Abstract

We present the design and numerical characterization of a hybrid photonic-plasmonic nanoresonator comprised of a 2D photonic crystal (PhC) cavity, a gold bowtie nanoantenna (BNA) and a silicon dioxide, SiO2, spacer. This device is designed to serve as the building block of a multicomponent platform capable of running multiple single-molecule experiments such as optical trapping and sample interrogation simultaneously. The thickness and structure of the spacer layer are adjusted to maximize the energy in the externally accessible hot-spot in the BNA gap. Suitability of the device for photonic integration is demonstrated by exciting it through a PhC waveguide.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators

Maysamreza Chamanzar and Ali Adibi
Opt. Express 19(22) 22292-22304 (2011)

Hybrid photonic-plasmonic molecule based on metal/Si disks

Qing Wang, Hang Zhao, Xu Du, Weichun Zhang, Min Qiu, and Qiang Li
Opt. Express 21(9) 11037-11047 (2013)

Light funneling from a photonic crystal laser cavity to a nano-antenna: overcoming the diffraction limit in optical energy transfer down to the nanoscale

Mathieu Mivelle, Pierre Viktorovitch, Fadi I. Baida, Ali El Eter, Zhihua Xie, Than-Phong Vo, Elie Atie, Geoffrey W. Burr, Dusan Nedeljkovic, Jean-Yves Rauch, Ségolène Callard, and Thierry Grosjean
Opt. Express 22(12) 15075-15087 (2014)

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
    [Crossref] [PubMed]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [Crossref] [PubMed]
  3. P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett. 37(10), 1649–1651 (2012).
    [Crossref] [PubMed]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  5. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  6. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  7. B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
    [Crossref] [PubMed]
  8. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [Crossref] [PubMed]
  9. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors”, In Nanoscience And Technology: A Collection of Reviews from Nature Journals, 308–319 (2010).
  10. P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
    [Crossref] [PubMed]
  11. Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
    [Crossref] [PubMed]
  12. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  13. G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
    [Crossref] [PubMed]
  14. D. Conteduca, F. Dell’Olio, T. F. Krauss, and C. Ciminelli, “Photonic and plasmonic nanotweezing of nano-and microscale particles,” Appl. Spectrosc. 71(3), 367–390 (2017).
    [Crossref] [PubMed]
  15. M. Kamandar Dezfouli and S. Hughes, “Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators,” ACS Photonics 4(5), 1245–1256 (2017).
    [Crossref]
  16. E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
    [Crossref] [PubMed]
  17. F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
    [Crossref] [PubMed]
  18. M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit,” ACS Nano 9(7), 7621–7633 (2015).
    [Crossref] [PubMed]
  19. S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
    [Crossref]
  20. S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
    [Crossref] [PubMed]
  21. M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
    [Crossref] [PubMed]
  22. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
    [Crossref] [PubMed]
  23. A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
    [Crossref] [PubMed]
  24. Z. Li, J. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal–insulator–metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
    [Crossref]
  25. I. Mukherjee and R. Gordon, “Analysis of hybrid plasmonic-photonic crystal structures using perturbation theory,” Opt. Express 20(15), 16992–17000 (2012).
    [Crossref]
  26. M. Xi and B. M. Reinhard, “Localized surface plasmon coupling between mid-IR-resonant ITO nanocrystals,” J Phys Chem C Nanomater Interfaces 122(10), 5698–5704 (2018).
    [Crossref] [PubMed]
  27. X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
    [Crossref] [PubMed]
  28. M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
    [Crossref] [PubMed]
  29. X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19(14), 12865–12872 (2011).
    [Crossref] [PubMed]
  30. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
    [Crossref]
  31. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
    [Crossref] [PubMed]
  32. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
    [Crossref] [PubMed]
  33. M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
    [Crossref] [PubMed]
  34. T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
    [Crossref] [PubMed]
  35. A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a Bowtie Nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
    [Crossref] [PubMed]
  36. M. Mossayebi, G. Bellanca, A. Parini, A. J. Wright, and E. C. Larkins, “Engineering of Hybrid Photonic-Plasmonic Devices for Enhanced Light-Matter Interactions”, In Recent Trends in Computational Photonics, Springer, Cham., 369–390 (2017).
  37. M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
    [Crossref]
  38. F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
    [Crossref] [PubMed]
  39. C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
    [Crossref]
  40. C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 71(16), 165118 (2005).
    [Crossref]
  41. W. Yu-Ming, L. Le-Wei, and L. Bo, “Geometric effects in designing bow-tie nanoantenna for optical resonance investigation.”, Electromagnetic Compatibility (APEMC), 2010 Asia- Pacific Symposium on, 1108–1111 (2010).
    [Crossref]
  42. H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
    [Crossref]
  43. S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
    [Crossref]
  44. LumericalSolutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  46. A. C. Lesina, A. Vaccari, P. Berini, and L. Ramunno, “On the convergence and accuracy of the FDTD method for nanoplasmonics,” Opt. Express 23(8), 10481–10497 (2015).
    [Crossref] [PubMed]
  47. https://kb.lumerical.com/en/index.html?diffractive_optics_cavity_q_calculation.html .

