Abstract

By method of the pulsed laser deposition of Ni/C bilayer precursor films and annealing in N2, ambient amorphous SiO2 nanowires were prepared on fused quartz substrates. Field emission scanning electron microscopy images reveal that after annealing at the temperature of 1200°C for 1 h, the Ni/C films turn into dense nanowires with lengths and widths of several micrometers and tens of nanometers, respectively. Results of transmission electron microscopy, high resolution transmission electron microscopy, and energy dispersive X-ray spectroscopy fitted on it show that the nanowires are amorphous SiO2 nanowires and that they are grown in the Ni-leading solid-liquid-solid mechanism. Besides, C particles can promote SiO2 nanowires to grow longer in the forms of carbon and carbon monoxide.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Growth of large-area atomically thin MoS2 film via ambient pressure chemical vapor deposition

Caiyun Chen, Hong Qiao, Yunzhou Xue, Wenzhi Yu, Jingchao Song, Yao Lu, Shaojuan Li, and Qiaoliang Bao
Photon. Res. 3(4) 110-114 (2015)

Perturbation of Au-assisted planar GaAs nanowire growth by p-type dopant impurities

Ryan S. Dowdy, Chen Zhang, Parsian K. Mohseni, Seth A. Fortuna, Jian-Guo Wen, James J. Coleman, and Xiuling Li
Opt. Mater. Express 3(10) 1687-1697 (2013)

Yellow and green luminescence in single-crystal Ge-catalyzed GaN nanowires grown by low pressure chemical vapor deposition

Umar Saleem, Muhammad Danang Birowosuto, Noelle Gogneau, Philippe Coquet, Maria Tchernycheva, and Hong Wang
Opt. Mater. Express 7(6) 1995-2004 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
    [Crossref]
  2. Y. H. Lin, C. Y. Yang, S. F. Lin, and G. R. Lin, “Triturating versatile carbon materials as saturable absorptive nano powders for ultrafast pulsating of erbium-doped fiber lasers,” Opt. Mater. Express 5(2), 236–253 (2015).
    [Crossref]
  3. L. X. Wang, Z. Q. Zhou, H. C. Hao, and M. Lu, “A porous Si-emitter crystalline-Si solar cell with 18.97% efficiency,” Nanotechnology 27(42), 425207 (2016).
    [Crossref]
  4. X. Xu, Y. Wang, S. Liu, C. Liao, J. He, J. Lian, and Y. Wang, “Growth dynamics of ZnO nanowire on a fiber-tip air bubble,” Opt. Mater. Express 7(9), 3433–3440 (2017).
    [Crossref]
  5. S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
    [Crossref]
  6. J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
    [Crossref]
  7. J. Liu, Y. Wang, R. Zhao, K. Guo, R. Chen, H. Qi, and J. Shao, “Design, fabrication and application of dispersive mirrors with a SiO2 sculptured layer,” Opt. Mater. Express 8(4), 836–843 (2018).
    [Crossref]
  8. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref]
  9. J. Villatoro, A. Van Newkirk, E. Antonio-Lopez, J. Zubia, A. Schülzgen, and R. Amezcua-Correa, “Ultrasensitive vector bending sensor based on multicore optical fiber,” Opt. Lett. 41(4), 832–835 (2016).
    [Crossref]
  10. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
    [Crossref]
  11. Z. J. Zhang, G. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates,” Adv. Mater. 13(3), 197–200 (2001).
    [Crossref]
  12. P. Shimpi and P. X. Gao, “Carbon-assisted lateral self-assembly of amorphous silica nanowires,” CrystEngComm 12(10), 2817–2820 (2010).
    [Crossref]
  13. Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
    [Crossref]
  14. M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanosci. Nanotechnol. 3(4), 341–346 (2003).
    [Crossref]
  15. B. Gelloz, Y. Coffinier, B. Salhi, N. Koshida, G. Patriarche, and R. Boukherroub, “Synthesis and Optical Properties of Silicon Oxide Nanowires,” MRS Online Proceedings Library Archive, 2006, 958.
  16. Y. C. Lin and W. T. Lin, “Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders,” Nanotechnology 16(9), 1648–1654 (2005).
    [Crossref]
  17. J. H. Kim and C. S. Yoon, “Amorphous silicon dioxide nanowire array synthesized via carbonization of polyimide thin film,” J. Phys. Chem. C 112(12), 4463–4468 (2008).
    [Crossref]

