Abstract

We demonstrated that gold nanowires (GNWs), as a new kind of saturable absorber (SA), could be used to construct all-fiber passively Q-switched thulium-doped fiber lasers (TDFL). The GNWs were mixed with polyvinylpyrrolidone (PVP) to form the GNWs-PVP SA film. It exhibited a broad absorption band covered from 300 nm to 2500 nm, which was induced by the surface plasmon resonance (SPR) absorption of GNWs. When the GNWs-PVP SA film was inserted into the TDFL cavity pumped by a 1570 nm fiber laser, a stable passively Q-switched laser at ∼1940nm was obtained when the threshold of pump power exceeded ∼800 mW. Furthermore, ∼2.4 µs pulses with a repetition rate of 52.75 kHz were also obtained at the pump power of ∼1500 mW.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser

Zhe Kang, Xingyuan Guo, Zhixu Jia, Yang Xu, Lai Liu, Dan Zhao, Guanshi Qin, and Weiping Qin
Opt. Mater. Express 3(11) 1986-1991 (2013)

Passively Q-switched erbium doped fiber laser using a gold nanostars based saturable absorber

Zhe Kang, Mingyi Liu, Zhenwei Li, Siqing Li, Zhixu Jia, Chengzhi Liu, Weiping Qin, and Guanshi Qin
Photon. Res. 6(6) 549-553 (2018)

Passively Q-switched erbium-doped fiber laser using evanescent field interaction with gold-nanosphere based saturable absorber

Dengfeng Fan, Chengbo Mou, Xuekun Bai, Shaofei Wang, Na Chen, and Xianglong Zeng
Opt. Express 22(15) 18537-18542 (2014)

References

  • View by:
  • |
  • |
  • |

  1. G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
    [Crossref]
  2. C. Liu, C. C. Ye, Z. Q. Luo, H. H. Cheng, D. D. Wu, Y. L. Zheng, Z. Liu, and B. Qu, “High-energy passively Q-switched 2 µm Tm3+-doped double-clad fiber laser using grapheneoxide-deposited fiber taper,” Opt. Express 21(1), 204–209 (2013).
    [Crossref]
  3. L. Wu, D. Li, S. Zhao, K. Yang, X. Li, R. Wang, and J. Liu, “Passive Q-switching with GaAs or Bi-doped GaAs saturable absorber in Tm:LuAG laser operating at 2 µm wavelength,” Opt. Express 23(12), 15469–15476 (2015).
    [Crossref]
  4. Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-,1.5-,and 2 µm fiber lasers Q-Switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4077–4084 (2014).
    [Crossref]
  5. C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium and samarium-doped laser,” Opt. Express 37(4), 629–631 (2012).
    [Crossref]
  6. U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
    [Crossref]
  7. Y. X. Zhuang, J. J. Zhou, J. H. Xie, Y. Teng, and J. R. Qiu, “Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4:Cr4+ nanocrystals,” J. Mater. Res. 25(09), 1833–1837 (2010).
    [Crossref]
  8. R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-mm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Express 22(13), 991–993 (1997).
    [Crossref]
  9. Y. L. Tang, X. C. Yu, X. H. Li, Z. Y. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Express 39(3), 614–617 (2014).
    [Crossref]
  10. L. Wu, D. Li, S. Zhao, K. Yang, X. Li, R. Wang, and J. Liu, “Passive Q-switching with GaAs or Bi-doped GaAs saturable absorber in Tm:LuAG laser operating at 2µm wavelength,” Opt. Express 23(12), 15469–15476 (2015).
    [Crossref]
  11. D. P. Zhou, L. Wei, B. Dongand, and W. K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
    [Crossref]
  12. M. Laroche, A. M. Chardon, J. Nilsson, D. P. Shepherd, W. A. Clarkson, S. Girard, and R. Moncorge, “Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser,” Opt. Lett. 27(22), 1980–1982 (2002).
    [Crossref]
  13. T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
    [Crossref]
  14. Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013).
    [Crossref]
  15. Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
    [Crossref]
  16. S. B. Lu, Z. N. Guo, X. D. Xu, H. Zhang, D. Y. Tang, and D. Y. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643 (2015).
    [Crossref]
  17. L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
    [Crossref]
  18. Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
    [Crossref]
  19. X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
    [Crossref]
  20. H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
    [Crossref]
  21. L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
    [Crossref]
  22. E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
    [Crossref]
  23. Y. Kondo and K. Takayanagi, “Synthesis and Characterization of Helical Multi-Shell Gold Nanowires,” Science 289(5479), 606–608 (2000).
    [Crossref]
  24. C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, “Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing,” Langmuir 29(5), 1669–1675 (2013).
    [Crossref]
  25. Y. Lu, J. Song, J. Y. Huang, and J. Lou, “Fracture of sub-20 nm ultrathin gold nanowires,” Adv. Funct. Mater. 21(20), 3982–3989 (2011).
    [Crossref]
  26. V. Rodrigues, T. Fuhrer, and D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires,” Phys. Rev. Lett. 85(19), 4124–4127 (2000).
    [Crossref]
  27. P. G. Yan, Z. K. Jiang, H. Chen, J. D. Yin, J. T. Lai, J. Z. Wang, T. C. He, and J. B. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
    [Crossref]
  28. J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
    [Crossref]
  29. Z. Y. Huo, C. k. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
    [Crossref]
  30. A. Sánchez-Iglesias, M. Grzelczak, J. Pérez-Juste, and L. M. Liz-Marzán, “Binary self-assembly of gold nanowires with nanospheres and nanorods,” Angew. Chem., Int. Ed. 122(51), 10181–10185 (2010).
    [Crossref]
  31. J. H. M. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
    [Crossref]
  32. X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, “Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction,” J. Am. Chem. Soc. 130(28), 8900–8901 (2008).
    [Crossref]
  33. S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
    [Crossref]
  34. A. Halder and N. Ravishankar, “Ultrafine single-crystalline gold nanowire Arrays by oriented attachment,” Adv. Mater. 19(14), 1854–1858 (2007).
    [Crossref]
  35. F. Kim, K. Sohn, J. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc. 130(44), 14442–14443 (2008).
    [Crossref]
  36. C. Deng and F. Sansoz, “Near-ideal strength in gold nanowires achieved through microstructural design,” ACS Nano 3(10), 3001–3008 (2009).
    [Crossref]
  37. N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
    [Crossref]
  38. L. H. Pei, K. Mori, and M. Adachi, “Formation process of two dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization,” Langmuir 20(18), 7837–7843 (2004).
    [Crossref]
  39. M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
    [Crossref]
  40. S. Y. He, Y. Zhang, Z. R. Guo, and N. Gu, “Biological synthesis of gold nanowires using extract of rhodopseudomonas capsulata,” Biotechnol. Prog. 24(2), 476–480 (2008).
    [Crossref]
  41. N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
    [Crossref]
  42. S. Takahata, K. Yamazoe, T. Koyasu, and Tsukuda, “Surface plasmon resonance in gold ultrathin nanorods and nanowires,” J. Am. Chem. Soc. 136(24), 8489–8491 (2014).
    [Crossref]
  43. H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
    [Crossref]
  44. H. A. Chen, H. Y. Lin, and H. N. Lin, “localized surface plasmon resonance in lithographically fabricated single gold nanowires,” J. Phys. Chem. C 114(23), 10359–10364 (2010).
    [Crossref]
  45. B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
    [Crossref]
  46. Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
    [Crossref]
  47. M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
    [Crossref]
  48. Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
    [Crossref]

