Abstract

While the role of resin viscosity has been largely studied for stereolithography, where a very low viscosity material is preferred, an extensive study of its microscale counterpart, two-photon polymerization, is still lacking. In the present work, we tried to fill the gap by correlating directly the properties of the features produced by two-photon polymerization with the viscosity of four acrylate materials, prepared by mixing two monomers with very different viscosity, and a constant quantity of photoinitiator. Linewidth, polymerization and damage thresholds, dynamic range, and fabrication resolution have been object of investigation in our experiments.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Performance comparison of acrylic and thiol-acrylic resins in two-photon polymerization

Lijia Jiang, Wei Xiong, Yushen Zhou, Ying Liu, Xi Huang, Dawei Li, Tommaso Baldacchini, Lan Jiang, and Yongfeng Lu
Opt. Express 24(12) 13687-13701 (2016)

Three-dimensional microfabrication with two-photon-absorbed photopolymerization

Shoji Maruo, Osamu Nakamura, and Satoshi Kawata
Opt. Lett. 22(2) 132-134 (1997)

Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser

Irène Wang, Michel Bouriau, Patrice L. Baldeck, Cécile Martineau, and Chantal Andraud
Opt. Lett. 27(15) 1348-1350 (2002)

References

  • View by:
  • |
  • |
  • |

  1. S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
    [Crossref]
  2. C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
    [Crossref]
  3. B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
    [Crossref]
  4. C. N. LaFratta and L. J. Li, Making Two-Photon Polymerization Faster (William Andrew Inc, 2016).
  5. P. J. Bártolo, Stereolithography: Materials, Processes and Applications (Springer-Verlag Berlin, 2011).
  6. M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
    [Crossref]
  7. M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
    [Crossref]
  8. J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
    [Crossref]
  9. A. K. Nguyen and R. J. Narayan, “Two-photon polymerization for biological applications,” Mater. Today 20(6), 314–322 (2017).
    [Crossref]
  10. N. Liaros and J. T. Fourkas, “The Characterization of Absorptive Nonlinearities,” Laser Photonics Rev. 11(5), 1700106 (2017).
    [Crossref]
  11. J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
    [Crossref]
  12. M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
    [Crossref]
  13. A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
    [Crossref]
  14. F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
    [Crossref]
  15. C. Decker, T. N. T. Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer 42(13), 5531–5541 (2001).
    [Crossref]
  16. C. Decker and K. Moussa, “Photopolymerization of mutifunctional monomers in condensed phase,” J. Appl. Polym. Sci. 34(4), 1603–1618 (1987).
    [Crossref]
  17. X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
    [Crossref]
  18. J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
    [Crossref]
  19. S. Corbel, O. Dufaud, and T. Roques-Carmes, Materials for Stereolithography (Springer-Verlag Berlin, 2011).
  20. W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
    [Crossref]
  21. C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
    [Crossref]
  22. J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
    [Crossref]
  23. B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
    [Crossref]
  24. T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
    [Crossref]
  25. L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
    [Crossref]
  26. D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
    [Crossref]
  27. V. Tribuzi, D. S. Correa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonca, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express 20(19), 21107–21113 (2012).
    [Crossref]
  28. X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453-454, 518–521 (2004).
    [Crossref]
  29. S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
    [Crossref]
  30. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
    [Crossref]
  31. B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
    [Crossref]
  32. H. Ruth, S. Sonke, S. Thomas, and S. Gerhard, Two-Photon Polymerization of Inorganic-Organic Hybrid Polymers as Scalable Technology Using Ultra-Short Laser Pulses (Intech Europe, 2010).
  33. P. F. Jacobs, Rapid Prototyping & Manufacturing: fundamentals of stereolithography (Society of Manufacturing Engineers, 1992).
  34. R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
    [Crossref]
  35. M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
    [Crossref]
  36. F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
    [Crossref]
  37. R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
    [Crossref]
  38. L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
    [Crossref]
  39. Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
    [Crossref]
  40. C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U. S. A. 103(23), 8589–8594 (2006).
    [Crossref]
  41. L. Jonusauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20(5), 053001 (2018).
    [Crossref]
  42. A. Marcinkowska and E. Andrzejewska, “Viscosity Effects in the Photopolymerization of Two-Monomer Systems,” J. Appl. Polym. Sci. 116(1), 280–287 (2010).
    [Crossref]
  43. E. Andrzejewska and A. Marcinkowska, “New Aspects of Viscosity Effects on the Photopolymerization Kinetics of the 2,2-Bis 4-(2-hydroxymethacryloxypropoxy) pheny1 propane/Triethylene Glycol Dimethacrylate Monomer System,” J. Appl. Polym. Sci. 110(5), 2780–2786 (2008).
    [Crossref]
  44. M. Y. Zakharina, V. B. Fedoseev, Y. V. Chechet, S. A. Chesnokov, and A. S. Shaplov, “Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators,” Polym. Sci., Ser. B 59(6), 665–673 (2017).
    [Crossref]
  45. S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
    [Crossref]
  46. J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
    [Crossref]
  47. K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
    [Crossref]
  48. I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
    [Crossref]
  49. P. M. Consoli, A. J. G. Otuka, D. T. Balogh, and C. R. Mendonca, “Feature size reduction in two-photon polymerization by optimizing resin composition,” J. Polym. Sci., Part B: Polym. Phys. 56(16), 1158–1163 (2018).
    [Crossref]
  50. C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerization reactions,” J. Macromol. Sci., Part A: Pure Appl.Chem. 33(2), 173–190 (1996).
    [Crossref]
  51. J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
    [Crossref]
  52. Z. Tomova, N. Liaros, S. A. G. Razo, S. M. Wolf, and J. T. Fourkas, “In situ measurement of the effective nonlinear absorption order in multiphoton photoresists,” Laser Photonics Rev. 10(5), 849–854 (2016).
    [Crossref]
  53. J. T. Fourkas, Fundamentals of Two-Photon Fabrication (William Andrew Inc, 2016).
  54. S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
    [Crossref]
  55. L. Jonusauskas, S. Rekstyte, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
    [Crossref]
  56. S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro- Nano-Manuf. 5(3), 031002 (2017).
    [Crossref]
  57. J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
    [Crossref]
  58. C. Decker, “Photoinitiated crosslinking polymerisation,” Prog. Polym. Sci. 21(4), 593–650 (1996).
    [Crossref]
  59. E. Andrzejewska, “Photopolymerization kinetics of multifunctional monomers,” Prog. Polym. Sci. 26(4), 605–665 (2001).
    [Crossref]
  60. F. Tudos and T. Foldesberezsnich, “Free-radical polymerization - inhibition and retardation,” Prog. Polym. Sci. 14(6), 717–761 (1989).
    [Crossref]
  61. C. Decker and A. D. Jenkins, “Kinetic approach of O2 inhibition in ultraviolet-induced and laser-induced polymerizations,” Macromolecules 18(6), 1241–1244 (1985).
    [Crossref]
  62. G. Odian, “Radical chain polymerization,” in Principles of Polymerization (John Wiley & Sons, 1991), pp. 262–266.
  63. K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48(1), 92–100 (2003).
    [Crossref]
  64. A. K. O’Brien and C. N. Bowman, “Impact of oxygen on photopolymerization kinetics and polymer structure,” Macromolecules 39(7), 2501–2506 (2006).
    [Crossref]
  65. S. Beuermann and M. Buback, “Rate coefficients of free-radical polymerization deduced from pulsed laser experiments,” Prog. Polym. Sci. 27(2), 191–254 (2002).
    [Crossref]
  66. S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
    [Crossref]
  67. T. Baldacchini, S. Snider, and R. Zadoyan, “Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses,” Opt. Express 20(28), 29890–29899 (2012).
    [Crossref]
  68. J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
    [Crossref]
  69. G. de Miguel, G. Vicidomini, B. Harke, and A. Diaspro, Linewidth and Writing Resolution (William Andrew Inc, 2016).
  70. H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
    [Crossref]
  71. W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem. 21(15), 5650–5659 (2011).
    [Crossref]