2019 (1)

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

2018 (1)

2017 (1)

2016 (3)

2015 (1)

2013 (1)

J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
[Crossref]

2010 (1)

P. Shimpi and P. X. Gao, “Carbon-assisted lateral self-assembly of amorphous silica nanowires,” CrystEngComm 12(10), 2817–2820 (2010).
[Crossref]

2008 (1)

J. H. Kim and C. S. Yoon, “Amorphous silicon dioxide nanowire array synthesized via carbonization of polyimide thin film,” J. Phys. Chem. C 112(12), 4463–4468 (2008).
[Crossref]

2007 (1)

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

2005 (1)

Y. C. Lin and W. T. Lin, “Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders,” Nanotechnology 16(9), 1648–1654 (2005).
[Crossref]

2003 (1)

M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanosci. Nanotechnol. 3(4), 341–346 (2003).
[Crossref]

2001 (2)

Z. J. Zhang, G. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates,” Adv. Mater. 13(3), 197–200 (2001).
[Crossref]

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Ajayan, P. M.

Z. J. Zhang, G. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates,” Adv. Mater. 13(3), 197–200 (2001).
[Crossref]

Amezcua-Correa, R.

Antonio-Lopez, E.

Bando, Y.

Z. J. Zhang, G. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates,” Adv. Mater. 13(3), 197–200 (2001).
[Crossref]

Bang, O.

Boukherroub, R.

B. Gelloz, Y. Coffinier, B. Salhi, N. Koshida, G. Patriarche, and R. Boukherroub, “Synthesis and Optical Properties of Silicon Oxide Nanowires,” MRS Online Proceedings Library Archive, 2006, 958.

Chen, D.

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

Chen, R.

Coffinier, Y.

B. Gelloz, Y. Coffinier, B. Salhi, N. Koshida, G. Patriarche, and R. Boukherroub, “Synthesis and Optical Properties of Silicon Oxide Nanowires,” MRS Online Proceedings Library Archive, 2006, 958.

Ding, X.

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Gao, J.

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

Gao, P. X.

P. Shimpi and P. X. Gao, “Carbon-assisted lateral self-assembly of amorphous silica nanowires,” CrystEngComm 12(10), 2817–2820 (2010).
[Crossref]

Gelloz, B.

B. Gelloz, Y. Coffinier, B. Salhi, N. Koshida, G. Patriarche, and R. Boukherroub, “Synthesis and Optical Properties of Silicon Oxide Nanowires,” MRS Online Proceedings Library Archive, 2006, 958.

Goldberg, D.

Z. J. Zhang, G. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates,” Adv. Mater. 13(3), 197–200 (2001).
[Crossref]

Grimes, C. A.

M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanosci. Nanotechnol. 3(4), 341–346 (2003).
[Crossref]

Guo, K.

Hao, H. C.

L. X. Wang, Z. Q. Zhou, H. C. Hao, and M. Lu, “A porous Si-emitter crystalline-Si solar cell with 18.97% efficiency,” Nanotechnology 27(42), 425207 (2016).
[Crossref]

He, J.

Huang, F.

J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
[Crossref]

Huang, Y.

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

Huang, Z.

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

Huo, J.

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

Jin, J.

J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
[Crossref]

Kim, J. H.

J. H. Kim and C. S. Yoon, “Amorphous silicon dioxide nanowire array synthesized via carbonization of polyimide thin film,” J. Phys. Chem. C 112(12), 4463–4468 (2008).
[Crossref]

Koshida, N.

B. Gelloz, Y. Coffinier, B. Salhi, N. Koshida, G. Patriarche, and R. Boukherroub, “Synthesis and Optical Properties of Silicon Oxide Nanowires,” MRS Online Proceedings Library Archive, 2006, 958.