2018 (2)

M. Xi and B. M. Reinhard, “Localized surface plasmon coupling between mid-IR-resonant ITO nanocrystals,” J Phys Chem C Nanomater Interfaces 122(10), 5698–5704 (2018).
[Crossref] [PubMed]

F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
[Crossref] [PubMed]

2017 (4)

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

D. Conteduca, F. Dell’Olio, T. F. Krauss, and C. Ciminelli, “Photonic and plasmonic nanotweezing of nano-and microscale particles,” Appl. Spectrosc. 71(3), 367–390 (2017).
[Crossref] [PubMed]

M. Kamandar Dezfouli and S. Hughes, “Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators,” ACS Photonics 4(5), 1245–1256 (2017).
[Crossref]

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

2016 (3)

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
[Crossref]

2015 (6)

A. C. Lesina, A. Vaccari, P. Berini, and L. Ramunno, “On the convergence and accuracy of the FDTD method for nanoplasmonics,” Opt. Express 23(8), 10481–10497 (2015).
[Crossref] [PubMed]

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit,” ACS Nano 9(7), 7621–7633 (2015).
[Crossref] [PubMed]

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

2014 (6)

A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
[Crossref] [PubMed]

Z. Li, J. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal–insulator–metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a Bowtie Nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
[Crossref] [PubMed]

2013 (1)

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

2012 (4)

I. Mukherjee and R. Gordon, “Analysis of hybrid plasmonic-photonic crystal structures using perturbation theory,” Opt. Express 20(15), 16992–17000 (2012).
[Crossref]

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett. 37(10), 1649–1651 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (3)

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

2009 (1)

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

2008 (4)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

2005 (1)

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aassime, A.

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

Abasahl, B.

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit,” ACS Nano 9(7), 7621–7633 (2015).
[Crossref] [PubMed]

Acimovic, S. S.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

Adibi, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
[Crossref] [PubMed]

Aichele, T.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Andreani, L. C.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

Apuzzo, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Armenise, M.

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

Atie, E.

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Awschalom, D.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Bahramipanah, M.

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit,” ACS Nano 9(7), 7621–7633 (2015).
[Crossref] [PubMed]

Baida, F. I.

Ballarini, D.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barth, M.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Becker, J.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Belarouci, A.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Bellanca, G.

M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
[Crossref]

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

Benson, O.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Benyattou, T.

Berini, P.

Bermúdez-Ureña, E.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Berthelot, J.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

Bhuiya, A. M.

H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Blaize, S.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Bole, S.

Bondi, A.

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Bracher, D.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Bravo-Abad, J.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Businaro, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Callard, S.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Castro-Lopez, M.

Chamanzar, M.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
[Crossref] [PubMed]

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Chen, H.

H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Chen, Z.

F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
[Crossref] [PubMed]

Chevalier, C.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Choo, H.

Z. Li, J. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal–insulator–metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Chow, E. K.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Ciminelli, C.

D. Conteduca, F. Dell’Olio, T. F. Krauss, and C. Ciminelli, “Photonic and plasmonic nanotweezing of nano-and microscale particles,” Appl. Spectrosc. 71(3), 367–390 (2017).
[Crossref] [PubMed]

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

Ciracì, C.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Combrié, S.

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

Conteduca, D.

