu, M. D. Shawkey, and T. A. Blackledge, “Tarantula-Inspired Noniridescent Photonics with Long-Range Order,” Adv. Opt. Mater. 5(2), 1600599 (2017).
[Crossref]

Angew. Chem., Int. Ed. (1)

Y. Tan, J. Gu, X. Zang, W. Xu, K. Shi, L. Xu, and D. Zhang, “Versatile fabrication of intact three-dimensional metallic butterfly wing scales with hierarchical sub-micrometer structures,” Angew. Chem., Int. Ed. 50(36), 8307–8311 (2011).
[Crossref]

Ann. Phys. (1)

M. Göppert-Mayer, “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 401(3), 273–294 (1931).
[Crossref]

Appl. Phys. A (1)

B. Mills, D. Kundys, M. Farsari, S. Mailis, and R. W. Eason, “Single-pulse multiphoton fabrication of high aspect ratio structures with sub-micron features using vortex beams,” Appl. Phys. A 108(3), 651–655 (2012).
[Crossref]

Appl. Phys. Lett. (3)

T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis, and H. Misawa, “Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses,” Appl. Phys. Lett. 82(17), 2758–2760 (2003).
[Crossref]

G. Kostovski, A. Mitchell, A. Holland, E. Fardin, and M. Austin, “Nanolithography by elastomeric scattering mask: An application of photolithographic standing waves,” Appl. Phys. Lett. 88(13), 133128 (2006).
[Crossref]

Q.-Q. Liu, Y.-Y. Zhao, M.-L. Zheng, and X.-M. Duan, “Tunable multilayer submicrostructures fabricated by interference assisted two-photon polymerization,” Appl. Phys. Lett. 111(22), 223102 (2017).
[Crossref]

ChemPhysChem (1)

S. Kinoshita and S. Yoshioka, “Structural colorsole of regularity and irregularity in the structure,” ChemPhysChem 6(8), 1442–1459 (2005).
[Crossref]

Front. Ecol. Evol. (1)

L. M. Arenas, J. Troscianko, and M. Stevens, “Color contrast and stability as key elements for effective warning signals,” Front. Ecol. Evol. 2, 1544 (2014).
[Crossref]

Funct. Ecol. (1)

T. D. Schultz and O. M. Fincke, “Structural colours create a flashing cue for sexual recognition and male quality in a Neotropical giant damselfly,” Funct. Ecol. 23(4), 724–732 (2009).
[Crossref]

J. Appl. Biomater. Funct. Mater. (1)

M. T. Raimondi, S. M. Eaton, M. M. Nava, M. Laganà, G. Cerullo, and R. Osellame, “Two-photon laser polymerization: from fundamentals to biomedical application in tissue engineering and regenerative medicine,” J. Appl. Biomater. Funct. Mater. 10(1), 56–66 (2012).
[Crossref]

J. Bionic Eng. (1)

S. Niu, B. Li, Z. Mu, M. Yang, J. Zhang, Z. Han, and L. Ren, “Excellent Structure-Based Multifunction of Morpho Butterfly Wings: A Review,” J. Bionic Eng. 12(2), 170–189 (2015).
[Crossref]

J. Comp. Physiol. (1)

M. A. Giraldo and D. G. Stavenga, “Brilliant iridescence of Morpho butterfly wing scales is due to both a thin film lower lamina and a multilayered upper lamina,” J. Comp. Physiol. 202(5), 381–388 (2016).
[Crossref]

J. Mater. Chem. (2)

Y. Chen, J. Gu, D. Zhang, S. Zhu, H. Su, X. Hu, C. Feng, W. Zhang, Q. Liu, and A. R. Parker, “Tunable three-dimensional ZrO2 photonic crystals replicated from single butterfly wing scales,” J. Mater. Chem. 21(39), 15237 (2011).
[Crossref]

H. Hu, Q.-W. Chen, J. Tang, X.-Y. Hu, and X.-H. Zhou, “Photonic anti-counterfeiting using structural colors derived from magnetic-responsive photonic crystals with double photonic bandgap heterostructures,” J. Mater. Chem. 22(22), 11048 (2012).
[Crossref]

J. Phys.: Condens. Matter (1)

S. L. Burg and A. J. Parnell, “Self-assembling structural colour in nature,” J. Phys.: Condens. Matter 30(41), 413001 (2018).
[Crossref]

J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. (1)

M. Aryal, D.-H. Ko, J. R. Tumbleston, A. Gadisa, E. T. Samulski, and R. Lopez, “Large area nanofabrication of butterfly wing’s three dimensional ultrastructures,” J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 30(6), 061802 (2012).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Watanabe, T. Hoshino, K. Kanda, Y. Haruyama, and S. Matsui, “Brilliant Blue Observation from a Morpho -Butterfly-Scale Quasi-Structure,” Jpn. J. Appl. Phys. 44(1), L48–L50 (2005).
[Crossref]