2019 (2)

B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
[Crossref]

X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
[Crossref]

2018 (2)

L. Jonusauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20(5), 053001 (2018).
[Crossref]

P. M. Consoli, A. J. G. Otuka, D. T. Balogh, and C. R. Mendonca, “Feature size reduction in two-photon polymerization by optimizing resin composition,” J. Polym. Sci., Part B: Polym. Phys. 56(16), 1158–1163 (2018).
[Crossref]

2017 (5)

M. Y. Zakharina, V. B. Fedoseev, Y. V. Chechet, S. A. Chesnokov, and A. S. Shaplov, “Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators,” Polym. Sci., Ser. B 59(6), 665–673 (2017).
[Crossref]

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro- Nano-Manuf. 5(3), 031002 (2017).
[Crossref]

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

A. K. Nguyen and R. J. Narayan, “Two-photon polymerization for biological applications,” Mater. Today 20(6), 314–322 (2017).
[Crossref]

N. Liaros and J. T. Fourkas, “The Characterization of Absorptive Nonlinearities,” Laser Photonics Rev. 11(5), 1700106 (2017).
[Crossref]

2016 (5)

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
[Crossref]

Z. Tomova, N. Liaros, S. A. G. Razo, S. M. Wolf, and J. T. Fourkas, “In situ measurement of the effective nonlinear absorption order in multiphoton photoresists,” Laser Photonics Rev. 10(5), 849–854 (2016).
[Crossref]

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

2014 (2)

L. Jonusauskas, S. Rekstyte, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

2013 (6)

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

2012 (5)

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
[Crossref]

V. Tribuzi, D. S. Correa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonca, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express 20(19), 21107–21113 (2012).
[Crossref]

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

T. Baldacchini, S. Snider, and R. Zadoyan, “Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses,” Opt. Express 20(28), 29890–29899 (2012).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

2011 (1)

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem. 21(15), 5650–5659 (2011).
[Crossref]

2010 (3)

A. Marcinkowska and E. Andrzejewska, “Viscosity Effects in the Photopolymerization of Two-Monomer Systems,” J. Appl. Polym. Sci. 116(1), 280–287 (2010).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

2009 (1)

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref]

2008 (4)

M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

E. Andrzejewska and A. Marcinkowska, “New Aspects of Viscosity Effects on the Photopolymerization Kinetics of the 2,2-Bis 4-(2-hydroxymethacryloxypropoxy) pheny1 propane/Triethylene Glycol Dimethacrylate Monomer System,” J. Appl. Polym. Sci. 110(5), 2780–2786 (2008).
[Crossref]

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
[Crossref]

2007 (2)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

2006 (3)

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U. S. A. 103(23), 8589–8594 (2006).
[Crossref]

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

A. K. O’Brien and C. N. Bowman, “Impact of oxygen on photopolymerization kinetics and polymer structure,” Macromolecules 39(7), 2501–2506 (2006).
[Crossref]

2005 (3)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

2004 (4)

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
[Crossref]

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453-454, 518–521 (2004).
[Crossref]

2003 (2)

2002 (1)

S. Beuermann and M. Buback, “Rate coefficients of free-radical polymerization deduced from pulsed laser experiments,” Prog. Polym. Sci. 27(2), 191–254 (2002).
[Crossref]

2001 (3)

E. Andrzejewska, “Photopolymerization kinetics of multifunctional monomers,” Prog. Polym. Sci. 26(4), 605–665 (2001).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

C. Decker, T. N. T. Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer 42(13), 5531–5541 (2001).
[Crossref]

1999 (2)

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[Crossref]

1997 (1)

1996 (3)

C. Decker, “Photoinitiated crosslinking polymerisation,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[Crossref]

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerization reactions,” J. Macromol. Sci., Part A: Pure Appl.Chem. 33(2), 173–190 (1996).
[Crossref]

S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
[Crossref]

1989 (1)

F. Tudos and T. Foldesberezsnich, “Free-radical polymerization - inhibition and retardation,” Prog. Polym. Sci. 14(6), 717–761 (1989).
[Crossref]

1987 (1)

C. Decker and K. Moussa, “Photopolymerization of mutifunctional monomers in condensed phase,” J. Appl. Polym. Sci. 34(4), 1603–1618 (1987).
[Crossref]

1985 (1)

C. Decker and A. D. Jenkins, “Kinetic approach of O2 inhibition in ultraviolet-induced and laser-induced polymerizations,” Macromolecules 18(6), 1241–1244 (1985).
[Crossref]

Ajami, A.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Allen, R.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

Ananthavel, S. P.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Andre, J. C.

S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
[Crossref]

Andrzejewska, E.

A. Marcinkowska and E. Andrzejewska, “Viscosity Effects in the Photopolymerization of Two-Monomer Systems,” J. Appl. Polym. Sci. 116(1), 280–287 (2010).
[Crossref]

E. Andrzejewska and A. Marcinkowska, “New Aspects of Viscosity Effects on the Photopolymerization Kinetics of the 2,2-Bis 4-(2-hydroxymethacryloxypropoxy) pheny1 propane/Triethylene Glycol Dimethacrylate Monomer System,” J. Appl. Polym. Sci. 110(5), 2780–2786 (2008).
[Crossref]

E. Andrzejewska, “Photopolymerization kinetics of multifunctional monomers,” Prog. Polym. Sci. 26(4), 605–665 (2001).
[Crossref]

Avansi, W.

