Abstract

Polarization properties of silver nanowire (AgNW)/polymer composite films are investigated by spectroscopic polarimetry, with special attention to their potential application as the transparent conductive electrode of touch screen devices. The analysis of the Mueller matrix decomposition for preferentially oriented AgNW networks shows linear diattenuation and retardance, in addition to depolarization due to the scattering of light by AgNWs. Diattenuation, retardance and depolarization increases with increasing loading amounts of AgNWs. Conversely, depolarization decreases when the diameter of the AgNWs decreases. These polarization properties have an impact on the polarization state of the transmitted light. When applied to a model of liquid crystal display (LCD) with in-cell touch screen (AgNW composite film is placed between crossed linear polarizers), this results in light leakage. However, such leakage (transmittance) can be reduced to 7 × 10−4% by using AgNWs with a diameter of less than or equal to 23 nm, in a film with a sheet resistance of 50Ω/sq, and by aligning the optic axis of the composite film with the transmission axis of the polarizers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se2/ZnS thin film solar cells

Xiao-Hui Tan, Yu Chen, and Ye-Xiang Liu
Appl. Opt. 53(15) 3273-3277 (2014)

Influence of the order of diattenuator, retarder, and polarizer in polar decomposition of Mueller matrices

Jérôme Morio and François Goudail
Opt. Lett. 29(19) 2234-2236 (2004)

Polar decomposition of 3×3 Mueller matrix: a tool for quantitative tissue polarimetry

M. K. Swami, S. Manhas, P. Buddhiwant, N. Ghosh, A. Uppal, and P. K. Gupta
Opt. Express 14(20) 9324-9337 (2006)

References

  • View by:
  • |
  • |
  • |

  1. D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
    [Crossref]
  2. S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
    [Crossref]
  3. J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
    [Crossref]
  4. R. Zhang and M. Engholm, “Recent Progress on the Fabrication and Properties of Silver Nanowire-Based Transparent Electrodes,” Nanomaterials 8(8), 628 (2018).
    [Crossref]
  5. X. Xia, B. Yang, X. Zhang, and C. Zhou, “Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending,” Mater. Res. Express 2(7), 075009 (2015).
    [Crossref]
  6. H. Janga, D. Kim, H. Tak, J. Nam, and T.-i. Kim, “Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate,” Curr. Appl. Phys. 16(1), 24–30 (2016).
    [Crossref]
  7. P. Kou, L. Yang, C. Chang, and S. He, “Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach,” Sci. Rep. 7(1), 42052 (2017).
    [Crossref]
  8. M. Spaid, “Wet-processable transparent conductive materials,” Inf. Disp. 28(1), 10–15 (2012).
    [Crossref]
  9. S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
    [Crossref]
  10. R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, “Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors,” ACS Nano 7(9), 7654–7663 (2013).
    [Crossref]
  11. M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
    [Crossref]
  12. M. Jagota and N. Tansu, “Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations,” Sci. Rep. 5(1), 10219 (2015).
    [Crossref]
  13. T. Ackermann, R. Neuhaus, and S. Roth, “The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes,” Sci. Rep. 6(1), 34289 (2016).
    [Crossref]
  14. J. Dong and I. A. Goldthorpe, “Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency,” Nanotechnology 29(4), 045705 (2018).
    [Crossref]
  15. G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
    [Crossref]
  16. C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res. 6(7), 461–468 (2013).
    [Crossref]
  17. T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
    [Crossref]
  18. X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
    [Crossref]
  19. M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
    [Crossref]
  20. L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
    [Crossref]
  21. J. Soni, H. Purwar, and N. Ghosh, “Quantitative polarimetry of plasmon resonant spheroidal metal nanoparticles: A Mueller matrix decomposition study,” Opt. Commun. 285(6), 1599–1607 (2012).
    [Crossref]
  22. Sayantan Ghosh, Jalpa Soni, Sudipta K. Bera, Ayan Banerjee, and Nirmalya Ghosh, “Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects,” Proc. SPIE.8699, 869902 (2013).
    [Crossref]
  23. S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
    [Crossref]
  24. N. G. Khlebtsov, L. A. Trachuk, and A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” Proceedings of the SPIE.5475, 1–11 (2004).
  25. N. G. Khlebtsov, “Anisotropic properties of plasmonic nanoparticles: depolarized light scattering, dichroism, and birefringence,” J. Nanophotonics 4(1), 041587 (2010).
    [Crossref]
  26. G. Walker and M. Fihn, “LCD In-Cell Touch,” Inf. Disp. 26(3), 8–14 (2010).
    [Crossref]
  27. Ranbir Singh, K.N. Narayanan Unni, Ankur Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
    [Crossref]
  28. T. Tomiyama and H. Yamazaki, “Optical anisotropy studies of silver nanowire/polymer composite films with Mueller matrix ellipsometry,” Appl. Surf. Sci. 421, 831–836 (2017).
    [Crossref]
  29. T. Tomiyama and H. Yasuhiro Seri, “Relationship between wire orientation and optical and electrical anisotropy in silver nanowire/polymer composite films,” Appl. Surf. Sci. 469, 340–347 (2019).
    [Crossref]
  30. S.-Y. Lu and R. A. Chipman, “” Interpretation of Mueller matrices based on polar decomposition”,” J. Opt. Soc. Am. A 13(5), 1106–1113 (1996).
    [Crossref]
  31. G. Toshima and T. Tomiyama, “A new touch-panel structure using metal mesh and Ag nanowire,” SID Int. Symp. Dig. Tech. Pap. 47(1), 308–310 (2016).
    [Crossref]
  32. Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
    [Crossref]
  33. A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
    [Crossref]
  34. B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6(1), 19485 (2016).
    [Crossref]
  35. Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A), 1047–1050 (2007).
    [Crossref]