Mutat. Res. (1)

P. Møller and H. Wallin, “Genotoxic hazards of azo pigments and other colorants related to 1-phenylazo-2-hydroxynaphthalene,” Mutat. Res. 462(1), 13–30 (2000).
[Crossref]

Nat. Commun. (3)

R. A. Potyrailo, R. K. Bonam, J. G. Hartley, T. A. Starkey, P. Vukusic, M. Vasudev, T. Bunning, R. R. Naik, Z. Tang, M. A. Palacios, M. Larsen, L. A. Le Tarte, J. C. Grande, S. Zhong, and T. Deng, “Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies,” Nat. Commun. 6(1), 7959 (2015).
[Crossref]

R. H. Siddique, G. Gomard, and H. Hölscher, “The role of random nanostructures for the omnidirectional anti-reflection properties of the glasswing butterfly,” Nat. Commun. 6(1), 6909 (2015).
[Crossref]

B.-K. Hsiung, R. H. Siddique, D. G. Stavenga, J. C. Otto, M. C. Allen, Y. Liu, Y.-F. Lu, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Rainbow peacock spiders inspire miniature super-iridescent optics,” Nat. Commun. 8(1), 2278 (2017).
[Crossref]

Nat. Nanotechnol. (1)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref]

Nature (3)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I.-Y. S. Lee, D. McCord-Maughon, J. Qin, H. Röckel, M. Rumi, X.-L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[Crossref]

W. Wickler, “Mimicry and the Evolution of Animal Communication,” Nature 208(5010), 519–521 (1965).
[Crossref]

Opt. Express (2)

Philos. Trans. R. Soc., A (1)

B. Bhushan, “Biomimetics: lessons from nature–an overview,” Philos. Trans. R. Soc., A 367(1893), 1445–1486 (2009).
[Crossref]

PLoS One (1)

B. P. Meier, P. R. D’Agostino, A. J. Elliot, M. A. Maier, and B. M. Wilkowski, “Color in context: psychological context moderates the influence of red on approach- and avoidance-motivated behavior,” PLoS One 7(7), e40333 (2012).
[Crossref]

Proc. Royal Soc. Lond. Ser. B: Biol. Sci. (3)

P. Vukusic, J. R. Sambles, C. R. Lawrence, and R. J. Wootton, “Quantified interference and diffraction in single Morpho butterfly scales,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 266(1427), 1403–1411 (1999).
[Crossref]

S. Kinoshita, S. Yoshioka, and K. Kawagoe, “Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 269(1499), 1417–1421 (2002).
[Crossref]

S. Yoshioka and S. Kinoshita, “Wavelength-selective and anisotropic light-diffusing scale on the wing of the Morpho butterfly,” Proc. Royal Soc. Lond. Ser. B: Biol. Sci. 271(1539), 581–587 (2004).
[Crossref]

Prog. Mater. Sci. (1)

K. Yu, T. Fan, S. Lou, and D. Zhang, “Biomimetic optical materials: Integration of nature’s design for manipulation of light,” Prog. Mater. Sci. 58(6), 825–873 (2013).
[Crossref]

RSC Adv. (1)

J. Sun, B. Bhushan, and J. Tong, “Structural coloration in nature,” RSC Adv. 3(35), 14862 (2013).
[Crossref]

Sci. Adv. (1)

B.-K. Hsiung, D. D. Deheyn, M. D. Shawkey, and T. A. Blackledge, “Blue reflectance in tarantulas is evolutionarily conserved despite nanostructural diversity,” Sci. Adv. 1(10), e1500709 (2015).
[Crossref]

Sci. Rep. (3)

G. Zyla, A. Kovalev, M. Grafen, E. L. Gurevich, C. Esen, A. Ostendorf, and S. Gorb, “Generation of bioinspired structural colors via two-photon polymerization,” Sci. Rep. 7(1), 17622 (2017).
[Crossref]

S. Zhang and Y. Chen, “Nanofabrication and coloration study of artificial Morpho butterfly wings with aligned lamellae layers,” Sci. Rep. 5(1), 16637 (2015).
[Crossref]

B. Song, V. E. Johansen, O. Sigmund, and J. H. Shin, “Reproducing the hierarchy of disorder for Morpho-inspired, broad-angle color reflection,” Sci. Rep. 7(1), 46023 (2017).
[Crossref]

Sci. Technol. Adv. Mater. (1)

