Abstract

Radiation trapping (RT) is a phenomenon wherein photons are emitted, absorbed and re-emitted many times before they leave the volume of the material. Trivalent Er3+ ions are particularly prone to RT because there is a whole set of strongly overlapping emission and absorption bands including 4I13/24I15/2 and 4I11/24I15/2 bands. The effect of RT on the PL decay time was investigated experimentally in this work in a variety of Er3+-doped GeGaS, GeGaSe, GaLaS(O) glasses. Sample geometry (powders, plates, disks, cylinders) and size were varied and the samples were also immersed in glycol, a liquid with high refractive index. PL decay times were measured and compared with the Judd-Ofelt results. A simple model of RT was developed and applied to the above mentioned bands. By comparing model conclusions with experimental data for different sample sizes, we were able to separate the direct relaxation of the 4I11/2 state to ground 4I15/2 state and relaxation via the intermediate 4I13/2 state; and hence obtain an approximate nonradiative lifetime.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Er3+ doped and Er3+/Pr3+ co-doped gallium-antimony-sulphur chalcogenide glasses for infrared applications

Ge Li, Lini Li, Xinyu Huang, Junzhou Tang, Shixun Dai, Guoxiang Wang, Tiefeng Xu, and Qing Jiao
Opt. Mater. Express 6(12) 3849-3856 (2016)

Spectroscopy of upper energy levels in an Er3+-doped amorphous oxide

Laura Agazzi, Kerstin Wörhoff, Andreas Kahn, Matthias Fechner, Günter Huber, and Markus Pollnau
J. Opt. Soc. Am. B 30(3) 663-677 (2013)

Optical spectroscopy, 1.5μm emission, and upconversion properties of Er3+-doped metaphosphate laser glasses

P. Babu, Hyo Jin Seo, Kyoung Hyuk Jang, R. Balakrishnaiah, C. K. Jayasankar, Ki-Soo Lim, and V. Lavín
J. Opt. Soc. Am. B 24(9) 2218-2228 (2007)