D. Conteduca, F. Dell’Olio, T. F. Krauss, and C. Ciminelli, “Photonic and plasmonic nanotweezing of nano-and microscale particles,” Appl. Spectrosc. 71(3), 367–390 (2017).
[Crossref] [PubMed]

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

Cuerda, J.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Cui, S.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Cuscunà, M.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Dagens, B.

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Das, G.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

De Angelis, F.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

De Giorgi, M.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

De Rossi, A.

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

de Sousa, N.

Dell’Olio, F.

D. Conteduca, F. Dell’Olio, T. F. Krauss, and C. Ciminelli, “Photonic and plasmonic nanotweezing of nano-and microscale particles,” Appl. Spectrosc. 71(3), 367–390 (2017).
[Crossref] [PubMed]

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

Di Fabrizio, E.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

Dominici, L.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Duan, X.

F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
[Crossref] [PubMed]

Dutta-Gupta, S.

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit,” ACS Nano 9(7), 7621–7633 (2015).
[Crossref] [PubMed]

El Eter, A.

Eres, G.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Esposito, M.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Eter, A. E.

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Fang, N. X.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Feng, D.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Fevrier, M.

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

Filiatre, C.

Fischer, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Fontcuberta I Morral, A.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Fung, K. H.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Gaddis, A. L.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Galli, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

Garcia-Martin, A.

García-Vidal, F. J.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Gardes, F. Y.

Genov, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Gigli, G.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Gogol, P.

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

Gong, Q.

F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
[Crossref] [PubMed]

Gordon, R.

Grosjean, T.

Gu, B.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Gu, Y.

F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
[Crossref] [PubMed]

Hameed, N. M.

Hatab, N. A.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

He, X.

Hsueh, C. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hu, E. L.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Hughes, S.

M. Kamandar Dezfouli and S. Hughes, “Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators,” ACS Photonics 4(5), 1245–1256 (2017).
[Crossref]

P. T. Kristensen, C. Van Vlack, and S. Hughes, “Generalized effective mode volume for leaky optical cavities,” Opt. Lett. 37(10), 1649–1651 (2012).
[Crossref] [PubMed]

Hugonin, J. P.

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

Ishikawa, A.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Jagadish, C.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

Jamois, C.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Jiang, N.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Kamandar Dezfouli, M.

M. Kamandar Dezfouli and S. Hughes, “Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators,” ACS Photonics 4(5), 1245–1256 (2017).
[Crossref]

Kim, M.

Z. Li, J. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal–insulator–metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Ko, K. D.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Kou, J.

Z. Li, J. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal–insulator–metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Krauss, T. F.

Kristensen, P. T.

Kumar, A.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Lalanne, P.

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

Larkins, E. C.

M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
[Crossref]

Lee, J.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Lee, J. O.

Z. Li, J. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal–insulator–metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Lesina, A. C.

Letartre, X.

Li, J. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Li, L.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

Li, Z.

Z. Li, J. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal–insulator–metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

Liu, G. L.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Liu, R.

H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

Liu, T.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Löchel, B.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Luo, Y.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Magno, G.

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

Maksymov, I.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

Malaguti, S.

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

Martin, O. J. F.

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit,” ACS Nano 9(7), 7621–7633 (2015).
[Crossref] [PubMed]

Mégy, R.

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

Mestres, P.

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

Moerner, W.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Mokkapati, S.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

Mossayebi, M.

M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
[Crossref]

Mukherjee, I.

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nagy, A.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Nedeljkovic, D.

Neuman, K. C.

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Nguyen, K. N.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nüsse, N.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Ohno, K.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Ottaviano, L.

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Panaro, S.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Pang, Y.

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

Parini, A.

M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
[Crossref]

Passaseo, A.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Patrini, M.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

Pile, D.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Quidant, R.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Ramunno, L.

Reinhard, B. M.

M. Xi and B. M. Reinhard, “Localized surface plasmon coupling between mid-IR-resonant ITO nanocrystals,” J Phys Chem C Nanomater Interfaces 122(10), 5698–5704 (2018).
[Crossref] [PubMed]

Ren, J.

F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
[Crossref] [PubMed]

Retterer, S. T.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Roxworthy, B. J.

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Salas-Montiel, R.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Salut, R.

Sanvitto, D.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Sapienza, R.