2019 (1)

T. Tomiyama and H. Yasuhiro Seri, “Relationship between wire orientation and optical and electrical anisotropy in silver nanowire/polymer composite films,” Appl. Surf. Sci. 469, 340–347 (2019).
[Crossref]

2018 (5)

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

R. Zhang and M. Engholm, “Recent Progress on the Fabrication and Properties of Silver Nanowire-Based Transparent Electrodes,” Nanomaterials 8(8), 628 (2018).
[Crossref]

J. Dong and I. A. Goldthorpe, “Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency,” Nanotechnology 29(4), 045705 (2018).
[Crossref]

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

2017 (3)

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

P. Kou, L. Yang, C. Chang, and S. He, “Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

T. Tomiyama and H. Yamazaki, “Optical anisotropy studies of silver nanowire/polymer composite films with Mueller matrix ellipsometry,” Appl. Surf. Sci. 421, 831–836 (2017).
[Crossref]

2016 (6)

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6(1), 19485 (2016).
[Crossref]

G. Toshima and T. Tomiyama, “A new touch-panel structure using metal mesh and Ag nanowire,” SID Int. Symp. Dig. Tech. Pap. 47(1), 308–310 (2016).
[Crossref]

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

H. Janga, D. Kim, H. Tak, J. Nam, and T.-i. Kim, “Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate,” Curr. Appl. Phys. 16(1), 24–30 (2016).
[Crossref]

T. Ackermann, R. Neuhaus, and S. Roth, “The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes,” Sci. Rep. 6(1), 34289 (2016).
[Crossref]

2015 (3)

M. Jagota and N. Tansu, “Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations,” Sci. Rep. 5(1), 10219 (2015).
[Crossref]

X. Xia, B. Yang, X. Zhang, and C. Zhou, “Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending,” Mater. Res. Express 2(7), 075009 (2015).
[Crossref]

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

2014 (2)

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

2013 (4)

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res. 6(7), 461–468 (2013).
[Crossref]

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, “Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors,” ACS Nano 7(9), 7654–7663 (2013).
[Crossref]

2012 (4)

M. Spaid, “Wet-processable transparent conductive materials,” Inf. Disp. 28(1), 10–15 (2012).
[Crossref]

S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
[Crossref]

J. Soni, H. Purwar, and N. Ghosh, “Quantitative polarimetry of plasmon resonant spheroidal metal nanoparticles: A Mueller matrix decomposition study,” Opt. Commun. 285(6), 1599–1607 (2012).
[Crossref]

Ranbir Singh, K.N. Narayanan Unni, Ankur Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

2011 (1)

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref]

2010 (2)

N. G. Khlebtsov, “Anisotropic properties of plasmonic nanoparticles: depolarized light scattering, dichroism, and birefringence,” J. Nanophotonics 4(1), 041587 (2010).
[Crossref]

G. Walker and M. Fihn, “LCD In-Cell Touch,” Inf. Disp. 26(3), 8–14 (2010).
[Crossref]

2007 (1)

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A), 1047–1050 (2007).
[Crossref]

1996 (1)

Ackermann, T.