Baldacchini, T.

T. Baldacchini, S. Snider, and R. Zadoyan, “Two-photon polymerization with variable repetition rate bursts of femtosecond laser pulses,” Opt. Express 20(28), 29890–29899 (2012).
[Crossref]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Balogh, D. T.

P. M. Consoli, A. J. G. Otuka, D. T. Balogh, and C. R. Mendonca, “Feature size reduction in two-photon polymerization by optimizing resin composition,” J. Polym. Sci., Part B: Polym. Phys. 56(16), 1158–1163 (2018).
[Crossref]

Bao, J. J.

X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
[Crossref]

Barlow, S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Bártolo, P. J.

P. J. Bártolo, Stereolithography: Materials, Processes and Applications (Springer-Verlag Berlin, 2011).

Beck, E.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48(1), 92–100 (2003).
[Crossref]

Belazaras, K.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Bertsch, A.

S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
[Crossref]

Beuermann, S.

S. Beuermann and M. Buback, “Rate coefficients of free-radical polymerization deduced from pulsed laser experiments,” Prog. Polym. Sci. 27(2), 191–254 (2002).
[Crossref]

Bhattacharya, I.

B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
[Crossref]

Bityurin, N.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

Bowman, C. N.

A. K. O’Brien and C. N. Bowman, “Impact of oxygen on photopolymerization kinetics and polymer structure,” Macromolecules 39(7), 2501–2506 (2006).
[Crossref]

Buback, M.

S. Beuermann and M. Buback, “Rate coefficients of free-radical polymerization deduced from pulsed laser experiments,” Prog. Polym. Sci. 27(2), 191–254 (2002).
[Crossref]

Buividas, R.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Burmeister, F.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Cardoso, M. R.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
[Crossref]

Chechet, Y. V.

M. Y. Zakharina, V. B. Fedoseev, Y. V. Chechet, S. A. Chesnokov, and A. S. Shaplov, “Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators,” Polym. Sci., Ser. B 59(6), 665–673 (2017).
[Crossref]

Chen, Q. D.

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
[Crossref]

Chen, W. Q.

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem. 21(15), 5650–5659 (2011).
[Crossref]

Chesnokov, S. A.

M. Y. Zakharina, V. B. Fedoseev, Y. V. Chechet, S. A. Chesnokov, and A. S. Shaplov, “Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators,” Polym. Sci., Ser. B 59(6), 665–673 (2017).
[Crossref]

Chichkov, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Chichkov, B. N.

Cicha, K.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Coenjarts, C. A.

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
[Crossref]

Consoli, P. M.

P. M. Consoli, A. J. G. Otuka, D. T. Balogh, and C. R. Mendonca, “Feature size reduction in two-photon polymerization by optimizing resin composition,” J. Polym. Sci., Part B: Polym. Phys. 56(16), 1158–1163 (2018).
[Crossref]

Corbel, S.

S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
[Crossref]

S. Corbel, O. Dufaud, and T. Roques-Carmes, Materials for Stereolithography (Springer-Verlag Berlin, 2011).

Correa, D. S.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
[Crossref]

V. Tribuzi, D. S. Correa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonca, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express 20(19), 21107–21113 (2012).
[Crossref]

Cronauer, C.

Cuadra, J. A.

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro- Nano-Manuf. 5(3), 031002 (2017).
[Crossref]

Cui, Y. H.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Cumpston, B. H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

de Miguel, G.

G. de Miguel, G. Vicidomini, B. Harke, and A. Diaspro, Linewidth and Writing Resolution (William Andrew Inc, 2016).

Decker, C.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48(1), 92–100 (2003).
[Crossref]

C. Decker, T. N. T. Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer 42(13), 5531–5541 (2001).
[Crossref]

C. Decker, “Photoinitiated crosslinking polymerisation,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[Crossref]

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerization reactions,” J. Macromol. Sci., Part A: Pure Appl.Chem. 33(2), 173–190 (1996).
[Crossref]

C. Decker and K. Moussa, “Photopolymerization of mutifunctional monomers in condensed phase,” J. Appl. Polym. Sci. 34(4), 1603–1618 (1987).
[Crossref]

C. Decker and A. D. Jenkins, “Kinetic approach of O2 inhibition in ultraviolet-induced and laser-induced polymerizations,” Macromolecules 18(6), 1241–1244 (1985).
[Crossref]

Decker, D.

C. Decker, T. N. T. Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer 42(13), 5531–5541 (2001).
[Crossref]

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerization reactions,” J. Macromol. Sci., Part A: Pure Appl.Chem. 33(2), 173–190 (1996).
[Crossref]

Diaspro, A.

G. de Miguel, G. Vicidomini, B. Harke, and A. Diaspro, Linewidth and Writing Resolution (William Andrew Inc, 2016).

Divin, C.

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro- Nano-Manuf. 5(3), 031002 (2017).
[Crossref]

Domann, G.

Dong, X. Z.

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem. 21(15), 5650–5659 (2011).
[Crossref]

Drechsler, U.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Duan, X. M.

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem. 21(15), 5650–5659 (2011).
[Crossref]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453-454, 518–521 (2004).
[Crossref]

Dufaud, O.

S. Corbel, O. Dufaud, and T. Roques-Carmes, Materials for Stereolithography (Springer-Verlag Berlin, 2011).

Durig, U.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Dyer, D. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Egbert, A.

Ehm, M.

M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
[Crossref]

Ehrlich, J. E.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Elzaouk, B.

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerization reactions,” J. Macromol. Sci., Part A: Pure Appl.Chem. 33(2), 173–190 (1996).
[Crossref]

Erskine, L. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ertas, N.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

Farrer, R. A.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Farsari, M.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Fedoseev, V. B.

M. Y. Zakharina, V. B. Fedoseev, Y. V. Chechet, S. A. Chesnokov, and A. S. Shaplov, “Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators,” Polym. Sci., Ser. B 59(6), 665–673 (2017).
[Crossref]

Feijen, J.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

Fischer, J.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

Foldesberezsnich, T.

F. Tudos and T. Foldesberezsnich, “Free-radical polymerization - inhibition and retardation,” Prog. Polym. Sci. 14(6), 717–761 (1989).
[Crossref]

Fotakis, C.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Fourkas, J. T.