Li, Y. B.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Lian, J.

Liao, C.

Lin, G. R.

Lin, J.

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

Lin, L.

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

Lin, S. F.

Lin, W. T.

Y. C. Lin and W. T. Lin, “Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders,” Nanotechnology 16(9), 1648–1654 (2005).
[Crossref]

Lin, Y. C.

Y. C. Lin and W. T. Lin, “Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders,” Nanotechnology 16(9), 1648–1654 (2005).
[Crossref]

Lin, Y. H.

Lin, Z.

J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
[Crossref]

Liu, J.

Liu, L.

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

Liu, S.

Liu, W.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Liu, Z. Q.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Lu, M.

L. X. Wang, Z. Q. Zhou, H. C. Hao, and M. Lu, “A porous Si-emitter crystalline-Si solar cell with 18.97% efficiency,” Nanotechnology 27(42), 425207 (2016).
[Crossref]

Markos, C.

Nielsen, K.

Patriarche, G.

B. Gelloz, Y. Coffinier, B. Salhi, N. Koshida, G. Patriarche, and R. Boukherroub, “Synthesis and Optical Properties of Silicon Oxide Nanowires,” MRS Online Proceedings Library Archive, 2006, 958.

Paulose, M.

M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanosci. Nanotechnol. 3(4), 341–346 (2003).
[Crossref]

Qi, H.

Ramanath, G.

Z. J. Zhang, G. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates,” Adv. Mater. 13(3), 197–200 (2001).
[Crossref]

Salhi, B.

B. Gelloz, Y. Coffinier, B. Salhi, N. Koshida, G. Patriarche, and R. Boukherroub, “Synthesis and Optical Properties of Silicon Oxide Nanowires,” MRS Online Proceedings Library Archive, 2006, 958.

Schülzgen, A.

Shao, J.

Sheng, X.

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

Shimpi, P.

P. Shimpi and P. X. Gao, “Carbon-assisted lateral self-assembly of amorphous silica nanowires,” CrystEngComm 12(10), 2817–2820 (2010).
[Crossref]

Stefani, A.

Sun, L. F.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Tang, D. S.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Van Newkirk, A.

Varghese, O. K.

M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanosci. Nanotechnol. 3(4), 341–346 (2003).
[Crossref]

Villatoro, J.

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Wang, C. Y.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Wang, G.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Wang, L. X.

L. X. Wang, Z. Q. Zhou, H. C. Hao, and M. Lu, “A porous Si-emitter crystalline-Si solar cell with 18.97% efficiency,” Nanotechnology 27(42), 425207 (2016).
[Crossref]

Wang, Y.

Woyessa, G.

Xie, S. S.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Xing, S.

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

Xu, X.

Yang, C. Y.

Yoon, C. S.

J. H. Kim and C. S. Yoon, “Amorphous silicon dioxide nanowire array synthesized via carbonization of polyimide thin film,” J. Phys. Chem. C 112(12), 4463–4468 (2008).
[Crossref]

Yu, J.

J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
[Crossref]

Zhang, J.

J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
[Crossref]

J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
[Crossref]

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

Zhang, Z. J.

Z. J. Zhang, G. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates,” Adv. Mater. 13(3), 197–200 (2001).
[Crossref]

Zhao, R.

Zhou, W. Y.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Zhou, Y. N.

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

Zhou, Z. Q.

L. X. Wang, Z. Q. Zhou, H. C. Hao, and M. Lu, “A porous Si-emitter crystalline-Si solar cell with 18.97% efficiency,” Nanotechnology 27(42), 425207 (2016).
[Crossref]

Zou, G.

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

Zou, X. P.

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

Zubia, J.