A. Saito, “Material design and structural color inspired by biomimetic approach,” Sci. Technol. Adv. Mater. 12(6), 064709 (2011).
[Crossref]

The London, Edinburgh, and Dublin Philos. Mag. J. Sci. (1)

J. W. Strutt, “XV. On the light from the sky, its polarization and colour,” The London, Edinburgh, and Dublin Philos. Mag. J. Sci. 41(271), 107–120 (1871).
[Crossref]

Other (6)

F. Burmeister, S. Steenhusen, R. Houbertz, T. S. Asche, J. Nickel, S. Nolte, N. Tucher, P. Josten, K. Obel, H. Wolter, S. Fessel, A. M. Schneider, K.-H. Gärtner, C. Beck, P. Behrens, A. Tünnermann, and H. Walles, “Two-photon polymerization of inorganic-organic polymers for biomedical and microoptical applications,” in Optically Induced Nanostructures. Biomedical and Technical Applications, A. Ostendorf and K. König, eds. (De Gruyter, s.l., 2015).

M. Born, E. Wolf, and A. B. Bhatia, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Cambridge Univ. Press, 2016), 7th ed.

O. Karthaus, Biomimetics in Photonics, vol. 13 of Series in optics and optoelectronics (Taylor & Francis, 2012).

S. Kinoshita, Structural Colors in the Realm of Nature (World Scientific, 2008).

P. A. Lewis, ed., Properties and Economics, vol. Vol. 1 of Pigment Handbook (Wiley, 1988), 2nd ed.

M. Yusuf, “Agro-Industrial Waste Materials and their Recycled Value-Added Applications: Review,” in Handbook of Ecomaterials, vol. 159 L. M. T. Martínez, O. V. Kharissova, and B. I. Kharisov, eds. (Springer International Publishing, Cham, 2017), pp. 1–11.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Visualization of the concept for the generation of biomimetic photonic structures with 2PP. A computer-aided design of the grid structure and the arc structure are illustrated on the left and in the center. Furthermore, different views of the cross sectional morphology are shown in A-A and B-B. These section views demonstrate the theoretical structure design in axial direction and the color formation process. The axial structure design is the same for the grid and the arc structure.
Fig. 2.
Fig. 2. Biomimetic blue coloration fabricated with 2PP. The microscope image in (A) shows grid structures with different cross-line distance values for $x_{g}$ and $y_{g}$ (see Fig. 1). The cross-line distances were varied equally for both lateral sizes ($x_{g}$=$y_{g}$). An increment of the cross-line distance occurred stepwise with 0.2 µm. The edge length $l_{g}$ of each grid structure is 100 µm (A). A microscope image of the resulting color formation using the arc structure is illustrated in (E). The overall area size is 250 µm2. A detail plan view of the two structure types is given in the SEM images (B) and (F). The section view of the grid structure (C) and the arc structure (G) demonstrate the lamellar construction which resembles the cross-sectional morphology of the Morpho butterfly ridges [8,10,12]. The SEM images in (D) and (H) illustrate the structural composition of the Morpho didius ridges in the plan view.
Fig. 3.
Fig. 3. Biomimetic blue coloration fabricated with 2PP and the ellipsometric measurements. Microscope images of color arrays are shown in (A) using the grid structures (A) and in (D) using the the arc structures. The overall color areas are 500 µm2. The illumination angle was constantly $45^\circ$. The observation angle could be varied. Related reflection spectra are shown in (B) and (E) for an observation angle of $50^\circ$. In this process, two illumination direction (I1 and I2) were adjusted to study the reflection properties regarding the structure orientation. Normalized angle-resolved spectra are illustrated in (C) and (F) for the illumination direction I1.
Fig. 4.
Fig. 4. A demonstrator for biomimetic application. In the upper illustration, upright microscope images visualize the reflection characteristics depending on the tilting direction (tilt A, tilt B) of color array consisting of photonic structures with an arched geometry. An adjustable ramp was used to tilt the sample in a range between $0^\circ$ and $40^\circ$. The lower images show a color array with an internal butterfly shape for three tilt positions. The arc structures are aligned with different orientations of the structure symmetry axis with respect to the incidence plane for the image contour and butterfly shape. The left microscope image shows the color formation without sample tilting. The other microscope images were taken at a tilt angle of $40^\circ$ for different tilting axis of the sample. In the middle image the arc structures in the contour of the color array are tilted around the internal structure axis “tilt B”, whereas the arc structures which form the butterfly shape are tilted around “tilt A”. The reverse case is shown in the left picture. As a result, the contour or the butterfly shape is blue colored with a tilt around the vertical or horizontal axis of the sample.

Metrics