T. Ackermann, R. Neuhaus, and S. Roth, “The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes,” Sci. Rep. 6(1), 34289 (2016).
[Crossref]

Araki, T.

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

Bae, I.-G.

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6(1), 19485 (2016).
[Crossref]

Baffou, G.

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

Banerjee, Ayan

Sayantan Ghosh, Jalpa Soni, Sudipta K. Bera, Ayan Banerjee, and Nirmalya Ghosh, “Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects,” Proc. SPIE.8699, 869902 (2013).
[Crossref]

Bell, A. P.

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

Bellet, D.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Bera, Sudipta K.

Sayantan Ghosh, Jalpa Soni, Sudipta K. Bera, Ayan Banerjee, and Nirmalya Ghosh, “Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects,” Proc. SPIE.8699, 869902 (2013).
[Crossref]

Bergin, S. M.

S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
[Crossref]

Berry, M. T.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref]

Boland, J. J.

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

Celle, C.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Chandel, S.

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

Chang, C.

P. Kou, L. Yang, C. Chang, and S. He, “Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

Charbonneau, P.

S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
[Crossref]

Chen, H.

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

Chen, Y.-H.

S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
[Crossref]

Chen, Z.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Chipman, R. A.

Das, A.

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

Deepak,

Ranbir Singh, K.N. Narayanan Unni, Ankur Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Dong, J.

J. Dong and I. A. Goldthorpe, “Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency,” Nanotechnology 29(4), 045705 (2018).
[Crossref]

Doorn, J. M.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref]

Eastman, P.

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

Engholm, M.

R. Zhang and M. Engholm, “Recent Progress on the Fabrication and Properties of Silver Nanowire-Based Transparent Electrodes,” Nanomaterials 8(8), 628 (2018).
[Crossref]

Fairfield, J. A.

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

Fan, W.

Fan, W. J.

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

Fihn, M.

G. Walker and M. Fihn, “LCD In-Cell Touch,” Inf. Disp. 26(3), 8–14 (2010).
[Crossref]

Gao, Y.

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

Ghosh, A.

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

Ghosh, N.

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

J. Soni, H. Purwar, and N. Ghosh, “Quantitative polarimetry of plasmon resonant spheroidal metal nanoparticles: A Mueller matrix decomposition study,” Opt. Commun. 285(6), 1599–1607 (2012).
[Crossref]

Ghosh, Nirmalya

Sayantan Ghosh, Jalpa Soni, Sudipta K. Bera, Ayan Banerjee, and Nirmalya Ghosh, “Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects,” Proc. SPIE.8699, 869902 (2013).
[Crossref]

Ghosh, Sayantan

Sayantan Ghosh, Jalpa Soni, Sudipta K. Bera, Ayan Banerjee, and Nirmalya Ghosh, “Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects,” Proc. SPIE.8699, 869902 (2013).
[Crossref]

Giusti, G.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Goldthorpe, I. A.

J. Dong and I. A. Goldthorpe, “Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency,” Nanotechnology 29(4), 045705 (2018).
[Crossref]

Han, S.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Han, X.

C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res. 6(7), 461–468 (2013).
[Crossref]

He, S.

P. Kou, L. Yang, C. Chang, and S. He, “Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

Hiyama, I.

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A), 1047–1050 (2007).
[Crossref]

Hong, S.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Hu, L.

C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res. 6(7), 461–468 (2013).
[Crossref]

Huang, H.

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

Hubarevich, A.

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

Huh, Y. H.

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6(1), 19485 (2016).
[Crossref]

Jagota, M.

M. Jagota and N. Tansu, “Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations,” Sci. Rep. 5(1), 10219 (2015).
[Crossref]

Janga, H.

H. Janga, D. Kim, H. Tak, J. Nam, and T.-i. Kim, “Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate,” Curr. Appl. Phys. 16(1), 24–30 (2016).
[Crossref]

Jiang, C.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref]

Jiu, J.

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

Joo, J.

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

Kang, L.

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

Khanarian, G.

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

Khlebtsov, N. G.