Sauvan, C.

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

Saxena, D.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

Schietinger, S.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Smith, C. L. C.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Somekh, M. G.

M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
[Crossref]

Sönnichsen, C.

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Tan, H. H.

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

Tasco, V.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Todisco, F.

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

Toussaint, K. C.

H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

Trillo, S.

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

Tutuncuoglu, G.

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Vaccari, A.

Van Vlack, C.

Viktorovitch, P.

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Wasserman, D. M.

H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Wright, A. J.

M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
[Crossref]

Xi, M.

M. Xi and B. M. Reinhard, “Localized surface plasmon coupling between mid-IR-resonant ITO nanocrystals,” J Phys Chem C Nanomater Interfaces 122(10), 5698–5704 (2018).
[Crossref] [PubMed]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Yang, L.

Yang, T.

Yang, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Yin, X.

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yvind, K.

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

Zhang, F.

F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
[Crossref] [PubMed]

Zhang, T.

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Zhang, X.

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

Zhang, Z.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

ACS Nano (3)

F. Todisco, M. Esposito, S. Panaro, M. De Giorgi, L. Dominici, D. Ballarini, A. I. Fernández-Domínguez, V. Tasco, M. Cuscunà, A. Passaseo, C. Ciracì, G. Gigli, and D. Sanvitto, “Toward cavity quantum electrodynamics with hybrid photon gap-plasmon states,” ACS Nano 10(12), 11360–11368 (2016).
[Crossref] [PubMed]

M. Bahramipanah, S. Dutta-Gupta, B. Abasahl, and O. J. F. Martin, “Cavity-Coupled Plasmonic Device with Enhanced Sensitivity and Figure-of-Merit,” ACS Nano 9(7), 7621–7633 (2015).
[Crossref] [PubMed]

X. Yang, A. Ishikawa, X. Yin, and X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011).
[Crossref] [PubMed]

ACS Photonics (3)

Z. Li, J. Kou, M. Kim, J. O. Lee, and H. Choo, “Highly efficient and tailorable on-chip metal–insulator–metal plasmonic nanofocusing cavity,” ACS Photonics 1(10), 944–953 (2014).
[Crossref]

M. Kamandar Dezfouli and S. Hughes, “Quantum optics model of surface-enhanced Raman spectroscopy for arbitrarily shaped plasmonic resonators,” ACS Photonics 4(5), 1245–1256 (2017).
[Crossref]

S. Cui, X. Zhang, T. Liu, J. Lee, D. Bracher, K. Ohno, D. Awschalom, and E. L. Hu, “Hybrid plasmonic photonic crystal cavity for enhancing emission from near-surface nitrogen vacancy centers in diamond,” ACS Photonics 2(4), 465–469 (2015).
[Crossref]

Appl. Spectrosc. (1)

IEEE Photonics J. (1)

C. Ciminelli, D. Conteduca, F. Dell’Olio, and M. Armenise, “Design of an optical trapping device based on an ultra-high Q/V resonant structure,” IEEE Photonics J. 6(6), 1–16 (2014).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

M. Xi and B. M. Reinhard, “Localized surface plasmon coupling between mid-IR-resonant ITO nanocrystals,” J Phys Chem C Nanomater Interfaces 122(10), 5698–5704 (2018).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

H. Chen, A. M. Bhuiya, R. Liu, D. M. Wasserman, and K. C. Toussaint, “Design, fabrication, and characterization of near-IR gold bowtie nanoantenna arrays,” J. Phys. Chem. C 118(35), 20553–20558 (2014).
[Crossref]

J. Phys. Condens. Matter (1)

F. Zhang, J. Ren, X. Duan, Z. Chen, Q. Gong, and Y. Gu, “Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system,” J. Phys. Condens. Matter 30(30), 305302 (2018).
[Crossref] [PubMed]

Light Sci. Appl. (1)

P. Mestres, J. Berthelot, S. S. Aćimović, and R. Quidant, “Unraveling the optomechanical nature of plasmonic trapping,” Light Sci. Appl. 5(7), e16092 (2016).
[Crossref] [PubMed]

Nano Lett. (8)