N. Liaros and J. T. Fourkas, “The Characterization of Absorptive Nonlinearities,” Laser Photonics Rev. 11(5), 1700106 (2017).
[Crossref]

Z. Tomova, N. Liaros, S. A. G. Razo, S. M. Wolf, and J. T. Fourkas, “In situ measurement of the effective nonlinear absorption order in multiphoton photoresists,” Laser Photonics Rev. 10(5), 849–854 (2016).
[Crossref]

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref]

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U. S. A. 103(23), 8589–8594 (2006).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

J. T. Fourkas, Fundamentals of Two-Photon Fabrication (William Andrew Inc, 2016).

Fritscher, C.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Frohlich, L.

Gadonas, R.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gailevicius, D.

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

Gamaly, E. G.

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

Gattass, R. R.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref]

Gerhard, S.

H. Ruth, S. Sonke, S. Thomas, and S. Gerhard, Two-Photon Polymerization of Inorganic-Organic Hybrid Polymers as Scalable Technology Using Ultra-Short Laser Pulses (Intech Europe, 2010).

Gershgoren, E.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref]

Giakoumaki, A.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Gilbergs, H.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Gray, D.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Grijpma, D. W.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

Gu, M.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Guntherodt, H. J.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Guo, C.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Gurr, M.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
[Crossref]

Haase, A.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Hague, R.

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

Harke, B.

G. de Miguel, G. Vicidomini, B. Harke, and A. Diaspro, Linewidth and Writing Resolution (William Andrew Inc, 2016).

Harris, R.

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

Hasegawa, S.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Hayasaki, Y.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Heidari, H.

B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
[Crossref]

Heikal, A. A.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Hill, R. T.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

Hofmann, D.

M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
[Crossref]

Houbertz, R.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Frohlich, and M. Popall, “Femtosecond laser-induced two-photon polymerization of inorganic-organic hybrid materials for applications in photonics,” Opt. Lett. 28(5), 301–303 (2003).
[Crossref]

Husinsky, W.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Hwang, H.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref]

Idacavage, M. J.

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
[Crossref]

Infuhr, R.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Jacobs, P. F.

P. F. Jacobs, Rapid Prototyping & Manufacturing: fundamentals of stereolithography (Society of Manufacturing Engineers, 1992).

Jenkins, A. D.

C. Decker and A. D. Jenkins, “Kinetic approach of O2 inhibition in ultraviolet-induced and laser-induced polymerizations,” Macromolecules 18(6), 1241–1244 (1985).
[Crossref]

Jezequel, J.-Y.

S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
[Crossref]

Jiang, D. D.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Jonavicius, T.

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

Jonusauskas, L.

L. Jonusauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20(5), 053001 (2018).
[Crossref]

L. Jonusauskas, S. Rekstyte, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

Juodkazis, S.

L. Jonusauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20(5), 053001 (2018).
[Crossref]

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Kabouraki, E.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

Kadic, M.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Kaehr, B.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

Kaneko, K.

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
[Crossref]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453-454, 518–521 (2004).
[Crossref]

Kaschke, J.

Kawata, S.

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
[Crossref]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453-454, 518–521 (2004).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

S. Maruo, O. Nakamura, and S. Kawata, “Three-dimensional microfabrication with two-photon-absorbed photopolymerization,” Opt. Lett. 22(2), 132–134 (1997).
[Crossref]

Kelly, B. E.

B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
[Crossref]

Kubler, R.

M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
[Crossref]

Kuebler, S. M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Kuna, L.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

LaFratta, C. N.

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U. S. A. 103(23), 8589–8594 (2006).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

C. N. LaFratta and L. J. Li, Making Two-Photon Polymerization Faster (William Andrew Inc, 2016).

Lee, I. Y. S.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Li, J.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Li, L.

X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
[Crossref]

Li, L. J.

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref]

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U. S. A. 103(23), 8589–8594 (2006).
[Crossref]

C. N. LaFratta and L. J. Li, Making Two-Photon Polymerization Faster (William Andrew Inc, 2016).

Li, Y. D.

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
[Crossref]

Li, Z. Q.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Liaros, N.

N. Liaros and J. T. Fourkas, “The Characterization of Absorptive Nonlinearities,” Laser Photonics Rev. 11(5), 1700106 (2017).
[Crossref]

Z. Tomova, N. Liaros, S. A. G. Razo, S. M. Wolf, and J. T. Fourkas, “In situ measurement of the effective nonlinear absorption order in multiphoton photoresists,” Laser Photonics Rev. 10(5), 849–854 (2016).
[Crossref]

Lichtenegger, H.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Ligon, S. C.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Liska, R.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Longo, E.

Lougnot, D. J.

S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
[Crossref]

Lu, W. E.

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem. 21(15), 5650–5659 (2011).
[Crossref]

MacCraith, B.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Malinauskas, M.

L. Jonusauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20(5), 053001 (2018).
[Crossref]

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

L. Jonusauskas, S. Rekstyte, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Mange, Y. J.

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

Mansour, S.

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

Marcinkowska, A.

A. Marcinkowska and E. Andrzejewska, “Viscosity Effects in the Photopolymerization of Two-Monomer Systems,” J. Appl. Polym. Sci. 116(1), 280–287 (2010).
[Crossref]

E. Andrzejewska and A. Marcinkowska, “New Aspects of Viscosity Effects on the Photopolymerization Kinetics of the 2,2-Bis 4-(2-hydroxymethacryloxypropoxy) pheny1 propane/Triethylene Glycol Dimethacrylate Monomer System,” J. Appl. Polym. Sci. 110(5), 2780–2786 (2008).
[Crossref]

Marder, S. R.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Maruo, S.

Matsuo, S.

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[Crossref]

Mayer, F.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

McCord-Maughon, D.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Melchels, F. P. W.

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

Mendonca, C. R.

P. M. Consoli, A. J. G. Otuka, D. T. Balogh, and C. R. Mendonca, “Feature size reduction in two-photon polymerization by optimizing resin composition,” J. Polym. Sci., Part B: Polym. Phys. 56(16), 1158–1163 (2018).
[Crossref]

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
[Crossref]

V. Tribuzi, D. S. Correa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonca, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express 20(19), 21107–21113 (2012).
[Crossref]

Misawa, H.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[Crossref]

Misoguti, L.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
[Crossref]

Miwa, M.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Mizeikis, V.

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Momot, A.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Moussa, K.

C. Decker and K. Moussa, “Photopolymerization of mutifunctional monomers in condensed phase,” J. Appl. Polym. Sci. 34(4), 1603–1618 (1987).
[Crossref]

Mueller, J. B.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

Mulhaupt, R.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
[Crossref]

Nakamura, O.

Nann, T.

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

Narayan, R. J.

A. K. Nguyen and R. J. Narayan, “Two-photon polymerization for biological applications,” Mater. Today 20(6), 314–322 (2017).
[Crossref]

Naughton, M. J.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Naumov, S.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Nguyen, A. K.