N. G. Khlebtsov, “Anisotropic properties of plasmonic nanoparticles: depolarized light scattering, dichroism, and birefringence,” J. Nanophotonics 4(1), 041587 (2010).
[Crossref]

N. G. Khlebtsov, L. A. Trachuk, and A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” Proceedings of the SPIE.5475, 1–11 (2004).

Kim, D.

H. Janga, D. Kim, H. Tak, J. Nam, and T.-i. Kim, “Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate,” Curr. Appl. Phys. 16(1), 24–30 (2016).
[Crossref]

Kim, T.-i.

H. Janga, D. Kim, H. Tak, J. Nam, and T.-i. Kim, “Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate,” Curr. Appl. Phys. 16(1), 24–30 (2016).
[Crossref]

Ko, S. H.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Koga, H.

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

Kondo, K.

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A), 1047–1050 (2007).
[Crossref]

Kou, P.

P. Kou, L. Yang, C. Chang, and S. He, “Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

Kwon, J.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Langley, D.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Lee, H.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Lee, J.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Lee, P.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Li, Z.-Y.

S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
[Crossref]

Lim, R. J. W.

Lin, C.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref]

Liu, X.-Q.

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

Lu, S.-Y.

Luu, Q. N.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref]

Marus, M.

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

Matsuyama, S.

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A), 1047–1050 (2007).
[Crossref]

Mayousse, C.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

McCarthy, E. K.

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

McCloskey, D.

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

Melnikov, A. G.

N. G. Khlebtsov, L. A. Trachuk, and A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” Proceedings of the SPIE.5475, 1–11 (2004).

Mills, S.

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

Munday, J. N.

C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res. 6(7), 461–468 (2013).
[Crossref]

Mutiso, R. M.

R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, “Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors,” ACS Nano 7(9), 7654–7663 (2013).
[Crossref]

Nagao, S.

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

Nam, J.

H. Janga, D. Kim, H. Tak, J. Nam, and T.-i. Kim, “Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate,” Curr. Appl. Phys. 16(1), 24–30 (2016).
[Crossref]

Narayanan Unni, K.N.

Ranbir Singh, K.N. Narayanan Unni, Ankur Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Neuhaus, R.

T. Ackermann, R. Neuhaus, and S. Roth, “The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes,” Sci. Rep. 6(1), 34289 (2016).
[Crossref]

Nogi, M.

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

O’Connell, K.

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

Park, B.

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6(1), 19485 (2016).
[Crossref]

Preston, C.

C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res. 6(7), 461–468 (2013).
[Crossref]

Purwar, H.

J. Soni, H. Purwar, and N. Ghosh, “Quantitative polarimetry of plasmon resonant spheroidal metal nanoparticles: A Mueller matrix decomposition study,” Opt. Commun. 285(6), 1599–1607 (2012).
[Crossref]

Raj, S.

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

Rathmell, A. R.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, “Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors,” ACS Nano 7(9), 7654–7663 (2013).
[Crossref]

S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
[Crossref]

Ray, S. k.

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

Roth, S.

T. Ackermann, R. Neuhaus, and S. Roth, “The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes,” Sci. Rep. 6(1), 34289 (2016).
[Crossref]

Sherrott, M. C.

R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, “Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors,” ACS Nano 7(9), 7654–7663 (2013).
[Crossref]

Simonato, J.-P.

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

Singh, Ranbir

Ranbir Singh, K.N. Narayanan Unni, Ankur Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Smirnov, A.

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

Solanki, Ankur

Ranbir Singh, K.N. Narayanan Unni, Ankur Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Soni, J.

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

J. Soni, H. Purwar, and N. Ghosh, “Quantitative polarimetry of plasmon resonant spheroidal metal nanoparticles: A Mueller matrix decomposition study,” Opt. Commun. 285(6), 1599–1607 (2012).
[Crossref]

Soni, Jalpa

Sayantan Ghosh, Jalpa Soni, Sudipta K. Bera, Ayan Banerjee, and Nirmalya Ghosh, “Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects,” Proc. SPIE.8699, 869902 (2013).
[Crossref]

Spaid, M.

M. Spaid, “Wet-processable transparent conductive materials,” Inf. Disp. 28(1), 10–15 (2012).
[Crossref]

Stanley May, P.

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref]

Stewart, I. E.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Sugahara, T.

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

Suganuma, K.

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

Suh, Y. D.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Sun, X. W.

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

Tak, H.