Y. Pang and R. Gordon, “Optical trapping of a single protein,” Nano Lett. 12(1), 402–406 (2012).
[Crossref] [PubMed]

B. J. Roxworthy, K. D. Ko, A. Kumar, K. H. Fung, E. K. Chow, G. L. Liu, N. X. Fang, and K. C. Toussaint, “Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting,” Nano Lett. 12(2), 796–801 (2012).
[Crossref] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

S. Mokkapati, D. Saxena, N. Jiang, L. Li, H. H. Tan, and C. Jagadish, “An order of magnitude increase in the quantum efficiency of (Al)GaAs nanowires using hybrid photonic-plasmonic modes,” Nano Lett. 15(1), 307–312 (2015).
[Crossref] [PubMed]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nano Lett. 8(8), 2321–2327 (2008).
[Crossref] [PubMed]

M. Barth, S. Schietinger, S. Fischer, J. Becker, N. Nüsse, T. Aichele, B. Löchel, C. Sönnichsen, and O. Benson, “Nanoassembled plasmonic-photonic hybrid cavity for tailored light-matter coupling,” Nano Lett. 10(3), 891–895 (2010).
[Crossref] [PubMed]

E. Bermúdez-Ureña, G. Tutuncuoglu, J. Cuerda, C. L. C. Smith, J. Bravo-Abad, S. I. Bozhevolnyi, A. Fontcuberta I Morral, F. J. García-Vidal, and R. Quidant, “Plasmonic Waveguide-Integrated Nanowire Laser,” Nano Lett. 17(2), 747–754 (2017).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-chip hybrid photonic-plasmonic light concentrator for nanofocusing in an integrated silicon photonics platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

T. Zhang, S. Callard, C. Jamois, C. Chevalier, D. Feng, and A. Belarouci, “Plasmonic-photonic crystal coupled nanolaser,” Nanotechnology 25(31), 315201 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Methods (1)

K. C. Neuman and A. Nagy, “Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy,” Nat. Methods 5(6), 491–505 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol. 3(11), 660–665 (2008).
[Crossref] [PubMed]

Nat. Photonics (3)

R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, and X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2(8), 496–500 (2008).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nature (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Opt. Express (7)

M. Castro-Lopez, N. de Sousa, A. Garcia-Martin, F. Y. Gardes, and R. Sapienza, “Scattering of a plasmonic nanoantenna embedded in a silicon waveguide,” Opt. Express 23(22), 28108–28118 (2015).
[Crossref] [PubMed]

A. E. Eter, T. Grosjean, P. Viktorovitch, X. Letartre, T. Benyattou, and F. I. Baida, “Huge light-enhancement by coupling a Bowtie Nano-antenna’s plasmonic resonance to a photonic crystal mode,” Opt. Express 22(12), 14464–14472 (2014).
[Crossref] [PubMed]

A. El Eter, N. M. Hameed, F. I. Baida, R. Salut, C. Filiatre, D. Nedeljkovic, E. Atie, S. Bole, and T. Grosjean, “Fiber-integrated optical nano-tweezer based on a bowtie-aperture nano-antenna at the apex of a SNOM tip,” Opt. Express 22(8), 10072–10080 (2014).
[Crossref] [PubMed]

I. Mukherjee and R. Gordon, “Analysis of hybrid plasmonic-photonic crystal structures using perturbation theory,” Opt. Express 20(15), 16992–17000 (2012).
[Crossref]

M. Chamanzar and A. Adibi, “Hybrid nanoplasmonic-photonic resonators for efficient coupling of light to single plasmonic nanoresonators,” Opt. Express 19(22), 22292–22304 (2011).
[Crossref] [PubMed]

X. He, L. Yang, and T. Yang, “Optical nanofocusing by tapering coupled photonic-plasmonic waveguides,” Opt. Express 19(14), 12865–12872 (2011).
[Crossref] [PubMed]

A. C. Lesina, A. Vaccari, P. Berini, and L. Ramunno, “On the convergence and accuracy of the FDTD method for nanoplasmonics,” Opt. Express 23(8), 10481–10497 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Quantum Electron. (2)

M. Mossayebi, A. J. Wright, A. Parini, M. G. Somekh, G. Bellanca, and E. C. Larkins, “Investigating the use of a hybrid plasmonic–photonic nanoresonator for optical trapping using finite-difference time-domain method,” Opt. Quantum Electron. 48(5), 275 (2016).
[Crossref]