2018 (3)

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

P. G. Yan, Z. K. Jiang, H. Chen, J. D. Yin, J. T. Lai, J. Z. Wang, T. C. He, and J. B. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref]

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

2017 (1)

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

2016 (1)

J. H. M. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref]

2015 (4)

2014 (6)

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

S. Takahata, K. Yamazoe, T. Koyasu, and Tsukuda, “Surface plasmon resonance in gold ultrathin nanorods and nanowires,” J. Am. Chem. Soc. 136(24), 8489–8491 (2014).
[Crossref]

Y. L. Tang, X. C. Yu, X. H. Li, Z. Y. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Express 39(3), 614–617 (2014).
[Crossref]

Z. Q. Luo, Y. Z. Huang, M. Zhong, Y. Y. Li, J. Y. Wu, B. Xu, H. Y. Xu, Z. P. Cai, J. Peng, and J. Weng, “1-,1.5-,and 2 µm fiber lasers Q-Switched by a broadband few-layer MoS2 saturable absorber,” J. Lightwave Technol. 32(24), 4077–4084 (2014).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

2013 (3)

2012 (4)

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

G. Q. Xie, J. Ma, P. Lv, W. L. Gao, P. Yuan, L. J. Qian, H. H. Yu, H. J. Zhang, J. Y. Wang, and D. Y. Tang, “Graphene saturable absorber for Q-switching and mode locking at 2 µm wavelength,” Opt. Mater. Express 2(6), 878–883 (2012).
[Crossref]

C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium and samarium-doped laser,” Opt. Express 37(4), 629–631 (2012).
[Crossref]

2011 (2)

Y. Lu, J. Song, J. Y. Huang, and J. Lou, “Fracture of sub-20 nm ultrathin gold nanowires,” Adv. Funct. Mater. 21(20), 3982–3989 (2011).
[Crossref]

M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
[Crossref]

2010 (7)

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

H. K. Tyagi, H. W. Lee, P. Uebel, M. A. Schmidt, N. Joly, M. Scharrer, and P. S. J. Russell, “Plasmon resonances on gold nanowires directly drawn in a step-index fiber,” Opt. Lett. 35(15), 2573–2575 (2010).
[Crossref]

H. A. Chen, H. Y. Lin, and H. N. Lin, “localized surface plasmon resonance in lithographically fabricated single gold nanowires,” J. Phys. Chem. C 114(23), 10359–10364 (2010).
[Crossref]

A. Sánchez-Iglesias, M. Grzelczak, J. Pérez-Juste, and L. M. Liz-Marzán, “Binary self-assembly of gold nanowires with nanospheres and nanorods,” Angew. Chem., Int. Ed. 122(51), 10181–10185 (2010).
[Crossref]

Y. X. Zhuang, J. J. Zhou, J. H. Xie, Y. Teng, and J. R. Qiu, “Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4:Cr4+ nanocrystals,” J. Mater. Res. 25(09), 1833–1837 (2010).
[Crossref]

D. P. Zhou, L. Wei, B. Dongand, and W. K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[Crossref]

2009 (1)

C. Deng and F. Sansoz, “Near-ideal strength in gold nanowires achieved through microstructural design,” ACS Nano 3(10), 3001–3008 (2009).
[Crossref]

2008 (5)

N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
[Crossref]

X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, “Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction,” J. Am. Chem. Soc. 130(28), 8900–8901 (2008).
[Crossref]

Z. Y. Huo, C. k. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

F. Kim, K. Sohn, J. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc. 130(44), 14442–14443 (2008).
[Crossref]

S. Y. He, Y. Zhang, Z. R. Guo, and N. Gu, “Biological synthesis of gold nanowires using extract of rhodopseudomonas capsulata,” Biotechnol. Prog. 24(2), 476–480 (2008).
[Crossref]

2007 (2)

B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
[Crossref]

A. Halder and N. Ravishankar, “Ultrafine single-crystalline gold nanowire Arrays by oriented attachment,” Adv. Mater. 19(14), 1854–1858 (2007).
[Crossref]

2006 (1)

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

2004 (2)

E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

L. H. Pei, K. Mori, and M. Adachi, “Formation process of two dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization,” Langmuir 20(18), 7837–7843 (2004).
[Crossref]

2002 (1)

2000 (2)

Y. Kondo and K. Takayanagi, “Synthesis and Characterization of Helical Multi-Shell Gold Nanowires,” Science 289(5479), 606–608 (2000).
[Crossref]

V. Rodrigues, T. Fuhrer, and D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires,” Phys. Rev. Lett. 85(19), 4124–4127 (2000).
[Crossref]

1997 (2)

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
[Crossref]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-mm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Express 22(13), 991–993 (1997).
[Crossref]

1996 (1)

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Adachi, M.