H. Janga, D. Kim, H. Tak, J. Nam, and T.-i. Kim, “Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate,” Curr. Appl. Phys. 16(1), 24–30 (2016).
[Crossref]

Tansu, N.

M. Jagota and N. Tansu, “Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations,” Sci. Rep. 5(1), 10219 (2015).
[Crossref]

Tomioka, Y.

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A), 1047–1050 (2007).
[Crossref]

Tomiyama, T.

T. Tomiyama and H. Yasuhiro Seri, “Relationship between wire orientation and optical and electrical anisotropy in silver nanowire/polymer composite films,” Appl. Surf. Sci. 469, 340–347 (2019).
[Crossref]

T. Tomiyama and H. Yamazaki, “Optical anisotropy studies of silver nanowire/polymer composite films with Mueller matrix ellipsometry,” Appl. Surf. Sci. 421, 831–836 (2017).
[Crossref]

G. Toshima and T. Tomiyama, “A new touch-panel structure using metal mesh and Ag nanowire,” SID Int. Symp. Dig. Tech. Pap. 47(1), 308–310 (2016).
[Crossref]

Toshima, G.

G. Toshima and T. Tomiyama, “A new touch-panel structure using metal mesh and Ag nanowire,” SID Int. Symp. Dig. Tech. Pap. 47(1), 308–310 (2016).
[Crossref]

Trachuk, L. A.

N. G. Khlebtsov, L. A. Trachuk, and A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” Proceedings of the SPIE.5475, 1–11 (2004).

Trefonas, P.

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

Utsumi, Y.

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A), 1047–1050 (2007).
[Crossref]

Walker, G.

G. Walker and M. Fihn, “LCD In-Cell Touch,” Inf. Disp. 26(3), 8–14 (2010).
[Crossref]

Wang, H.

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

M. Marus, A. Hubarevich, R. J. W. Lim, H. Huang, A. Smirnov, H. Wang, W. Fan, and X. W. Sun, “Effect of silver nanowire length in a broad range on optical and electrical properties as a transparent conductive film,” Opt. Mater. Express 7(3), 1105–1112 (2017).
[Crossref]

Wang, K.

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

Werner, D.

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

Wiley, B. J.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, “Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors,” ACS Nano 7(9), 7654–7663 (2013).
[Crossref]

S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
[Crossref]

Winey, K. I.

R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, “Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors,” ACS Nano 7(9), 7654–7663 (2013).
[Crossref]

Xia, X.

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

X. Xia, B. Yang, X. Zhang, and C. Zhou, “Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending,” Mater. Res. Express 2(7), 075009 (2015).
[Crossref]

Xu, L.

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

Xu, X.

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

Xu, Y.

C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res. 6(7), 461–468 (2013).
[Crossref]

Yamazaki, H.

T. Tomiyama and H. Yamazaki, “Optical anisotropy studies of silver nanowire/polymer composite films with Mueller matrix ellipsometry,” Appl. Surf. Sci. 421, 831–836 (2017).
[Crossref]

Yang, B.

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

X. Xia, B. Yang, X. Zhang, and C. Zhou, “Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending,” Mater. Res. Express 2(7), 075009 (2015).
[Crossref]

Yang, L.

P. Kou, L. Yang, C. Chang, and S. He, “Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

Yang, Z.-J.

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

Yanga, B.

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

Yanga, J.

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

Yasuhiro Seri, H.

T. Tomiyama and H. Yasuhiro Seri, “Relationship between wire orientation and optical and electrical anisotropy in silver nanowire/polymer composite films,” Appl. Surf. Sci. 469, 340–347 (2019).
[Crossref]

Ye, S.

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

Yeo, J.

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

Yuan, Y.

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

Zhang, R.

R. Zhang and M. Engholm, “Recent Progress on the Fabrication and Properties of Silver Nanowire-Based Transparent Electrodes,” Nanomaterials 8(8), 628 (2018).
[Crossref]

Zhang, X.

X. Xia, B. Yang, X. Zhang, and C. Zhou, “Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending,” Mater. Res. Express 2(7), 075009 (2015).
[Crossref]

Zhou, C.