A. K. Nguyen and R. J. Narayan, “Two-photon polymerization for biological applications,” Mater. Today 20(6), 314–322 (2017).
[Crossref]

Nguyen, L. H.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Nielson, R.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

Nolte, S.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

O’Brien, A. K.

A. K. O’Brien and C. N. Bowman, “Impact of oxygen on photopolymerization kinetics and polymer structure,” Macromolecules 39(7), 2501–2506 (2006).
[Crossref]

Ober, C. K.

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
[Crossref]

Odian, G.

G. Odian, “Radical chain polymerization,” in Principles of Polymerization (John Wiley & Sons, 1991), pp. 262–266.

Ostendorf, A.

Otuka, A. J. G.

P. M. Consoli, A. J. G. Otuka, D. T. Balogh, and C. R. Mendonca, “Feature size reduction in two-photon polymerization by optimizing resin composition,” J. Polym. Sci., Part B: Polym. Phys. 56(16), 1158–1163 (2018).
[Crossref]

Oubaha, M.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Ovsianikov, A.

J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Paipulas, D.

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Panas, R. M.

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro- Nano-Manuf. 5(3), 031002 (2017).
[Crossref]

Perry, J. W.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Pikulin, A.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

Piskarskas, A.

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Plenert, M.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

Popall, M.

Pucher, N.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Purlys, V.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Qin, J. Q.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Qin, K.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Qin, X. H.

J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Razo, S. A. G.

Z. Tomova, N. Liaros, S. A. G. Razo, S. M. Wolf, and J. T. Fourkas, “In situ measurement of the effective nonlinear absorption order in multiphoton photoresists,” Laser Photonics Rev. 10(5), 849–854 (2016).
[Crossref]

Rekstyte, S.

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

L. Jonusauskas, S. Rekstyte, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

Ribeiro, C.

Rockel, H.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Roques-Carmes, T.

S. Corbel, O. Dufaud, and T. Roques-Carmes, Materials for Stereolithography (Springer-Verlag Berlin, 2011).

Rosspeintner, A.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Rumi, M.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Ruth, H.

H. Ruth, S. Sonke, S. Thomas, and S. Gerhard, Two-Photon Polymerization of Inorganic-Organic Hybrid Polymers as Scalable Technology Using Ultra-Short Laser Pulses (Intech Europe, 2010).

Saha, S. K.

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro- Nano-Manuf. 5(3), 031002 (2017).
[Crossref]

Sakellari, I.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Saleh, B. E. A.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Saleh, N.

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

Scherzer, T.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Schmidt, V.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Schulz, J.

Schuster, M.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Schwalm, R.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48(1), 92–100 (2003).
[Crossref]

Seet, K. K.

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Seidl, B.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Serbin, J.

Shaplov, A. S.

M. Y. Zakharina, V. B. Fedoseev, Y. V. Chechet, S. A. Chesnokov, and A. S. Shaplov, “Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators,” Polym. Sci., Ser. B 59(6), 665–673 (2017).
[Crossref]

Shear, J. B.

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

Shusteff, M.

B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
[Crossref]

Smith, C. G.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Snider, S.

Sonke, S.

H. Ruth, S. Sonke, S. Thomas, and S. Gerhard, Two-Photon Polymerization of Inorganic-Organic Hybrid Polymers as Scalable Technology Using Ultra-Short Laser Pulses (Intech Europe, 2010).

Spadaccini, C. M.

B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
[Crossref]

Stampfl, J.

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Stansbury, J. W.

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
[Crossref]

Steenhusen, S.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Straub, M.

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

Studer, K.

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48(1), 92–100 (2003).
[Crossref]

Sun, H. B.

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
[Crossref]

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453-454, 518–521 (2004).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[Crossref]

Takada, K.

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
[Crossref]

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

Tanaka, T.

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

Taylor, H. K.

B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
[Crossref]

Teh, W. H.

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

Teich, M. C.

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

Thomann, Y.

M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
[Crossref]

Thomas, S.

H. Ruth, S. Sonke, S. Thomas, and S. Gerhard, Two-Photon Polymerization of Inorganic-Organic Hybrid Polymers as Scalable Technology Using Ultra-Short Laser Pulses (Intech Europe, 2010).

Tomova, Z.

Z. Tomova, N. Liaros, S. A. G. Razo, S. M. Wolf, and J. T. Fourkas, “In situ measurement of the effective nonlinear absorption order in multiphoton photoresists,” Laser Photonics Rev. 10(5), 849–854 (2016).
[Crossref]

Torgersen, J.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Tribuzi, V.

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
[Crossref]

V. Tribuzi, D. S. Correa, W. Avansi, C. Ribeiro, E. Longo, and C. R. Mendonca, “Indirect doping of microstructures fabricated by two-photon polymerization with gold nanoparticles,” Opt. Express 20(19), 21107–21113 (2012).
[Crossref]

Tudos, F.

F. Tudos and T. Foldesberezsnich, “Free-radical polymerization - inhibition and retardation,” Prog. Polym. Sci. 14(6), 717–761 (1989).
[Crossref]

Tunnermann, A.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Tureeek, C.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Unterreiner, A. N.

Vamvakaki, M.

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Varga, F.

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Vauthey, E.

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Vicidomini, G.

G. de Miguel, G. Vicidomini, B. Harke, and A. Diaspro, Linewidth and Writing Resolution (William Andrew Inc, 2016).

Viertl, J.

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

Viet, T. N. T.

C. Decker, T. N. T. Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer 42(13), 5531–5541 (2001).
[Crossref]

Wang, X.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Weber-Koehl, E.

C. Decker, T. N. T. Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer 42(13), 5531–5541 (2001).
[Crossref]

Wegener, M.

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

J. Fischer, J. B. Mueller, J. Kaschke, T. J. A. Wolf, A. N. Unterreiner, and M. Wegener, “Three-dimensional multi-photon direct laser writing with variable repetition rate,” Opt. Express 21(22), 26244–26260 (2013).
[Crossref]

Wolf, S. M.

Z. Tomova, N. Liaros, S. A. G. Razo, S. M. Wolf, and J. T. Fourkas, “In situ measurement of the effective nonlinear absorption order in multiphoton photoresists,” Laser Photonics Rev. 10(5), 849–854 (2016).
[Crossref]

Wolf, T. J. A.

Wu, X. L.

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Xu, Y.

X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
[Crossref]

Yan, B.

X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
[Crossref]

Yang, J. Q.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Yu, J. C.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Zadoyan, R.

Zakharina, M. Y.