References

  • View by:
  • |
  • |
  • |

  1. L. J. Hayner, “The persistence of the radiation excited in mercury vapor,” Phys. Rev. 26(3), 364–375 (1925).
    [Crossref]
  2. E. A. Milne, “The diffusion of imprisoned radiation through a gas,” J. London Math. Soc. s1-1(1), 40–51 (1926).
    [Crossref]
  3. W. Chung, A. Jha, S. Shen, and P. Joshi, “The effect of Er3+-ion concentration on the Er3+:4I13/2→4I15/2 transition in tellurite glasses,” Philos. Mag. 84(12), 1197–1207 (2004).
    [Crossref]
  4. F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; Role of a cavity,” J. Lumin. 94-95(95), 293–297 (2001).
    [Crossref]
  5. F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
    [Crossref]
  6. B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
    [Crossref]
  7. C. Koughia and S. O. Kasap, “Excitation diffusion in GeGaSe and GeGaS glasses heavily doped with Er3+,” Opt. Express 16(11), 7709–7714 (2008).
    [Crossref]
  8. C. Koughia, C. Craig, D. W. Hewak, and S. Kasap, “Tailoring the 4I9/2→4I13/2 emission in Er3+ ions in different hosts media,” Opt. Mater. 41, 116–121 (2015).
    [Crossref]
  9. J. A. Muñoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 mm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Stat. Sol.(a) 168(2), 525–530 (1998).
    [Crossref]
  10. D. S. Sumida and T. Y. Fan, “Effects of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
    [Crossref]
  11. M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
    [Crossref]
  12. V. G. Babajanyan, R. B. Kostanyan, and P. H. Muzhikyan, “Spectral and kinetic peculiarities of the radiation trapping effect in doped materials,” Opt. Mater. 45, 215–218 (2015).
    [Crossref]
  13. W. C. Wang, W. J. Zhang, L. X. Li, Y. Liu, D. D. Chen, Q. Qian, and Q. Y. Zhang, “Spectroscopic and structural characterization of barium tellurite glass fibers for mid-infrared ultra-broad tunable fiber lasers,” Opt. Mater. Express 6(6), 2095–2107 (2016).
    [Crossref]
  14. S. Kasap and C. Koughia, “The influence of radiation trapping on spectra and measured lifetimes of 4F9/2 -4I15/2, 4I9/2 −4I15/2, 4I11/2−4I15/2 and 4I13/2−4I15/2 emission bands in GeGaS glasses doped with erbium,” Int. Conf. Transparent Opt. Networks.2016–August (2016) 13–17. doi:10.1109/ICTON.2016.7550252.
  15. H. Kühn, S. T. Fredrich-Thornton, C. Kränkel, R. Peters, and K. Petermann, “Model for the calculation of radiation trapping and description of the pinhole method,” Opt. Lett. 32(13), 1908–1910 (2007).
    [Crossref]
  16. G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping,” Appl. Phys. B: Lasers Opt. 106(1), 63–71 (2012).
    [Crossref]
  17. G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II - Application to Yb3+ doped ceramics and crystals,” Appl. Phys. B: Lasers Opt. 106(1), 73–79 (2012).
    [Crossref]
  18. Y.-S. Yong, S. Aravazhi, S. A. Vázquez- Córdova, J. J. Carvajal, F. Díaz, J. L. Herek, S. M. García-Blanco, and M. Pollnau, “Direct confocal lifetime measurements on rare-earth-doped media exhibiting radiation trapping,” Opt. Mater. Express 7(2), 527–532 (2017).
    [Crossref]
  19. C. Koughia, C. Craig, D.W. Hewak, and S. Kasap, “Further studies of radiation trapping in Er3+ doped chalcogenide glasses,” Opt. Mater. 87, 157–163 (2019).
    [Crossref]
  20. K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
    [Crossref]
  21. M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).
  22. D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
    [Crossref]
  23. C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
    [Crossref]
  24. K. Koughia, D. Saitou, T. Aoki, M. Munzar, and S. O. Kasap, “Photoluminescence lifetime spectrum in erbium doped Ge–Ga–S glasses,” J. Non-Cryst. Solids 352(23-25), 2420–2424 (2006).
    [Crossref]

2019 (1)

C. Koughia, C. Craig, D.W. Hewak, and S. Kasap, “Further studies of radiation trapping in Er3+ doped chalcogenide glasses,” Opt. Mater. 87, 157–163 (2019).
[Crossref]

2017 (1)

2016 (1)

2015 (2)

V. G. Babajanyan, R. B. Kostanyan, and P. H. Muzhikyan, “Spectral and kinetic peculiarities of the radiation trapping effect in doped materials,” Opt. Mater. 45, 215–218 (2015).
[Crossref]

C. Koughia, C. Craig, D. W. Hewak, and S. Kasap, “Tailoring the 4I9/2→4I13/2 emission in Er3+ ions in different hosts media,” Opt. Mater. 41, 116–121 (2015).
[Crossref]

2012 (2)

G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping,” Appl. Phys. B: Lasers Opt. 106(1), 63–71 (2012).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II - Application to Yb3+ doped ceramics and crystals,” Appl. Phys. B: Lasers Opt. 106(1), 73–79 (2012).
[Crossref]

2008 (1)

2007 (2)

2006 (1)

K. Koughia, D. Saitou, T. Aoki, M. Munzar, and S. O. Kasap, “Photoluminescence lifetime spectrum in erbium doped Ge–Ga–S glasses,” J. Non-Cryst. Solids 352(23-25), 2420–2424 (2006).
[Crossref]

2005 (3)

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

2004 (1)

W. Chung, A. Jha, S. Shen, and P. Joshi, “The effect of Er3+-ion concentration on the Er3+:4I13/2→4I15/2 transition in tellurite glasses,” Philos. Mag. 84(12), 1197–1207 (2004).
[Crossref]

2003 (1)

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

2001 (1)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; Role of a cavity,” J. Lumin. 94-95(95), 293–297 (2001).
[Crossref]

1998 (1)

J. A. Muñoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 mm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Stat. Sol.(a) 168(2), 525–530 (1998).
[Crossref]