L. H. Pei, K. Mori, and M. Adachi, “Formation process of two dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization,” Langmuir 20(18), 7837–7843 (2004).
[Crossref]

Adam, P.-M.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

Aldeanueva-Potel, P.

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Alvarez-Puebla, R. A.

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Aus der Au, J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Bao, Q. L.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Baranov, D.

N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
[Crossref]

Barbosa, S.

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Barchiesi, D.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

Bijeon, J.-L.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

Billot, L.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

Braun, B.

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-mm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Express 22(13), 991–993 (1997).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Cai, Z. P.

Cao, R.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Chardon, A. M.

Chen, H.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

P. G. Yan, Z. K. Jiang, H. Chen, J. D. Yin, J. T. Lai, J. Z. Wang, T. C. He, and J. B. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref]

Chen, H. A.

H. A. Chen, H. Y. Lin, and H. N. Lin, “localized surface plasmon resonance in lithographically fabricated single gold nanowires,” J. Phys. Chem. C 114(23), 10359–10364 (2010).
[Crossref]

Chen, S. Q.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Chen, Y.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Cheng, H. H.

Cheng, W.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

Chirea, M.

M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
[Crossref]

Chong, J. X.

B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
[Crossref]

Clarkson, W. A.

Deng, C.

C. Deng and F. Sansoz, “Near-ideal strength in gold nanowires achieved through microstructural design,” ACS Nano 3(10), 3001–3008 (2009).
[Crossref]

Dongand, B.

D. P. Zhou, L. Wei, B. Dongand, and W. K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Du, J.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Elim, H. I.

B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
[Crossref]

Fan, D. Y.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

S. B. Lu, Z. N. Guo, X. D. Xu, H. Zhang, D. Y. Tang, and D. Y. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643 (2015).
[Crossref]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Feng, Y.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Fluck, R.

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-mm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Express 22(13), 991–993 (1997).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Freitas, A.

M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
[Crossref]

Fu, J. S.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
[Crossref]

Fuhrer, T.

V. Rodrigues, T. Fuhrer, and D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires,” Phys. Rev. Lett. 85(19), 4124–4127 (2000).
[Crossref]

Gao, W. L.

Gao, X. J.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Ge, Y. Q.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Ghitulica, C.

M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
[Crossref]

Giersig, M.

N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
[Crossref]

Gini, E.

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-mm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Express 22(13), 991–993 (1997).
[Crossref]

Girard, S.

Gong, S.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

González-García, L.

J. H. M. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref]

Grimault, A.-S.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

Grzelczak, M.

A. Sánchez-Iglesias, M. Grzelczak, J. Pérez-Juste, and L. M. Liz-Marzán, “Binary self-assembly of gold nanowires with nanospheres and nanorods,” Angew. Chem., Int. Ed. 122(51), 10181–10185 (2010).
[Crossref]

Gu, N.

S. Y. He, Y. Zhang, Z. R. Guo, and N. Gu, “Biological synthesis of gold nanowires using extract of rhodopseudomonas capsulata,” Biotechnol. Prog. 24(2), 476–480 (2008).
[Crossref]

Guo, X. Y.

Guo, Z. N.

Guo, Z. R.

S. Y. He, Y. Zhang, Z. R. Guo, and N. Gu, “Biological synthesis of gold nanowires using extract of rhodopseudomonas capsulata,” Biotechnol. Prog. 24(2), 476–480 (2008).
[Crossref]

Halder, A.

A. Halder and N. Ravishankar, “Ultrafine single-crystalline gold nanowire Arrays by oriented attachment,” Adv. Mater. 19(14), 1854–1858 (2007).
[Crossref]

He, S. Y.

S. Y. He, Y. Zhang, Z. R. Guo, and N. Gu, “Biological synthesis of gold nanowires using extract of rhodopseudomonas capsulata,” Biotechnol. Prog. 24(2), 476–480 (2008).
[Crossref]

He, T. C.

He, T. H.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

He, Z. L.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Hilgendorff, M.

N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
[Crossref]

Honninger, C.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Huang, J. X.

F. Kim, K. Sohn, J. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc. 130(44), 14442–14443 (2008).
[Crossref]

Huang, J. Y.

Y. Lu, J. Song, J. Y. Huang, and J. Lou, “Fracture of sub-20 nm ultrathin gold nanowires,” Adv. Funct. Mater. 21(20), 3982–3989 (2011).
[Crossref]

Huang, W. Y.

Z. Y. Huo, C. k. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Huang, Y. Z.

Huo, Z. Y.

Z. Y. Huo, C. k. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

Imura, Y.

C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, “Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing,” Langmuir 29(5), 1669–1675 (2013).
[Crossref]

Irsen, S.

N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
[Crossref]

Ito, Y.

C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, “Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing,” Langmuir 29(5), 1669–1675 (2013).
[Crossref]

Ji, W.