M. Y. Zakharina, V. B. Fedoseev, Y. V. Chechet, S. A. Chesnokov, and A. S. Shaplov, “Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators,” Polym. Sci., Ser. B 59(6), 665–673 (2017).
[Crossref]

Zeitner, U. D.

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

Zhang, A. M.

X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
[Crossref]

Zhang, C. C.

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Zhang, X. Q.

X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
[Crossref]

Zhao, Z. S.

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem. 21(15), 5650–5659 (2011).
[Crossref]

Zissi, S.

S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
[Crossref]

Zukauskas, A.

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

Acs Nano (2)

A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, and C. Fotakis, “Ultra-Low Shrinkage Hybrid Photosensitive Material for Two-Photon Polymerization Microfabrication,” Acs Nano 2(11), 2257–2262 (2008).
[Crossref]

I. Sakellari, E. Kabouraki, D. Gray, V. Purlys, C. Fotakis, A. Pikulin, N. Bityurin, M. Vamvakaki, and M. Farsari, “Diffusion-Assisted High-Resolution Direct Femtosecond Laser Writing,” Acs Nano 6(3), 2302–2311 (2012).
[Crossref]

Adv. Funct. Mater. (3)

M. Gurr, D. Hofmann, M. Ehm, Y. Thomann, R. Kubler, and R. Mulhaupt, “Acrylic nanocomposite resins for use in stereolithography and structural light modulation based rapid prototyping and rapid manufacturing technologies,” Adv. Funct. Mater. 18(16), 2390–2397 (2008).
[Crossref]

L. H. Nguyen, M. Straub, and M. Gu, “Acrylate-based photopolymer for two-photon microfabrication and photonic applications,” Adv. Funct. Mater. 15(2), 209–216 (2005).
[Crossref]

J. Torgersen, X. H. Qin, Z. Q. Li, A. Ovsianikov, R. Liska, and J. Stampfl, “Hydrogels for Two-Photon Polymerization: A Toolbox for Mimicking the Extracellular Matrix,” Adv. Funct. Mater. 23(36), 4542–4554 (2013).
[Crossref]

Adv. Mater. (1)

J. B. Mueller, J. Fischer, F. Mayer, M. Kadic, and M. Wegener, “Polymerization Kinetics in Three-Dimensional Direct Laser Writing,” Adv. Mater. 26(38), 6566–6571 (2014).
[Crossref]

Adv. Opt. Mater. (1)

S. Rekstyte, T. Jonavicius, D. Gailevicius, M. Malinauskas, V. Mizeikis, E. G. Gamaly, and S. Juodkazis, “Nanoscale Precision of 3D Polymerization via Polarization Control,” Adv. Opt. Mater. 4(8), 1209–1214 (2016).
[Crossref]

Anal. Chem. (1)

B. Kaehr, N. Ertas, R. Nielson, R. Allen, R. T. Hill, M. Plenert, and J. B. Shear, “Direct-write fabrication of functional protein matrixes using a low-cost Q-switched laser,” Anal. Chem. 78(9), 3198–3202 (2006).
[Crossref]

Angew. Chem., Int. Ed. (1)

C. N. LaFratta, J. T. Fourkas, T. Baldacchini, and R. A. Farrer, “Multiphoton fabrication,” Angew. Chem., Int. Ed. 46(33), 6238–6258 (2007).
[Crossref]

Appl. Phys. Lett. (3)

J. B. Mueller, J. Fischer, Y. J. Mange, T. Nann, and M. Wegener, “In-situ local temperature measurement during three-dimensional direct laser writing,” Appl. Phys. Lett. 103(12), 123107 (2013).
[Crossref]

K. Takada, K. Kaneko, Y. D. Li, S. Kawata, Q. D. Chen, and H. B. Sun, “Temperature effects on pinpoint photopolymerization and polymerized micronanostructures,” Appl. Phys. Lett. 92(4), 041902 (2008).
[Crossref]

H. B. Sun, S. Matsuo, and H. Misawa, “Three-dimensional photonic crystal structures achieved with two-photon-absorption photopolymerization of resin,” Appl. Phys. Lett. 74(6), 786–788 (1999).
[Crossref]

Biomaterials (1)

F. P. W. Melchels, J. Feijen, and D. W. Grijpma, “A review on stereolithography and its applications in biomedical engineering,” Biomaterials 31(24), 6121–6130 (2010).
[Crossref]

Chem. Mater. (1)

C. A. Coenjarts and C. K. Ober, “Two-photon three-dimensional microfabrication of poly(dimethylsiloxane) elastomers,” Chem. Mater. 16(26), 5556–5558 (2004).
[Crossref]

Chem. Rev. (1)

S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, and R. Mulhaupt, “Polymers for 3D Printing and Customized Additive Manufacturing,” Chem. Rev. 117(15), 10212–10290 (2017).
[Crossref]

Dent. Mater. (1)

J. W. Stansbury and M. J. Idacavage, “3D printing with polymers: Challenges among expanding options and opportunities,” Dent. Mater. 32(1), 54–64 (2016).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

D. S. Correa, M. R. Cardoso, V. Tribuzi, L. Misoguti, and C. R. Mendonca, “Femtosecond Laser in Polymeric Materials: Microfabrication of Doped Structures and Micromachining,” IEEE J. Sel. Top. Quantum Electron. 18(1), 176–186 (2012).
[Crossref]

J. Appl. Phys. (2)

W. H. Teh, U. Durig, U. Drechsler, C. G. Smith, and H. J. Guntherodt, “Effect of low numerical-aperture femtosecond two-photon absorption on (SU-8) resist for ultrahigh-aspect-ratio microstereolithography,” J. Appl. Phys. 97(5), 054907 (2005).
[Crossref]

T. Baldacchini, C. N. LaFratta, R. A. Farrer, M. C. Teich, B. E. A. Saleh, M. J. Naughton, and J. T. Fourkas, “Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization,” J. Appl. Phys. 95(11), 6072–6076 (2004).
[Crossref]

J. Appl. Polym. Sci. (4)

C. Decker and K. Moussa, “Photopolymerization of mutifunctional monomers in condensed phase,” J. Appl. Polym. Sci. 34(4), 1603–1618 (1987).
[Crossref]

X. Q. Zhang, Y. Xu, L. Li, B. Yan, J. J. Bao, and A. M. Zhang, “Acrylate-based photosensitive resin for stereolithographic three-dimensional printing,” J. Appl. Polym. Sci. 136(21), 47487 (2019).
[Crossref]

A. Marcinkowska and E. Andrzejewska, “Viscosity Effects in the Photopolymerization of Two-Monomer Systems,” J. Appl. Polym. Sci. 116(1), 280–287 (2010).
[Crossref]