1996 (1)

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[Crossref]

1994 (2)

D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
[Crossref]

D. S. Sumida and T. Y. Fan, “Effects of radiation trapping on fluorescence lifetime and emission cross section measurements in solid-state laser media,” Opt. Lett. 19(17), 1343–1345 (1994).
[Crossref]

1926 (1)

E. A. Milne, “The diffusion of imprisoned radiation through a gas,” J. London Math. Soc. s1-1(1), 40–51 (1926).
[Crossref]

1925 (1)

L. J. Hayner, “The persistence of the radiation excited in mercury vapor,” Phys. Rev. 26(3), 364–375 (1925).
[Crossref]

Alderighi, D.

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II - Application to Yb3+ doped ceramics and crystals,” Appl. Phys. B: Lasers Opt. 106(1), 73–79 (2012).
[Crossref]

Almeida, R. M.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Aoki, T.

K. Koughia, D. Saitou, T. Aoki, M. Munzar, and S. O. Kasap, “Photoluminescence lifetime spectrum in erbium doped Ge–Ga–S glasses,” J. Non-Cryst. Solids 352(23-25), 2420–2424 (2006).
[Crossref]

Aravazhi, S.

Auzel, F.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; Role of a cavity,” J. Lumin. 94-95(95), 293–297 (2001).
[Crossref]

Babajanyan, V. G.

V. G. Babajanyan, R. B. Kostanyan, and P. H. Muzhikyan, “Spectral and kinetic peculiarities of the radiation trapping effect in doped materials,” Opt. Mater. 45, 215–218 (2015).
[Crossref]

Baldacchini, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; Role of a cavity,” J. Lumin. 94-95(95), 293–297 (2001).
[Crossref]

Binks, D.

Bonfigli, F.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; Role of a cavity,” J. Lumin. 94-95(95), 293–297 (2001).
[Crossref]

Boulon, G.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

Brown, R. S.

D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
[Crossref]

Carvajal, J. J.

Chen, D. D.

Chiasera, A.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Chung, W.

W. Chung, A. Jha, S. Shen, and P. Joshi, “The effect of Er3+-ion concentration on the Er3+:4I13/2→4I15/2 transition in tellurite glasses,” Philos. Mag. 84(12), 1197–1207 (2004).
[Crossref]

Craig, C.

C. Koughia, C. Craig, D.W. Hewak, and S. Kasap, “Further studies of radiation trapping in Er3+ doped chalcogenide glasses,” Opt. Mater. 87, 157–163 (2019).
[Crossref]

C. Koughia, C. Craig, D. W. Hewak, and S. Kasap, “Tailoring the 4I9/2→4I13/2 emission in Er3+ ions in different hosts media,” Opt. Mater. 41, 116–121 (2015).
[Crossref]

Cussó, F.

J. A. Muñoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 mm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Stat. Sol.(a) 168(2), 525–530 (1998).
[Crossref]

Decorby, R.

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

Decorby, R. G.

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

Díaz, F.

Fan, T. Y.

Ferrari, M.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Fortes, L. M.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Fredrich-Thornton, S. T.

Gagliari, S.

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; Role of a cavity,” J. Lumin. 94-95(95), 293–297 (2001).
[Crossref]

García-Blanco, S. M.

Gonçalves, M. C.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Haugen, C.

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

Haugen, C. J.

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

Hayner, L. J.

L. J. Hayner, “The persistence of the radiation excited in mercury vapor,” Phys. Rev. 26(3), 364–375 (1925).
[Crossref]

Hempstead, M.

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[Crossref]

Herek, J. L.

Herreros, B.

J. A. Muñoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 mm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Stat. Sol.(a) 168(2), 525–530 (1998).
[Crossref]

Hewak, D. W.

C. Koughia, C. Craig, D. W. Hewak, and S. Kasap, “Tailoring the 4I9/2→4I13/2 emission in Er3+ ions in different hosts media,” Opt. Mater. 41, 116–121 (2015).
[Crossref]

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[Crossref]

D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
[Crossref]

Hewak, D.W.