B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
[Crossref]

Jia, Z. X.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013).
[Crossref]

Jiang, G. B.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Jiang, T.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Jiang, X. T.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Jiang, Z. K.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

P. G. Yan, Z. K. Jiang, H. Chen, J. D. Yin, J. T. Lai, J. Z. Wang, T. C. He, and J. B. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref]

Joly, N.

Jung, I. D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kanelidis, I.

J. H. M. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref]

Kang, Z.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Kartner, F. X.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kawai, C.

C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, “Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing,” Langmuir 29(5), 1669–1675 (2013).
[Crossref]

Kawai, T.

C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, “Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing,” Langmuir 29(5), 1669–1675 (2013).
[Crossref]

Keller, U.

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-mm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Express 22(13), 991–993 (1997).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Kim, F.

F. Kim, K. Sohn, J. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc. 130(44), 14442–14443 (2008).
[Crossref]

Kondo, Y.

Y. Kondo and K. Takayanagi, “Synthesis and Characterization of Helical Multi-Shell Gold Nanowires,” Science 289(5479), 606–608 (2000).
[Crossref]

Kopf, D.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Korgel, B. A.

X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, “Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction,” J. Am. Chem. Soc. 130(28), 8900–8901 (2008).
[Crossref]

Koyasu, T.

S. Takahata, K. Yamazoe, T. Koyasu, and Tsukuda, “Surface plasmon resonance in gold ultrathin nanorods and nanowires,” J. Am. Chem. Soc. 136(24), 8489–8491 (2014).
[Crossref]

Kraus, T.

J. H. M. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref]

Lai, J. T.

Lamy de la Chapelle, M.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

Laroche, M.

Lee, H. W.

Lee, J. Y.

B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
[Crossref]

Li, D.

Li, J. Q.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Li, J. R.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

Li, N.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Li, Q.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Li, S. Q.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Li, X.

Li, X. H.

Y. L. Tang, X. C. Yu, X. H. Li, Z. Y. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Express 39(3), 614–617 (2014).
[Crossref]

Li, Y. Y.

Li, Z. R.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Liang, W. Y.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liao, H. B.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
[Crossref]

Lin, H. N.

H. A. Chen, H. Y. Lin, and H. N. Lin, “localized surface plasmon resonance in lithographically fabricated single gold nanowires,” J. Phys. Chem. C 114(23), 10359–10364 (2010).
[Crossref]

Lin, H. Y.

H. A. Chen, H. Y. Lin, and H. N. Lin, “localized surface plasmon resonance in lithographically fabricated single gold nanowires,” J. Phys. Chem. C 114(23), 10359–10364 (2010).
[Crossref]

Liu, C.

Liu, J.

Liu, L.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Liu, M. Y.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Liu, S. X.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Liu, W. K.

D. P. Zhou, L. Wei, B. Dongand, and W. K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Liu, Z.

Liz-Marzacn, L. M.

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Liz-Marzan, L. A.

N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
[Crossref]

Liz-Marzán, L. M.

A. Sánchez-Iglesias, M. Grzelczak, J. Pérez-Juste, and L. M. Liz-Marzán, “Binary self-assembly of gold nanowires with nanospheres and nanorods,” Angew. Chem., Int. Ed. 122(51), 10181–10185 (2010).
[Crossref]

Lou, J.

Y. Lu, J. Song, J. Y. Huang, and J. Lou, “Fracture of sub-20 nm ultrathin gold nanowires,” Adv. Funct. Mater. 21(20), 3982–3989 (2011).
[Crossref]

Lu, S. B.

Lu, X. M.

X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, “Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction,” J. Am. Chem. Soc. 130(28), 8900–8901 (2008).
[Crossref]

Lu, Y.

Y. Lu, J. Song, J. Y. Huang, and J. Lou, “Fracture of sub-20 nm ultrathin gold nanowires,” Adv. Funct. Mater. 21(20), 3982–3989 (2011).
[Crossref]

Luo, S. J.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Luo, Z. Q.

Lv, P.

Ma, J.

Matuschek, N.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Maurer, J. H. M.

J. H. M. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref]

Mégret, P.

C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium and samarium-doped laser,” Opt. Express 37(4), 629–631 (2012).
[Crossref]

Melchior, H.

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-mm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Express 22(13), 991–993 (1997).
[Crossref]

Moncorge, R.

Mori, K.

L. H. Pei, K. Mori, and M. Adachi, “Formation process of two dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization,” Langmuir 20(18), 7837–7843 (2004).
[Crossref]

Morita, C.

C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, “Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing,” Langmuir 29(5), 1669–1675 (2013).
[Crossref]

Nilsson, J.

Pastoriza-Santos, I.

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Pazos-Pecrez, N.

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Pazos-Perez, N.

N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
[Crossref]

Pecrez-Juste, J.

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Pei, L. H.

L. H. Pei, K. Mori, and M. Adachi, “Formation process of two dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization,” Langmuir 20(18), 7837–7843 (2004).
[Crossref]

Peng, J.

Pereira, C. M.

M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
[Crossref]

Pérez-Juste, J.

A. Sánchez-Iglesias, M. Grzelczak, J. Pérez-Juste, and L. M. Liz-Marzán, “Binary self-assembly of gold nanowires with nanospheres and nanorods,” Angew. Chem., Int. Ed. 122(51), 10181–10185 (2010).
[Crossref]

Pong, B. K.

B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
[Crossref]

Preda, C. E.

C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium and samarium-doped laser,” Opt. Express 37(4), 629–631 (2012).
[Crossref]

Qian, L. J.

Qin, G. S.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Qin, W. P.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Qiu, J. R.

Y. X. Zhuang, J. J. Zhou, J. H. Xie, Y. Teng, and J. R. Qiu, “Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4:Cr4+ nanocrystals,” J. Mater. Res. 25(09), 1833–1837 (2010).
[Crossref]

Qu, B.