E. Andrzejewska and A. Marcinkowska, “New Aspects of Viscosity Effects on the Photopolymerization Kinetics of the 2,2-Bis 4-(2-hydroxymethacryloxypropoxy) pheny1 propane/Triethylene Glycol Dimethacrylate Monomer System,” J. Appl. Polym. Sci. 110(5), 2780–2786 (2008).
[Crossref]

J. Laser Appl. (1)

F. Burmeister, S. Steenhusen, R. Houbertz, U. D. Zeitner, S. Nolte, and A. Tunnermann, “Materials and technologies for fabrication of three-dimensional microstructures with sub-100 nm feature sizes by two-photon polymerization,” J. Laser Appl. 24(4), 042014 (2012).
[Crossref]

J. Macromol. Sci., Part A: Pure Appl.Chem. (1)

C. Decker, B. Elzaouk, and D. Decker, “Kinetic study of ultrafast photopolymerization reactions,” J. Macromol. Sci., Part A: Pure Appl.Chem. 33(2), 173–190 (1996).
[Crossref]

J. Mater. Chem. (1)

W. E. Lu, X. Z. Dong, W. Q. Chen, Z. S. Zhao, and X. M. Duan, “Novel photoinitiator with a radical quenching moiety for confining radical diffusion in two-photon induced photopolymerization,” J. Mater. Chem. 21(15), 5650–5659 (2011).
[Crossref]

J. Mater. Sci. (1)

R. Hague, S. Mansour, N. Saleh, and R. Harris, “Materials analysis of stereolithography resins for use in Rapid Manufacturing,” J. Mater. Sci. 39(7), 2457–2464 (2004).
[Crossref]

J. Micro- Nano-Manuf. (1)

S. K. Saha, C. Divin, J. A. Cuadra, and R. M. Panas, “Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization,” J. Micro- Nano-Manuf. 5(3), 031002 (2017).
[Crossref]

J. Opt. (2)

L. Jonusauskas, S. Juodkazis, and M. Malinauskas, “Optical 3D printing: bridging the gaps in the mesoscale,” J. Opt. 20(5), 053001 (2018).
[Crossref]

M. Malinauskas, A. Zukauskas, V. Purlys, K. Belazaras, A. Momot, D. Paipulas, R. Gadonas, A. Piskarskas, H. Gilbergs, A. Gaidukeviciute, I. Sakellari, M. Farsari, and S. Juodkazis, “Femtosecond laser polymerization of hybrid/integrated micro-optical elements and their characterization,” J. Opt. 12(12), 124010 (2010).
[Crossref]

J. Polym. Sci., Part B: Polym. Phys. (1)

P. M. Consoli, A. J. G. Otuka, D. T. Balogh, and C. R. Mendonca, “Feature size reduction in two-photon polymerization by optimizing resin composition,” J. Polym. Sci., Part B: Polym. Phys. 56(16), 1158–1163 (2018).
[Crossref]

JCT Res. (1)

R. Liska, M. Schuster, R. Infuhr, C. Tureeek, C. Fritscher, B. Seidl, V. Schmidt, L. Kuna, A. Haase, F. Varga, H. Lichtenegger, and J. Stampfl, “Photopolymers for rapid prototyping,” JCT Res. 4(4), 505–510 (2007).
[Crossref]

Laser Photonics Rev. (3)

Z. Tomova, N. Liaros, S. A. G. Razo, S. M. Wolf, and J. T. Fourkas, “In situ measurement of the effective nonlinear absorption order in multiphoton photoresists,” Laser Photonics Rev. 10(5), 849–854 (2016).
[Crossref]

N. Liaros and J. T. Fourkas, “The Characterization of Absorptive Nonlinearities,” Laser Photonics Rev. 11(5), 1700106 (2017).
[Crossref]

J. Fischer and M. Wegener, “Three-dimensional optical laser lithography beyond the diffraction limit,” Laser Photonics Rev. 7(1), 22–44 (2013).
[Crossref]

Light: Sci. Appl. (1)

M. Malinauskas, A. Zukauskas, S. Hasegawa, Y. Hayasaki, V. Mizeikis, R. Buividas, and S. Juodkazis, “Ultrafast laser processing of materials: from science to industry,” Light: Sci. Appl. 5(8), e16133 (2016).
[Crossref]

Macromolecules (3)

C. Decker and A. D. Jenkins, “Kinetic approach of O2 inhibition in ultraviolet-induced and laser-induced polymerizations,” Macromolecules 18(6), 1241–1244 (1985).
[Crossref]

A. K. O’Brien and C. N. Bowman, “Impact of oxygen on photopolymerization kinetics and polymer structure,” Macromolecules 39(7), 2501–2506 (2006).
[Crossref]

Z. Q. Li, N. Pucher, K. Cicha, J. Torgersen, S. C. Ligon, A. Ajami, W. Husinsky, A. Rosspeintner, E. Vauthey, S. Naumov, T. Scherzer, J. Stampfl, and R. Liska, “A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization,” Macromolecules 46(2), 352–361 (2013).
[Crossref]

Mater. Today (1)

A. K. Nguyen and R. J. Narayan, “Two-photon polymerization for biological applications,” Mater. Today 20(6), 314–322 (2017).
[Crossref]

Microsyst. Technol. (1)

S. Zissi, A. Bertsch, J.-Y. Jezequel, S. Corbel, D. J. Lougnot, and J. C. Andre, “Stereolithography and microtechniques,” Microsyst. Technol. 2(2), 97–102 (1996).
[Crossref]

Nanotechnology (1)

S. Juodkazis, V. Mizeikis, K. K. Seet, M. Miwa, and H. Misawa, “Two-photon lithography of nanorods in SU-8 photoresist,” Nanotechnology 16(6), 846–849 (2005).
[Crossref]

Nature (2)

S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, “Finer features for functional microdevices - Micromachines can be created with higher resolution using two-photon absorption,” Nature 412(6848), 697–698 (2001).
[Crossref]

B. H. Cumpston, S. P. Ananthavel, S. Barlow, D. L. Dyer, J. E. Ehrlich, L. L. Erskine, A. A. Heikal, S. M. Kuebler, I. Y. S. Lee, D. McCord-Maughon, J. Q. Qin, H. Rockel, M. Rumi, X. L. Wu, S. R. Marder, and J. W. Perry, “Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication,” Nature 398(6722), 51–54 (1999).
[Crossref]

Opt. Eng. (1)

L. Jonusauskas, S. Rekstyte, and M. Malinauskas, “Augmentation of direct laser writing fabrication throughput for three-dimensional structures by varying focusing conditions,” Opt. Eng. 53(12), 125102 (2014).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rep. (1)