C. Koughia, C. Craig, D.W. Hewak, and S. Kasap, “Further studies of radiation trapping in Er3+ doped chalcogenide glasses,” Opt. Mater. 87, 157–163 (2019).
[Crossref]

Ikari, T.

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

Jedrzejewski, K. P.

D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
[Crossref]

Jha, A.

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
[Crossref]

W. Chung, A. Jha, S. Shen, and P. Joshi, “The effect of Er3+-ion concentration on the Er3+:4I13/2→4I15/2 transition in tellurite glasses,” Philos. Mag. 84(12), 1197–1207 (2004).
[Crossref]

Joshi, P.

W. Chung, A. Jha, S. Shen, and P. Joshi, “The effect of Er3+-ion concentration on the Er3+:4I13/2→4I15/2 transition in tellurite glasses,” Philos. Mag. 84(12), 1197–1207 (2004).
[Crossref]

Kasap, S.

C. Koughia, C. Craig, D.W. Hewak, and S. Kasap, “Further studies of radiation trapping in Er3+ doped chalcogenide glasses,” Opt. Mater. 87, 157–163 (2019).
[Crossref]

C. Koughia, C. Craig, D. W. Hewak, and S. Kasap, “Tailoring the 4I9/2→4I13/2 emission in Er3+ ions in different hosts media,” Opt. Mater. 41, 116–121 (2015).
[Crossref]

S. Kasap and C. Koughia, “The influence of radiation trapping on spectra and measured lifetimes of 4F9/2 -4I15/2, 4I9/2 −4I15/2, 4I11/2−4I15/2 and 4I13/2−4I15/2 emission bands in GeGaS glasses doped with erbium,” Int. Conf. Transparent Opt. Networks.2016–August (2016) 13–17. doi:10.1109/ICTON.2016.7550252.

Kasap, S. O.

C. Koughia and S. O. Kasap, “Excitation diffusion in GeGaSe and GeGaS glasses heavily doped with Er3+,” Opt. Express 16(11), 7709–7714 (2008).
[Crossref]

K. Koughia, D. Saitou, T. Aoki, M. Munzar, and S. O. Kasap, “Photoluminescence lifetime spectrum in erbium doped Ge–Ga–S glasses,” J. Non-Cryst. Solids 352(23-25), 2420–2424 (2006).
[Crossref]

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

Kostanyan, R. B.

V. G. Babajanyan, R. B. Kostanyan, and P. H. Muzhikyan, “Spectral and kinetic peculiarities of the radiation trapping effect in doped materials,” Opt. Mater. 45, 215–218 (2015).
[Crossref]

Koughia, C.

C. Koughia, C. Craig, D.W. Hewak, and S. Kasap, “Further studies of radiation trapping in Er3+ doped chalcogenide glasses,” Opt. Mater. 87, 157–163 (2019).
[Crossref]

C. Koughia, C. Craig, D. W. Hewak, and S. Kasap, “Tailoring the 4I9/2→4I13/2 emission in Er3+ ions in different hosts media,” Opt. Mater. 41, 116–121 (2015).
[Crossref]

C. Koughia and S. O. Kasap, “Excitation diffusion in GeGaSe and GeGaS glasses heavily doped with Er3+,” Opt. Express 16(11), 7709–7714 (2008).
[Crossref]

S. Kasap and C. Koughia, “The influence of radiation trapping on spectra and measured lifetimes of 4F9/2 -4I15/2, 4I9/2 −4I15/2, 4I11/2−4I15/2 and 4I13/2−4I15/2 emission bands in GeGaS glasses doped with erbium,” Int. Conf. Transparent Opt. Networks.2016–August (2016) 13–17. doi:10.1109/ICTON.2016.7550252.

Koughia, K.

K. Koughia, D. Saitou, T. Aoki, M. Munzar, and S. O. Kasap, “Photoluminescence lifetime spectrum in erbium doped Ge–Ga–S glasses,” J. Non-Cryst. Solids 352(23-25), 2420–2424 (2006).
[Crossref]

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

Kränkel, C.