Ravet, G.

C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium and samarium-doped laser,” Opt. Express 37(4), 629–631 (2012).
[Crossref]

Ravishankar, N.

A. Halder and N. Ravishankar, “Ultrafine single-crystalline gold nanowire Arrays by oriented attachment,” Adv. Mater. 19(14), 1854–1858 (2007).
[Crossref]

Reiser, B.

J. H. M. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref]

Rodrigues, V.

V. Rodrigues, T. Fuhrer, and D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires,” Phys. Rev. Lett. 85(19), 4124–4127 (2000).
[Crossref]

Rodriguez-Lorenzo, L.

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Royer, P.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

Ruan, S. C.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

Russell, P. S. J.

Sánchez-Iglesias, A.

A. Sánchez-Iglesias, M. Grzelczak, J. Pérez-Juste, and L. M. Liz-Marzán, “Binary self-assembly of gold nanowires with nanospheres and nanorods,” Angew. Chem., Int. Ed. 122(51), 10181–10185 (2010).
[Crossref]

Sansoz, F.

C. Deng and F. Sansoz, “Near-ideal strength in gold nanowires achieved through microstructural design,” ACS Nano 3(10), 3001–3008 (2009).
[Crossref]

Scharrer, M.

Schmidt, M. A.

Schwalb, W.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

Sheng, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
[Crossref]

Shepherd, D. P.

Shirinzadeh, B.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

Si, J.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

Silva, F.

M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
[Crossref]

Sohn, K.

F. Kim, K. Sohn, J. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc. 130(44), 14442–14443 (2008).
[Crossref]

Song, H. W.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Song, J.

Y. Lu, J. Song, J. Y. Huang, and J. Lou, “Fracture of sub-20 nm ultrathin gold nanowires,” Adv. Funct. Mater. 21(20), 3982–3989 (2011).
[Crossref]

Takahata, S.

S. Takahata, K. Yamazoe, T. Koyasu, and Tsukuda, “Surface plasmon resonance in gold ultrathin nanorods and nanowires,” J. Am. Chem. Soc. 136(24), 8489–8491 (2014).
[Crossref]

Takayanagi, K.

Y. Kondo and K. Takayanagi, “Synthesis and Characterization of Helical Multi-Shell Gold Nanowires,” Science 289(5479), 606–608 (2000).
[Crossref]

Tang, D. Y.

Tang, P. H.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Tang, Y.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

Tang, Y. L.

Y. L. Tang, X. C. Yu, X. H. Li, Z. Y. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Express 39(3), 614–617 (2014).
[Crossref]

Tanuma, H.

C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, “Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing,” Langmuir 29(5), 1669–1675 (2013).
[Crossref]

Teng, Y.

Y. X. Zhuang, J. J. Zhou, J. H. Xie, Y. Teng, and J. R. Qiu, “Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4:Cr4+ nanocrystals,” J. Mater. Res. 25(09), 1833–1837 (2010).
[Crossref]

Tian, Q. J.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Trout, B. L.

B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
[Crossref]

Tsukuda,

S. Takahata, K. Yamazoe, T. Koyasu, and Tsukuda, “Surface plasmon resonance in gold ultrathin nanorods and nanowires,” J. Am. Chem. Soc. 136(24), 8489–8491 (2014).
[Crossref]

Tsung, C. k.

Z. Y. Huo, C. k. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Tuan, H. Y.

X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, “Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction,” J. Am. Chem. Soc. 130(28), 8900–8901 (2008).
[Crossref]

Tyagi, H. K.

Uebel, P.

Ugarte, D.

V. Rodrigues, T. Fuhrer, and D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires,” Phys. Rev. Lett. 85(19), 4124–4127 (2000).
[Crossref]

Vasile, B. S.

M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
[Crossref]

Vial, A.

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

Wang, H. D.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wang, J. T.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

Wang, J. Y.

Wang, J. Z.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

P. G. Yan, Z. K. Jiang, H. Chen, J. D. Yin, J. T. Lai, J. Z. Wang, T. C. He, and J. B. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref]

Wang, Q. J.

Y. L. Tang, X. C. Yu, X. H. Li, Z. Y. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Express 39(3), 614–617 (2014).
[Crossref]

Wang, R.

Wang, Y.

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

Wang, Z. T.

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Wei, L.

D. P. Zhou, L. Wei, B. Dongand, and W. K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Weingarten, K. J.

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

Wen, Q.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Wen, S. C.

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Weng, J.

Wong, G. K. L.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
[Crossref]

Wu, D. D.

Wu, J.

F. Kim, K. Sohn, J. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc. 130(44), 14442–14443 (2008).
[Crossref]

Wu, J. Y.

Wu, L.

Wu, X.

Xia, Y.

X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, “Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction,” J. Am. Chem. Soc. 130(28), 8900–8901 (2008).
[Crossref]

Xiao, R. F.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
[Crossref]

Xie, G. Q.

Xie, J. H.

Y. X. Zhuang, J. J. Zhou, J. H. Xie, Y. Teng, and J. R. Qiu, “Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4:Cr4+ nanocrystals,” J. Mater. Res. 25(09), 1833–1837 (2010).
[Crossref]

Xu, B.

Xu, H. Y.

Xu, X. D.

Xu, Y.

Z. Kang, X. Y. Guo, Z. X. Jia, Y. Xu, L. Liu, D. Zhao, G. S. Qin, and W. P. Qin, “Gold nanorods as saturable absorbers for all fiber passively Q-switched erbium-doped fiber laser,” Opt. Mater. Express 3(11), 1986–1991 (2013).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Yamazoe, K.