M. Malinauskas, M. Farsari, A. Piskarskas, and S. Juodkazis, “Ultrafast laser nanostructuring of photopolymers: A decade of advances,” Phys. Rep. 533(1), 1–31 (2013).
[Crossref]

Polym. Bull. (1)

J. Li, Y. H. Cui, K. Qin, J. C. Yu, C. Guo, J. Q. Yang, C. C. Zhang, D. D. Jiang, and X. Wang, “Synthesis and properties of a low-viscosity UV-curable oligomer for three-dimensional printing,” Polym. Bull. 73(2), 571–585 (2016).
[Crossref]

Polym. Sci., Ser. B (1)

M. Y. Zakharina, V. B. Fedoseev, Y. V. Chechet, S. A. Chesnokov, and A. S. Shaplov, “Effect of Viscosity of Dimethacrylate Ester-Based Compositions on the Kinetics of Their Photopolymerization in Presence of o-Quinone Photoinitiators,” Polym. Sci., Ser. B 59(6), 665–673 (2017).
[Crossref]

Polymer (1)

C. Decker, T. N. T. Viet, D. Decker, and E. Weber-Koehl, “UV-radiation curing of acrylate/epoxide systems,” Polymer 42(13), 5531–5541 (2001).
[Crossref]

Proc. Natl. Acad. Sci. U. S. A. (1)

C. N. LaFratta, L. J. Li, and J. T. Fourkas, “Soft-lithographic replication of 3D microstructures with closed loops,” Proc. Natl. Acad. Sci. U. S. A. 103(23), 8589–8594 (2006).
[Crossref]

Prog. Org. Coat. (1)

K. Studer, C. Decker, E. Beck, and R. Schwalm, “Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I,” Prog. Org. Coat. 48(1), 92–100 (2003).
[Crossref]

Prog. Polym. Sci. (4)

C. Decker, “Photoinitiated crosslinking polymerisation,” Prog. Polym. Sci. 21(4), 593–650 (1996).
[Crossref]

E. Andrzejewska, “Photopolymerization kinetics of multifunctional monomers,” Prog. Polym. Sci. 26(4), 605–665 (2001).
[Crossref]

F. Tudos and T. Foldesberezsnich, “Free-radical polymerization - inhibition and retardation,” Prog. Polym. Sci. 14(6), 717–761 (1989).
[Crossref]

S. Beuermann and M. Buback, “Rate coefficients of free-radical polymerization deduced from pulsed laser experiments,” Prog. Polym. Sci. 27(2), 191–254 (2002).
[Crossref]

Science (2)

L. J. Li, R. R. Gattass, E. Gershgoren, H. Hwang, and J. T. Fourkas, “Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization,” Science 324(5929), 910–913 (2009).
[Crossref]

B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, and H. K. Taylor, “Volumetric additive manufacturing via tomographic reconstruction,” Science 363(6431), 1075–1079 (2019).
[Crossref]

Thin Solid Films (1)

X. M. Duan, H. B. Sun, K. Kaneko, and S. Kawata, “Two-photon polymerization of metal ions doped acrylate monomers and oligomers for three-dimensional structure fabrication,” Thin Solid Films 453-454, 518–521 (2004).
[Crossref]

Other (8)

S. Corbel, O. Dufaud, and T. Roques-Carmes, Materials for Stereolithography (Springer-Verlag Berlin, 2011).

H. Ruth, S. Sonke, S. Thomas, and S. Gerhard, Two-Photon Polymerization of Inorganic-Organic Hybrid Polymers as Scalable Technology Using Ultra-Short Laser Pulses (Intech Europe, 2010).

P. F. Jacobs, Rapid Prototyping & Manufacturing: fundamentals of stereolithography (Society of Manufacturing Engineers, 1992).

C. N. LaFratta and L. J. Li, Making Two-Photon Polymerization Faster (William Andrew Inc, 2016).

P. J. Bártolo, Stereolithography: Materials, Processes and Applications (Springer-Verlag Berlin, 2011).

G. Odian, “Radical chain polymerization,” in Principles of Polymerization (John Wiley & Sons, 1991), pp. 262–266.

G. de Miguel, G. Vicidomini, B. Harke, and A. Diaspro, Linewidth and Writing Resolution (William Andrew Inc, 2016).

J. T. Fourkas, Fundamentals of Two-Photon Fabrication (William Andrew Inc, 2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Molecular structures of (a) monomer DPEPA, (b) monomer BGDA, and (c) photoinitiator BAPO used to make the four resins used in this study. (d) 2-BIT data for a resin containing 0.15 wt% BAPO. The dashed line is the result that would be expected for 2-photon absorption as a reference. The error bars are based on standard deviations from multiple measurements.
Fig. 2.
Fig. 2. Dynamic ranges of the four investigated resins as a function of their viscosities. The blue, red, green, and orange colors represent resins A, B, C, and D, respectively.
Fig. 3.
Fig. 3. Scanning electron microscopy images of samples used to measure writing linewidths. (a) In this overview, five arrays of ascending lines are written using the same experimental condition in Resin D. The polymerized lines used for linewidth measurements are highlighted in yellow. (b) High magnification image of a line written in Resin A using an energy per pulse of 0.29 nJ at a velocity of 50 µm/s. (c) High magnification image of a line written in Resin D using an energy per pulse of 0.30 nJ at a velocity of 50 µm/s. The scale bars are 50 µm, 3 µm, and 2 µm, in (a), (b) and (c), respectively.
Fig. 4.
Fig. 4. Experimental values of TPP writing linewidths as a function of the laser energy per pulse. Data collected for Resins A, B, C, and D are presented together. All structures used for creating this plot were made at a writing speed of 50 µm/s.
Fig. 5.
Fig. 5. Optical microscopy images of arrays of woodpile microstructures fabricated by TPP using Resin A and Resin B. Identical experimental conditions are used in both resins. The woodpile microstructures in each array have different lattice parameters and thus, exhibit different structural colors; this is achieved by varying the line separation (top to bottom) and the laser pulse energy (left to right). A red outline delineates the woodpile microstructures that present well-separated individual rods.

Tables (3)

Tables Icon

Table 1. Composition of the resins investigated in this study with the corresponding viscosity measured at room temperature.

Tables Icon

Table 2. Polymerization (Eth) and damage (Edamage) energy thresholds for the resins considered in this study. The dynamic range for each resin is listed as well.

Tables Icon

Table 3. Diffusion rate coefficients calculated using Eq. (1) for the resin studied in this work. Viscosities of the resins in Pa·s are shown as well.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k d i f f = 8000 R T 3 η

Metrics