Kühn, H.

Laversenne, L.

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

Li, L. X.

Lifante, G.

J. A. Muñoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 mm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Stat. Sol.(a) 168(2), 525–530 (1998).
[Crossref]

Liu, Y.

Maeda, K.

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

Mattarelli, M.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

McMullin, J. N.

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

Milne, E. A.

E. A. Milne, “The diffusion of imprisoned radiation through a gas,” J. London Math. Soc. s1-1(1), 40–51 (1926).
[Crossref]

Montagna, M.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Muñoz, J. A.

J. A. Muñoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 mm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Stat. Sol.(a) 168(2), 525–530 (1998).
[Crossref]

Munzar, M.

K. Koughia, D. Saitou, T. Aoki, M. Munzar, and S. O. Kasap, “Photoluminescence lifetime spectrum in erbium doped Ge–Ga–S glasses,” J. Non-Cryst. Solids 352(23-25), 2420–2424 (2006).
[Crossref]

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

Muzhikyan, P. H.

V. G. Babajanyan, R. B. Kostanyan, and P. H. Muzhikyan, “Spectral and kinetic peculiarities of the radiation trapping effect in doped materials,” Opt. Mater. 45, 215–218 (2015).
[Crossref]

Neto, J. A. M.

D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
[Crossref]

Payne, D. N.

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[Crossref]

Petermann, K.

Peters, R.

Pirri, A.

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II - Application to Yb3+ doped ceramics and crystals,” Appl. Phys. B: Lasers Opt. 106(1), 73–79 (2012).
[Crossref]

Pollnau, M.

Qian, Q.

Richards, B.

Righini, G. C.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Saitou, D.

K. Koughia, D. Saitou, T. Aoki, M. Munzar, and S. O. Kasap, “Photoluminescence lifetime spectrum in erbium doped Ge–Ga–S glasses,” J. Non-Cryst. Solids 352(23-25), 2420–2424 (2006).
[Crossref]

Sakai, T.

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

Samson, B.

D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
[Crossref]

Samson, B. N.

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[Crossref]

Santos, L. F.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Shen, S.

B. Richards, S. Shen, A. Jha, Y. Tsang, and D. Binks, “Infrared emission and energy transfer in Tm3+, Tm3+-Ho3+ and Tm3+-Yb3+-doped tellurite fibre,” Opt. Express 15(11), 6546–6551 (2007).
[Crossref]

W. Chung, A. Jha, S. Shen, and P. Joshi, “The effect of Er3+-ion concentration on the Er3+:4I13/2→4I15/2 transition in tellurite glasses,” Philos. Mag. 84(12), 1197–1207 (2004).
[Crossref]

Sumida, D. S.

Toci, G.

G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping,” Appl. Phys. B: Lasers Opt. 106(1), 63–71 (2012).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II - Application to Yb3+ doped ceramics and crystals,” Appl. Phys. B: Lasers Opt. 106(1), 73–79 (2012).
[Crossref]

Tonchev, D.

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

Tsang, Y.

Vannini, M.

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II - Application to Yb3+ doped ceramics and crystals,” Appl. Phys. B: Lasers Opt. 106(1), 73–79 (2012).
[Crossref]

Vázquez- Córdova, S. A.

Wang, J.

D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
[Crossref]

Wang, W. C.

Ye, C. C.

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[Crossref]

Yong, Y.-S.

Zampedri, L.

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

Zhang, Q. Y.

Zhang, W. J.

Appl. Phys. B: Lasers Opt. (2)

G. Toci, “Lifetime measurements with the pinhole method in presence of radiation trapping,” Appl. Phys. B: Lasers Opt. 106(1), 63–71 (2012).
[Crossref]

G. Toci, D. Alderighi, A. Pirri, and M. Vannini, “Lifetime measurements with the pinhole method in presence of radiation trapping: II - Application to Yb3+ doped ceramics and crystals,” Appl. Phys. B: Lasers Opt. 106(1), 73–79 (2012).
[Crossref]

Europhys. Lett. (1)