S. Takahata, K. Yamazoe, T. Koyasu, and Tsukuda, “Surface plasmon resonance in gold ultrathin nanorods and nanowires,” J. Am. Chem. Soc. 136(24), 8489–8491 (2014).
[Crossref]

Yan, P. G.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

P. G. Yan, Z. K. Jiang, H. Chen, J. D. Yin, J. T. Lai, J. Z. Wang, T. C. He, and J. B. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref]

Yan, Z. Y.

Y. L. Tang, X. C. Yu, X. H. Li, Z. Y. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Express 39(3), 614–617 (2014).
[Crossref]

Yang, J. B.

Yang, K.

Yang, P. D.

Z. Y. Huo, C. k. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Yang, R. Y.

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Yavuz, M. S.

X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, “Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction,” J. Am. Chem. Soc. 130(28), 8900–8901 (2008).
[Crossref]

Ye, C. C.

Yi, J.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Yin, J. D.

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

P. G. Yan, Z. K. Jiang, H. Chen, J. D. Yin, J. T. Lai, J. Z. Wang, T. C. He, and J. B. Yang, “α-In2Se3 wideband optical modulator for pulsed fiber lasers,” Opt. Lett. 43(18), 4417–4420 (2018).
[Crossref]

Yin, S. Y.

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Yu, H. H.

Yu, P.

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
[Crossref]

Yu, X. C.

Y. L. Tang, X. C. Yu, X. H. Li, Z. Y. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Express 39(3), 614–617 (2014).
[Crossref]

Yuan, P.

Zhang, F.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Zhang, H.

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

S. B. Lu, Z. N. Guo, X. D. Xu, H. Zhang, D. Y. Tang, and D. Y. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643 (2015).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

L. M. Zhao, D. Y. Tang, X. Wu, and H. Zhang, “Dissipative soliton generation in Yb-fiber laser with an invisible intracavity bandpass filter,” Opt. Lett. 35(16), 2756–2758 (2010).
[Crossref]

Zhang, H. J.

Zhang, L.

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Zhang, X. F.

Z. Y. Huo, C. k. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

Zhang, Y.

S. Y. He, Y. Zhang, Z. R. Guo, and N. Gu, “Biological synthesis of gold nanowires using extract of rhodopseudomonas capsulata,” Biotechnol. Prog. 24(2), 476–480 (2008).
[Crossref]

Zhao, C. J.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

Zhao, D.

Zhao, L. M.

Zhao, S.

Zheng, Y. L.

Zhong, M.

Zhou, D. L.

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

Zhou, D. P.

D. P. Zhou, L. Wei, B. Dongand, and W. K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

Zhou, J. J.

Y. X. Zhuang, J. J. Zhou, J. H. Xie, Y. Teng, and J. R. Qiu, “Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4:Cr4+ nanocrystals,” J. Mater. Res. 25(09), 1833–1837 (2010).
[Crossref]

Zhuang, Y. X.

Y. X. Zhuang, J. J. Zhou, J. H. Xie, Y. Teng, and J. R. Qiu, “Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4:Cr4+ nanocrystals,” J. Mater. Res. 25(09), 1833–1837 (2010).
[Crossref]

ACS Nano (1)

C. Deng and F. Sansoz, “Near-ideal strength in gold nanowires achieved through microstructural design,” ACS Nano 3(10), 3001–3008 (2009).
[Crossref]

Adv. Funct. Mater. (1)

Y. Lu, J. Song, J. Y. Huang, and J. Lou, “Fracture of sub-20 nm ultrathin gold nanowires,” Adv. Funct. Mater. 21(20), 3982–3989 (2011).
[Crossref]

Adv. Mater. (2)

E. Hutter and J. H. Fendler, “Exploitation of Localized Surface Plasmon Resonance,” Adv. Mater. 16(19), 1685–1706 (2004).
[Crossref]

A. Halder and N. Ravishankar, “Ultrafine single-crystalline gold nanowire Arrays by oriented attachment,” Adv. Mater. 19(14), 1854–1858 (2007).
[Crossref]

Angew. Chem., Int. Ed. (1)

A. Sánchez-Iglesias, M. Grzelczak, J. Pérez-Juste, and L. M. Liz-Marzán, “Binary self-assembly of gold nanowires with nanospheres and nanorods,” Angew. Chem., Int. Ed. 122(51), 10181–10185 (2010).
[Crossref]

Appl. Phys. Lett. (2)

H. B. Liao, R. F. Xiao, J. S. Fu, P. Yu, G. K. L. Wong, and P. Sheng, “Large third-order optical nonlinearity in Au:SiO2 composite films near the percolation threshold,” Appl. Phys. Lett. 70(1), 1–3 (1997).
[Crossref]

T. Jiang, Y. Xu, Q. J. Tian, L. Liu, Z. Kang, R. Y. Yang, G. S. Qin, and W. P. Qin, “Passively Q-switching induced by gold nanocrystals,” Appl. Phys. Lett. 101(15), 151122 (2012).
[Crossref]

Biotechnol. Prog. (1)

S. Y. He, Y. Zhang, Z. R. Guo, and N. Gu, “Biological synthesis of gold nanowires using extract of rhodopseudomonas capsulata,” Biotechnol. Prog. 24(2), 476–480 (2008).
[Crossref]

Chem. Phys. Lett. (1)

L. Billot, M. Lamy de la Chapelle, A.-S. Grimault, A. Vial, D. Barchiesi, J.-L. Bijeon, P.-M. Adam, and P. Royer, “Surface enhanced Raman scattering on gold nanowire arrays: Evidence of strong multipolar surface plasmon resonance enhancement,” Chem. Phys. Lett. 422(4-6), 303–307 (2006).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Chen, C. J. Zhao, S. Q. Chen, J. Du, P. H. Tang, G. B. Jiang, H. Zhang, S. C. Wen, and D. Y. Tang, “Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser,” IEEE J. Sel. Top. Quantum Electron. 20(5), 315–322 (2014).
[Crossref]