S. Malaguti, G. Bellanca, L. Ottaviano, K. Yvind, S. Combrié, A. De Rossi, and S. Trillo, “Tailored design of WDM filters in BCB embedded PhC membranes,” Opt. Quantum Electron. 45(4), 329–342 (2013).
[Crossref]

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

C. Sauvan, P. Lalanne, and J. P. Hugonin, “Slow-wave effect and mode-profile matching in photonic crystal microcavities,” Phys. Rev. B Condens. Matter Mater. Phys. 71(16), 165118 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[Crossref] [PubMed]

Sci. Rep. (1)

G. Magno, M. Fevrier, P. Gogol, A. Aassime, A. Bondi, R. Mégy, and B. Dagens, “Strong coupling and vortexes assisted slow light in plasmonic chain-SOI waveguide systems,” Sci. Rep. 7(1), 7228 (2017).
[Crossref] [PubMed]

Other (5)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors”, In Nanoscience And Technology: A Collection of Reviews from Nature Journals, 308–319 (2010).

M. Mossayebi, G. Bellanca, A. Parini, A. J. Wright, and E. C. Larkins, “Engineering of Hybrid Photonic-Plasmonic Devices for Enhanced Light-Matter Interactions”, In Recent Trends in Computational Photonics, Springer, Cham., 369–390 (2017).

W. Yu-Ming, L. Le-Wei, and L. Bo, “Geometric effects in designing bow-tie nanoantenna for optical resonance investigation.”, Electromagnetic Compatibility (APEMC), 2010 Asia- Pacific Symposium on, 1108–1111 (2010).
[Crossref]

LumericalSolutions, Inc., http://www.lumerical.com/tcad-products/fdtd/ .

https://kb.lumerical.com/en/index.html?diffractive_optics_cavity_q_calculation.html .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Illustration of the proposed hybrid device comprised of an L3 PhC cavity (black), a gold BNA (yellow) and a SiO2 layer of thickness d (blue) and (b) an illustration of the W1 PhC waveguide used to excite the hybrid structure.
Fig. 2
Fig. 2 Effect of changing the spacer layer thickness, d, on the (a) Q, (b) RI, (c) Veff, (d) Q/Veff and (e) RIQ. Figures are produced at the fundamental resonant mode of the structure.
Fig. 3
Fig. 3 Comparison between the spectral responses of the isolated L3 cavity (red curve), the hybrid nanoresonator comprised of the BNA and the L3 PhC cavity separated by a 75nm thick drilled layer of SiO2 (blue dashed curve) and the 700nm BNA placed on top a 75nm thick layer with an effective reflective index matching the PhC layer and the SiO2 layer (black curve). The curves are normalized with respect to their maximum value.
Fig. 4
Fig. 4 Logarithmic plots of the optical intensity (|Ey|2) in the xy plane positioned on the top surface of the structures (including the 75 nm thick spacer layer) (a) without and (b) with the BNA and in the yz plane passing through the center of the structure (c) without and (d) with the BNA when the structure is excited with a point source. (e) Shows the comparison of the optical intensity (|Ey|2) along a vertical line passing through the center of the structure with (blue) and without (red) the BNA when the structure is excited with a point source.
Fig. 5
Fig. 5 (a) Logarithmic plot of the optical intensity (|Ey|2) in the xy plane at the top surface of the structure when the hybrid cavity is excited via a W1 PhC waveguide. (b) The expanded plot shows the optical intensity pattern in the BNA region. Comparison of the optical intensity (|Ey|2) along a vertical line passing through the center of the structure with (blue) and without (red) the BNA when the structure is excited with a W1 waveguide.

Tables (1)

Tables Icon

Table 1 Comparison of λ0, Q, Veff, Q/Veff and RIQ of the device at different design stages.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

FOM= U BNA P in ,
P in = 2π f opt U hybrid Q ,
FOM= U BNA Q 2π f opt U hybrid .
U BNA U hybrid   V BNA ϵ BNA E BNA 2 V PhC ϵ PhC E PhC 2 ,
U BNA U hybrid   V BNA V PhC R I ,
FOM  V BNA R I Q 2π f opt V PhC   R I Q.