M. Mattarelli, M. Montagna, L. Zampedri, A. Chiasera, M. Ferrari, G. C. Righini, L. M. Fortes, M. C. Gonçalves, L. F. Santos, and R. M. Almeida, “Self-absorption and radiation trapping in Er3+-doped TeO2-based glasses,” Europhys. Lett. 71(3), 394–399 (2005).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. W. Hewak, J. A. M. Neto, B. Samson, R. S. Brown, K. P. Jedrzejewski, and J. Wang, “Quantum-efficiency of praseodymium doped Ga:La:S glass for 1.3 micron optical fibre amplifiers,” IEEE Photonics Technol. Lett. 6(5), 609–612 (1994).
[Crossref]

J. London Math. Soc. (1)

E. A. Milne, “The diffusion of imprisoned radiation through a gas,” J. London Math. Soc. s1-1(1), 40–51 (1926).
[Crossref]

J. Lumin. (2)

F. Auzel, F. Bonfigli, S. Gagliari, and G. Baldacchini, “The interplay of self-trapping and self-quenching for resonant transitions in solids; Role of a cavity,” J. Lumin. 94-95(95), 293–297 (2001).
[Crossref]

K. Koughia, M. Munzar, D. Tonchev, C. J. Haugen, R. G. Decorby, J. N. McMullin, and S. O. Kasap, “Photoluminescence in Er-doped Ge-Ga-Se glasses,” J. Lumin. 112(1-4), 92–96 (2005).
[Crossref]

J. Non-Cryst. Solids (2)

C. C. Ye, D. W. Hewak, M. Hempstead, B. N. Samson, and D. N. Payne, “Spectral properties of Er3+-doped gallium lanthanum sulphide glass,” J. Non-Cryst. Solids 208(1-2), 56–63 (1996).
[Crossref]

K. Koughia, D. Saitou, T. Aoki, M. Munzar, and S. O. Kasap, “Photoluminescence lifetime spectrum in erbium doped Ge–Ga–S glasses,” J. Non-Cryst. Solids 352(23-25), 2420–2424 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. (4)

C. Koughia, C. Craig, D.W. Hewak, and S. Kasap, “Further studies of radiation trapping in Er3+ doped chalcogenide glasses,” Opt. Mater. 87, 157–163 (2019).
[Crossref]

V. G. Babajanyan, R. B. Kostanyan, and P. H. Muzhikyan, “Spectral and kinetic peculiarities of the radiation trapping effect in doped materials,” Opt. Mater. 45, 215–218 (2015).
[Crossref]

C. Koughia, C. Craig, D. W. Hewak, and S. Kasap, “Tailoring the 4I9/2→4I13/2 emission in Er3+ ions in different hosts media,” Opt. Mater. 41, 116–121 (2015).
[Crossref]

F. Auzel, G. Baldacchini, L. Laversenne, and G. Boulon, “Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3,” Opt. Mater. 24(1-2), 103–109 (2003).
[Crossref]

Opt. Mater. Express (2)

Philos. Mag. (1)

W. Chung, A. Jha, S. Shen, and P. Joshi, “The effect of Er3+-ion concentration on the Er3+:4I13/2→4I15/2 transition in tellurite glasses,” Philos. Mag. 84(12), 1197–1207 (2004).
[Crossref]

Phys. Chem. Glass. (1)

M. Munzar, K. Koughia, D. Tonchev, S. O. Kasap, T. Sakai, K. Maeda, T. Ikari, C. Haugen, R. Decorby, and J. N. McMullin, “Influence of Ga on the optical and thermal properties of Er3+ doped stoichiometric and nonstoichiometric Ge-Ga-Se glasses,” Phys. Chem. Glass. 46(2), 215–219 (2005).