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

X. Xia, B. Yang, X. Zhang, and C. Zhou, “Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending,” Mater. Res. Express 2(7), 075009 (2015).
[Crossref]

ACS Nano (2)

R. M. Mutiso, M. C. Sherrott, A. R. Rathmell, B. J. Wiley, and K. I. Winey, “Integrating Simulations and Experiments To Predict Sheet Resistance and Optical Transmittance in Nanowire Films for Transparent Conductors,” ACS Nano 7(9), 7654–7663 (2013).
[Crossref]

A. P. Bell, J. A. Fairfield, E. K. McCarthy, S. Mills, J. J. Boland, G. Baffou, and D. McCloskey, “Quantitative study of the photothermal properties of metallic nanowire networks,” ACS Nano 9(5), 5551–5558 (2015).
[Crossref]

Adv. Mater. (1)

S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, “Metal Nanowire Networks: The Next Generation of Transparent Conductors,” Adv. Mater. 26(39), 6670–6687 (2014).
[Crossref]

AIP Adv. (1)

M. Marus, A. Hubarevich, W. J. Fan, H. Wang, A. Smirnov, K. Wang, H. Huang, and X. W. Sun, “Optical haze of randomly arranged silver nanowire transparent conductive films with wide range of nanowire diameters,” AIP Adv. 8(3), 035201 (2018).
[Crossref]

Appl. Surf. Sci. (2)

T. Tomiyama and H. Yamazaki, “Optical anisotropy studies of silver nanowire/polymer composite films with Mueller matrix ellipsometry,” Appl. Surf. Sci. 421, 831–836 (2017).
[Crossref]

T. Tomiyama and H. Yasuhiro Seri, “Relationship between wire orientation and optical and electrical anisotropy in silver nanowire/polymer composite films,” Appl. Surf. Sci. 469, 340–347 (2019).
[Crossref]

Curr. Appl. Phys. (1)

H. Janga, D. Kim, H. Tak, J. Nam, and T.-i. Kim, “Ultra-mechanically stable and transparent conductive electrodes using transferred grid of Ag nanowires on flexible substrate,” Curr. Appl. Phys. 16(1), 24–30 (2016).
[Crossref]

Inf. Disp. (2)

M. Spaid, “Wet-processable transparent conductive materials,” Inf. Disp. 28(1), 10–15 (2012).
[Crossref]

G. Walker and M. Fihn, “LCD In-Cell Touch,” Inf. Disp. 26(3), 8–14 (2010).
[Crossref]

J. Appl. Phys. (2)

L. Kang, H. Chen, Z.-J. Yang, Y. Yuan, H. Huang, B. Yang, Y. Gao, and C. Zhou, “Seesaw-like polarized transmission behavior of silver nanowire arrays aligned by off-center spin-coating,” J. Appl. Phys. 123(20), 205110 (2018).
[Crossref]

G. Khanarian, J. Joo, X.-Q. Liu, P. Eastman, D. Werner, K. O’Connell, and P. Trefonas, “The optical and electrical properties of silver nanowire mesh films,” J. Appl. Phys. 114(2), 024302 (2013).
[Crossref]

J. Colloid Interface Sci. (1)

Q. N. Luu, J. M. Doorn, M. T. Berry, C. Jiang, C. Lin, and P. Stanley May, “Preparation and optical properties of silver nanowires and silver-nanowire thin films,” J. Colloid Interface Sci. 356(1), 151–158 (2011).
[Crossref]

J. Mater. Chem. C (1)

J. Kwon, Y. D. Suh, J. Lee, P. Lee, S. Han, S. Hong, J. Yeo, H. Lee, and S. H. Ko, “Recent progress in silver nanowire based flexible/wearable optoelectronics,” J. Mater. Chem. C 6(28), 7445–7461 (2018).
[Crossref]

J. Nanophotonics (1)

N. G. Khlebtsov, “Anisotropic properties of plasmonic nanoparticles: depolarized light scattering, dichroism, and birefringence,” J. Nanophotonics 4(1), 041587 (2010).
[Crossref]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

Y. Utsumi, I. Hiyama, Y. Tomioka, K. Kondo, and S. Matsuyama, “Analysis of light leakage caused by color filter between crossed polarizers,” Jpn. J. Appl. Phys. 46(3A), 1047–1050 (2007).
[Crossref]

Mater. Res. Express (1)

X. Xia, B. Yang, X. Zhang, and C. Zhou, “Enhanced film conductance of silver nanowire-based flexible transparent & conductive networks by bending,” Mater. Res. Express 2(7), 075009 (2015).
[Crossref]