U. Keller, K. J. Weingarten, F. X. Kartner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Honninger, N. Matuschek, and J. Aus der Au, “Semiconductor saturable absorber mirrors (SESAM’s) for femtosecond to nanosecond pulse generation in solid-state laser,” IEEE J. Sel. Top. Quantum Electron. 2(3), 435–453 (1996).
[Crossref]

IEEE Photonics J. (1)

Z. T. Wang, Y. Chen, C. J. Zhao, H. Zhang, and S. C. Wen, “Switchable Dual-Wavelength Synchronously Q-Switched Erbium-Doped Fiber Laser Based on Graphene Saturable Absorber,” IEEE Photonics J. 4(3), 869–876 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. P. Zhou, L. Wei, B. Dongand, and W. K. Liu, “Tunable passively-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber,” IEEE Photonics Technol. Lett. 22(1), 9–11 (2010).
[Crossref]

J. Am. Chem. Soc. (3)

F. Kim, K. Sohn, J. Wu, and J. X. Huang, “Chemical synthesis of gold nanowires in acidic solutions,” J. Am. Chem. Soc. 130(44), 14442–14443 (2008).
[Crossref]

X. M. Lu, M. S. Yavuz, H. Y. Tuan, B. A. Korgel, and Y. Xia, “Ultrathin gold nanowires can be obtained by reducing polymeric strands of oleylamine-AuCl complexes formed via aurophilic interaction,” J. Am. Chem. Soc. 130(28), 8900–8901 (2008).
[Crossref]

S. Takahata, K. Yamazoe, T. Koyasu, and Tsukuda, “Surface plasmon resonance in gold ultrathin nanorods and nanowires,” J. Am. Chem. Soc. 136(24), 8489–8491 (2014).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Chem. C (1)

M. Y. Liu, D. L. Zhou, Z. X. Jia, Z. R. Li, N. Li, S. Q. Li, Z. Kang, J. Yi, C. J. Zhao, G. S. Qin, H. W. Song, and W. P. Qin, “Plasmonic Cu1.8S nanocrystals as saturable absorbers for passively Q-switched erbium-doped fiber lasers,” J. Mater. Chem. C 5(16), 4034–4039 (2017).
[Crossref]

J. Mater. Res. (1)

Y. X. Zhuang, J. J. Zhou, J. H. Xie, Y. Teng, and J. R. Qiu, “Temperature-dependent broadband near-infrared luminescence in silicate glass ceramics containing Li2MgSiO4:Cr4+ nanocrystals,” J. Mater. Res. 25(09), 1833–1837 (2010).
[Crossref]

J. Phys. Chem. C (2)

H. A. Chen, H. Y. Lin, and H. N. Lin, “localized surface plasmon resonance in lithographically fabricated single gold nanowires,” J. Phys. Chem. C 114(23), 10359–10364 (2010).
[Crossref]

B. K. Pong, H. I. Elim, J. X. Chong, W. Ji, B. L. Trout, and J. Y. Lee, “New insights on the nanoparticle growth mechanism in the citrate reduction of gold(III)salt: formation of the Au nanowire intermediate and its nonlinear optical properties,” J. Phys. Chem. C 111(17), 6281–6287 (2007).
[Crossref]

J. Phys. Chem. Lett. (1)

N. Pazos-Pecrez, S. Barbosa, L. Rodriguez-Lorenzo, P. Aldeanueva-Potel, J. Pecrez-Juste, I. Pastoriza-Santos, R. A. Alvarez-Puebla, and L. M. Liz-Marzacn, “Growth of sharp tips on gold nanowires leads to increased surface-enhanced raman scattering activity,” J. Phys. Chem. Lett. 1(1), 24–27 (2010).
[Crossref]

Langmuir (4)

N. Pazos-Perez, D. Baranov, S. Irsen, M. Hilgendorff, L. A. Liz-Marzan, and M. Giersig, “Synthesis of flexible ultrathin gold nanowires in organic media,” Langmuir 24(17), 9855–9860 (2008).
[Crossref]

L. H. Pei, K. Mori, and M. Adachi, “Formation process of two dimensional networked gold nanowires by citrate reduction of AuCl4- and the shape stabilization,” Langmuir 20(18), 7837–7843 (2004).
[Crossref]

M. Chirea, A. Freitas, B. S. Vasile, C. Ghitulica, C. M. Pereira, and F. Silva, “Gold nanowire networks: synthesis, characterization, and catalytic activity,” Langmuir 27(7), 3906–3913 (2011).
[Crossref]

C. Morita, H. Tanuma, C. Kawai, Y. Ito, Y. Imura, and T. Kawai, “Room-Temperature Synthesis of Two-Dimensional Ultrathin Gold Nanowire Parallel Array with Tunable Spacing,” Langmuir 29(5), 1669–1675 (2013).
[Crossref]

Laser Photonics Rev. (1)

X. T. Jiang, S. X. Liu, W. Y. Liang, S. J. Luo, Z. L. He, Y. Q. Ge, H. D. Wang, R. Cao, F. Zhang, Q. Wen, J. Q. Li, Q. L. Bao, D. Y. Fan, and H. Zhang, “Broadband Nonlinear Photonics in Few-Layer MXene Ti3C2Tx (T = F, O, or OH),” Laser Photonics Rev. 12(2), 1700229 (2018).
[Crossref]

Laser Phys. Lett. (2)