ACS Appl. Mater. Interfaces (2)

J. Zhang, Y. Wang, J. Jin, J. Zhang, Z. Lin, F. Huang, and J. Yu, “Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core/shell CdS/g-C3N4 nanowires,” ACS Appl. Mater. Interfaces 5(20), 10317–10324 (2013).
[Crossref]

S. Xing, L. Lin, J. Huo, G. Zou, X. Sheng, L. Liu, and Y. N. Zhou, “Plasmon Induced Heterointerface Thinning for Schottky Barrier Modification of Core/shell SiC/SiO2 Nanowire,” ACS Appl. Mater. Interfaces 11(9), 9326–9332 (2019).
[Crossref]

Adv. Mater. (1)

Z. J. Zhang, G. Ramanath, P. M. Ajayan, D. Goldberg, and Y. Bando, “Creation of radial patterns of carbonated silica fibers on planar silica substrates,” Adv. Mater. 13(3), 197–200 (2001).
[Crossref]

Appl. Phys. Lett. (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4(5), 89–90 (1964).
[Crossref]

Chem. Mater. (1)

J. Lin, Y. Huang, J. Zhang, J. Gao, X. Ding, Z. Huang, and D. Chen, “Characterization and photoluminescence properties of Tb-doped SiO2 nanowires as a novel green-emitting phosphor,” Chem. Mater. 19(10), 2585–2588 (2007).
[Crossref]

CrystEngComm (1)

P. Shimpi and P. X. Gao, “Carbon-assisted lateral self-assembly of amorphous silica nanowires,” CrystEngComm 12(10), 2817–2820 (2010).
[Crossref]

J. Mater. Res. (1)

Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zou, and G. Wang, “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts on a silicon substrate,” J. Mater. Res. 16(03), 683–686 (2001).
[Crossref]

J. Nanosci. Nanotechnol. (1)

M. Paulose, O. K. Varghese, and C. A. Grimes, “Synthesis of gold-silica composite nanowires through solid-liquid-solid phase growth,” J. Nanosci. Nanotechnol. 3(4), 341–346 (2003).
[Crossref]

J. Phys. Chem. C (1)

J. H. Kim and C. S. Yoon, “Amorphous silicon dioxide nanowire array synthesized via carbonization of polyimide thin film,” J. Phys. Chem. C 112(12), 4463–4468 (2008).
[Crossref]

Nanotechnology (2)

Y. C. Lin and W. T. Lin, “Growth of SiO2 nanowires without a catalyst via carbothermal reduction of CuO powders,” Nanotechnology 16(9), 1648–1654 (2005).
[Crossref]

L. X. Wang, Z. Q. Zhou, H. C. Hao, and M. Lu, “A porous Si-emitter crystalline-Si solar cell with 18.97% efficiency,” Nanotechnology 27(42), 425207 (2016).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (3)

Other (1)

B. Gelloz, Y. Coffinier, B. Salhi, N. Koshida, G. Patriarche, and R. Boukherroub, “Synthesis and Optical Properties of Silicon Oxide Nanowires,” MRS Online Proceedings Library Archive, 2006, 958.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic diagram of experimental set-ups for SiO2 nanowires growth, (a) the PLD equipment and (b) the annealing furnace. 1-focusing lens, 2-incident laser, 3-ablated targets, 4-substrates, 5-plume during PLD, 6-annealing tube, 7-heater, 8-samples, 9-annealing atmosphere flowThe morphology of the samples was characterized with field emission scanning electron microscopy (FESEM, Hitachi S4800), and the crystalline structures and composition of the nanowires were examined by transmission electron microscopy (TEM, Tecnai G2 F20-D436), high resolution TEM (HRTEM) and energy dispersive X-ray spectroscopy (EDXS) fitted on TEM.
Fig. 2.
Fig. 2. FESEM morphologies of the samples (a) before and (b) after annealing in N2
Fig. 3.
Fig. 3. (a) TEM, (b)HRTEM of the black circle point of (a) and (c)EDXS characterizations of the nanowires.
Fig. 4.
Fig. 4. Growth models for SiO2 nanowires. (a) the as-deposited bi-layer film, (b) the melted Ni-SiOx alloy particles and (c) the grown SiO2 nanowires.
Fig. 5.
Fig. 5. FESEM morphologies of annealed samples with only. (a) C and (b) Ni particles in the precursor (black scale bar = 300 nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C + O 2 C O
C + S i O 2 C O + S i O x
C O + S i O 2 C O 2 + S i O x
S i O x + O 2 S i O 2

Metrics