Nano Res. (2)

C. Preston, Y. Xu, X. Han, J. N. Munday, and L. Hu, “Optical haze of transparent and conductive silver nanowire films,” Nano Res. 6(7), 461–468 (2013).
[Crossref]

T. Araki, J. Jiu, M. Nogi, H. Koga, S. Nagao, T. Sugahara, and K. Suganuma, “Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method,” Nano Res. 7(2), 236–245 (2014).
[Crossref]

Nanomaterials (1)

R. Zhang and M. Engholm, “Recent Progress on the Fabrication and Properties of Silver Nanowire-Based Transparent Electrodes,” Nanomaterials 8(8), 628 (2018).
[Crossref]

Nanoscale (1)

S. M. Bergin, Y.-H. Chen, A. R. Rathmell, P. Charbonneau, Z.-Y. Li, and B. J. Wiley, “The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films,” Nanoscale 4(6), 1996–2004 (2012).
[Crossref]

Nanotechnology (2)

D. Langley, G. Giusti, C. Mayousse, C. Celle, D. Bellet, and J.-P. Simonato, “Flexible transparent conductive materials based on silver nanowire networks: a review,” Nanotechnology 24(45), 452001 (2013).
[Crossref]

J. Dong and I. A. Goldthorpe, “Exploiting both optical and electrical anisotropy in nanowire electrodes for higher transparency,” Nanotechnology 29(4), 045705 (2018).
[Crossref]

Opt. Commun. (1)

J. Soni, H. Purwar, and N. Ghosh, “Quantitative polarimetry of plasmon resonant spheroidal metal nanoparticles: A Mueller matrix decomposition study,” Opt. Commun. 285(6), 1599–1607 (2012).
[Crossref]

Opt. Mater. (1)

Ranbir Singh, K.N. Narayanan Unni, Ankur Solanki, and Deepak, “Improving the contrast ratio of OLED displays: An analysis of various techniques,” Opt. Mater. 34(4), 716–723 (2012).
[Crossref]

Opt. Mater. Express (1)

RSC Adv. (1)

X. Xu, S. He, C. Zhou, X. Xia, L. Xu, H. Chen, B. Yanga, and J. Yanga, “Largely-increased length of silver nanowires by controlled oxidative etching processes in solvothermal reaction and the application in highly transparent and conductive networks,” RSC Adv. 6(107), 105895 (2016).
[Crossref]

Sci. Rep. (5)

M. Jagota and N. Tansu, “Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations,” Sci. Rep. 5(1), 10219 (2015).
[Crossref]

T. Ackermann, R. Neuhaus, and S. Roth, “The effect of rod orientation on electrical anisotropy in silver nanowire networks for ultra-transparent electrodes,” Sci. Rep. 6(1), 34289 (2016).
[Crossref]

P. Kou, L. Yang, C. Chang, and S. He, “Improved Flexible Transparent Conductive Electrodes based on Silver Nanowire Networks by a Simple Sunlight Illumination Approach,” Sci. Rep. 7(1), 42052 (2017).
[Crossref]

B. Park, I.-G. Bae, and Y. H. Huh, “Aligned silver nanowire-based transparent electrodes for engineering polarisation-selective optoelectronics,” Sci. Rep. 6(1), 19485 (2016).
[Crossref]

S. Chandel, J. Soni, S. k. Ray, A. Das, A. Ghosh, S. Raj, and N. Ghosh, “Complete polarization characterization of single plasmonic nanoparticle enabled by a novel Dark-field Mueller matrix spectroscopy system,” Sci. Rep. 6(1), 26466 (2016).
[Crossref]

SID Int. Symp. Dig. Tech. Pap. (1)

G. Toshima and T. Tomiyama, “A new touch-panel structure using metal mesh and Ag nanowire,” SID Int. Symp. Dig. Tech. Pap. 47(1), 308–310 (2016).
[Crossref]

Other (2)

N. G. Khlebtsov, L. A. Trachuk, and A. G. Melnikov, “Plasmon resonances of silver and gold nanorods,” Proceedings of the SPIE.5475, 1–11 (2004).