Z. Kang, M. Y. Liu, X. J. Gao, N. Li, S. Y. Yin, G. S. Qin, and W. P. Qin, “Mode-locked thulium-doped fiber laser at 1982nm by using a gold nanorods saturable absorber,” Laser Phys. Lett. 12(4), 045105 (2015).
[Crossref]

Z. Kang, Q. Li, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, G. S. Qin, and W. P. Qin, “Gold nanorod saturable absorber for passive mode-locking at 1 µm wavelength,” Laser Phys. Lett. 11(3), 035102 (2014).
[Crossref]

Nano Lett. (2)

Z. Y. Huo, C. k. Tsung, W. Y. Huang, X. F. Zhang, and P. D. Yang, “Sub-two nanometer single crystal Au nanowires,” Nano Lett. 8(7), 2041–2044 (2008).
[Crossref]

J. H. M. Maurer, L. González-García, B. Reiser, I. Kanelidis, and T. Kraus, “Templated self-assembly of ultrathin gold nanowires by nanoimprinting for transparent flexible electronics,” Nano Lett. 16(5), 2921–2925 (2016).
[Crossref]

Nat. Commun. (1)

S. Gong, W. Schwalb, Y. Wang, Y. Chen, Y. Tang, J. Si, B. Shirinzadeh, and W. Cheng, “A wearable and highly sensitive pressure sensor with ultrathingold nanowires,” Nat. Commun. 5(1), 1–7 (2014).
[Crossref]

Opt. Express (7)

S. B. Lu, Z. N. Guo, X. D. Xu, H. Zhang, D. Y. Tang, and D. Y. Fan, “Few-layer black phosphorus based saturable absorber mirror for pulsed solid-state lasers,” Opt. Express 23(17), 22643 (2015).
[Crossref]

R. Fluck, B. Braun, E. Gini, H. Melchior, and U. Keller, “Passively Q-switched 1.34-mm Nd: YVO4 microchip laser with semiconductor saturable-absorber mirrors,” Opt. Express 22(13), 991–993 (1997).
[Crossref]

Y. L. Tang, X. C. Yu, X. H. Li, Z. Y. Yan, and Q. J. Wang, “High-power thulium fiber laser Q switched with single-layer graphene,” Opt. Express 39(3), 614–617 (2014).
[Crossref]

L. Wu, D. Li, S. Zhao, K. Yang, X. Li, R. Wang, and J. Liu, “Passive Q-switching with GaAs or Bi-doped GaAs saturable absorber in Tm:LuAG laser operating at 2µm wavelength,” Opt. Express 23(12), 15469–15476 (2015).
[Crossref]

C. E. Preda, G. Ravet, and P. Mégret, “Experimental demonstration of a passive all-fiber Q-switched erbium and samarium-doped laser,” Opt. Express 37(4), 629–631 (2012).
[Crossref]

C. Liu, C. C. Ye, Z. Q. Luo, H. H. Cheng, D. D. Wu, Y. L. Zheng, Z. Liu, and B. Qu, “High-energy passively Q-switched 2 µm Tm3+-doped double-clad fiber laser using grapheneoxide-deposited fiber taper,” Opt. Express 21(1), 204–209 (2013).
[Crossref]

L. Wu, D. Li, S. Zhao, K. Yang, X. Li, R. Wang, and J. Liu, “Passive Q-switching with GaAs or Bi-doped GaAs saturable absorber in Tm:LuAG laser operating at 2 µm wavelength,” Opt. Express 23(12), 15469–15476 (2015).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (2)

Photonics Res. (1)

J. T. Wang, Z. K. Jiang, H. Chen, J. R. Li, J. D. Yin, J. Z. Wang, T. H. He, P. G. Yan, and S. C. Ruan, “High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber,” Photonics Res. 6(6), 535–541 (2018).
[Crossref]

Phys. Rev. Lett. (1)

V. Rodrigues, T. Fuhrer, and D. Ugarte, “Signature of atomic structure in the quantum conductance of gold nanowires,” Phys. Rev. Lett. 85(19), 4124–4127 (2000).
[Crossref]

Science (1)

Y. Kondo and K. Takayanagi, “Synthesis and Characterization of Helical Multi-Shell Gold Nanowires,” Science 289(5479), 606–608 (2000).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Color change during the synthesis of GRWs solution: (a) (I) just mixing of oleylamine, HAuCl4•4H2O and cyclohexane (II) the solution was stirred for 3 hours (III) 24 hours after addition of TIPS, (b) Schematic illustration of the GNWs growth process.
Fig. 2.
Fig. 2. (a) XRD patterns of GNWs, (b) TEM image of GNWs, (c) High-resolution TEM of GNWs , (d) The electron c-shot of GNWs.
Fig. 3.
Fig. 3. (a) Absorption spectrum of GNWs in UV−vis−near infrared spectroscopy (red), mid-infrared spectroscopy (green) and far infrared spectroscopy regions (purple), (b) The absorption spectra of GNWs-PVP film and PVP film.
Fig. 4.
Fig. 4. (a) The relationship between the transmission ratio and pump peak densities of GNWs-PVP film, (b) Z-scan curve at 1982nm.
Fig. 5.
Fig. 5. Schematic setup of the GNWs SA based Q-switched TDFL.
Fig. 6.
Fig. 6. Q-switched Tm-doped fiber laser: (a) Emission spectrum, (b) Output pulse train, (c) Single pulse profile with 2.4 µs FWHM pulse width,(d) Dependence of the repetition rate and pulse duration on the pump power.
Fig. 7.
Fig. 7. The average output power as a function of pump power.
Fig. 8.
Fig. 8. The radio-frequency spectrum of the Q-switched laser at the pump power of 980 mW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T = 1 α 0 L I s I s + I 0 1 + Z 2 Z 0 2 β L L 0 1 + Z 2 Z 0 2 1 1 α 0 L .

Metrics