Sayantan Ghosh, Jalpa Soni, Sudipta K. Bera, Ayan Banerjee, and Nirmalya Ghosh, “Mueller matrix polarimetry of plasmon resonant silver nano-rods: biomedical prospects,” Proc. SPIE.8699, 869902 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Typical dark-field optical microscopy images of Samples A, B and G (Panels a), b) and c), respectively). The X and Y directions correspond to the lengthwise and crosswise directions of the composite films, respectively.
Fig. 2.
Fig. 2. Transmission spectrum of Sample F set between a) parallel and b) crossed polarizers. The dashed black line represents the transmission spectrum of the pair of polarizers (without sample). The insets in both panels show the direction of the transmission axis of each polarizer and the optic axes (X, Y) of the sample. The X axis of the reference frame is aligned with the lengthwise direction of the composite film (inset, blue arrow), and the perpendicular Y axis with the crosswise direction of the sample (inset, red arrow). By design, the transmission axis of the incident-side polarizer is aligned with the lengthwise direction of the film for both configurations.
Fig. 3.
Fig. 3. Normal incidence, polarized extinction spectra as a function of the polarization angle of Sample F. Inset figure represents the polarization angle of the incident light, color-coded according to the polarization angle of the incident light. The changeover point between the InGaAs and Si detectors used in the NIR and UV/vis spectral regions, respectively, is located at 900 nm. The measurements near this point (900–940 nm) are too noisy to be used, thus these data are not shown.
Fig. 4.
Fig. 4. Spectroscopic Mueller matrix elements of Sample F measured at azimuthal angles of 0° (blue solid line), 45° (green dotted line) and 90° (red dot-dash line). An azimuth of 0° corresponds to the lengthwise direction of the composite film.
Fig. 5.
Fig. 5. Panel a) Linear diattenuation spectra of Samples B (red), C (orange), D (green), E (blue) and F (purple). Panel b) Orientation of the diattenuation (transmission) axis of Sample F. Azimuths of 0° and 90° correspond to the lengthwise and crosswise directions of the composite film, respectively.
Fig. 6.
Fig. 6. Panel a) Linear retardance spectra of Samples B (red), C (orange), D (green), E (blue) and F (purple). Panel b) Orientation of the fast axis of Sample F. Azimuths of 0° corresponds to the lengthwise directions of the composite film.
Fig. 7.
Fig. 7. Orthogonal optical constants of Sample B. The x, y and z axes are aligned with the lengthwise, crosswise and normal directions of the composite film, respectively. The solid lines represent the components of the refractive index along these axes (nx, blue; ny red; nz, green) and the dashed lines those of the extinction coefficient (kx, ky, kz, same color-coding).
Fig. 8.
Fig. 8. Comparison of the in-plane retardance of Sample B measured by ellipsometry (red dotted line) and polarimetry (blue solid line).
Fig. 9.
Fig. 9. Polar representation of the transmittance of Sample F in the a) parallel and b) crossed configurations at 450 nm (blue curve) and 700 nm (red curve). Sample F is rotated by 360°. The measurement geometry is shown in the inset figures. Panels c) and d) show the transmission spectra at 0° and 45°, respectively, in the crossed configuration.
Fig. 10.
Fig. 10. Depolarization spectra of a) Samples B (red), C (orange), D (green), E (blue), and F (purple); b) Sample A (light blue), B (red) and G (black).
Fig. 11.
Fig. 11. Light leakage (transmittance) of a) Samples B (red), C (orange), D (green), E (blue) and F (purple); b) Sample A (light blue), B (red) and G (black), in the crossed configuration. Measurements are acquired close to the transparent axis of a linear polarizer (azimuthal angle of 0°), by rotating the sample from -7.5° to + 7.5° by steps of 2.5°

Tables (1)

Tables Icon

Table 1. Properties of the AgNWs/polymer composite film samples used in this study.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

M(x,y,δ,d1,d2,d3)=(x+y2xy200xy2x+y20000xy0000xy)(1000010000cosδsinδ00sinδcosδ)(100001d100001d200001d3)=(x+y2xy200(xy)(1d1)2(x+y)(1d1)20000xycosδ(1d2)xysinδ(1d2)00xysinδ(1d3)xycosδ(1d3)).
S0=(S00S01S02S03)=P(q,r)M(x,y,δ,d1,d2,d3)P(q,r)(1000),S90=(S900S901S902S903)=R(π2)P(q,r)R(π2)M(x,y,δ,d1,d2,d3)P(q,r)(1000).
S00=4x2xd1,
S900=2xd1.
d1=21+S00S900.