Phys. Rev. (1)

L. J. Hayner, “The persistence of the radiation excited in mercury vapor,” Phys. Rev. 26(3), 364–375 (1925).
[Crossref]

Phys. Stat. Sol.(a) (1)

J. A. Muñoz, B. Herreros, G. Lifante, and F. Cussó, “Concentration dependence of the 1.5 mm emission lifetime of Er3+ in LiNbO3 by radiation trapping,” Phys. Stat. Sol.(a) 168(2), 525–530 (1998).
[Crossref]

Other (1)

S. Kasap and C. Koughia, “The influence of radiation trapping on spectra and measured lifetimes of 4F9/2 -4I15/2, 4I9/2 −4I15/2, 4I11/2−4I15/2 and 4I13/2−4I15/2 emission bands in GeGaS glasses doped with erbium,” Int. Conf. Transparent Opt. Networks.2016–August (2016) 13–17. doi:10.1109/ICTON.2016.7550252.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. The influence of geometrical size on PL decays from steady-state after switching-off the excitation in two samples with compositions shown in Table 1 and for two emission bands. The meaning of sample size (L) is explained in the caption of Fig. 2. Solid lines are the best single exponential fits to experimental data. All experiments are performed in air. Excitation is by a laser diode at 808 nm.
Fig. 2.
Fig. 2. The PL decay times vs. geometrical size of samples for 4I11/24I15/2 (upper pane (a)) and 4I13/24I15/2 (lower pane (b)) emission bands. Numbers 1 and 2 stand for two different glass compositions as shown in Table 1. Open symbols are results collected in air. Full symbols show the results for samples submersed in glycol. Powders in air and in glycol give coinciding results. The inset to figure (b) illustrates the geometry of samples (glass #1) used in the present research. The samples of fine powders with particle size (L≈ 0.03 mm) were collected on scotch tape. Round optical plates had a diameter close to 2 mm and thickness (L ≈ 1 mm (shown in the inset)). Cylinders with both polished ends had a diameter close to 2 mm and varying heights (L = 10, 26 and 44 mm. Cylinders with L = 10 and 26 mm are shown in the inset). Solid lines are guides to the eye.
Fig. 3.
Fig. 3. Ratio of PL decay times τ2(L)/τ2(0) versus ratio τ1(L)/τ1(0). Here τ2(L) is the PL decay time for Er3+ 4I11/24I15/2 emission band in bulk samples; τ2(0) is the PL decay time for the same band in fine powders; τ1(L) is the PL decay time for Er3+ 4I13/24I15/2 emission band in bulk samples and τ1(0) is the PL decay time for the same band in fine powders. Numbers from 1 to 4 correspond to different glass compositions as listed in Table 1. Open symbols are results collected in air. Full symbols are for samples submersed in glycol. Solid lines are least square fits to experimental data using Eq. (1) with slopes a listed in Table 1.

Tables (2)

Tables Icon

Table 1. Glass compositions; Eg - optical gap; τ10(0) and τ20(0) PL decay times in fine powders for 4I13/24I15/2 and 4I11/24I15/2 bands, respectively; a - slope of the straight lines in Fig. 3; τ20 and τ21 relaxation times of 4I11/24I15/2 and 4I11/24I13/2, respectively (deduced in the present paper). Optical gap (Eg) is accepted to be equal to the photon energy at which absorption coefficient is equal to 103 cm−1.

Tables Icon

Table 2. Glass compositions; Judd-Ofelt parameters (Ω2, Ω4 and Ω6) ; β - branching ratio for level 4I11/2 ; $R_{10}^{\textrm{ed}}$- electric dipole 4I13/24I15/2 transition rate; $R_{10}^{\textrm{md}}$- magnetic dipole 4I13/24I15/2 transition rate; $\tau _{10}^{\textrm{JO}}$- calculated 4I13/24I15/2 transition radiative lifetime; $R_{20}^{\textrm{ed}}$- electric dipole 4I11/24I15/2 transition rate; $\tau _{20}^{\textrm{JO}}$- calculated 4I11/24I15/2 transition radiative lifetime. The values of τ10(0) and τ20 are reproduced from Table 1 to facilitate comparison with $\tau _{10}^{\textrm{JO}}$ and $\tau _{20}^{\textrm{JO}}$, respectively. The values for Judd-Ofelt parameters for glasses 3 and 4 were published previously in [24] and [7], respectively.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

τ2(0)τ2(L)=aτ1(0)τ1(L)+(1a)
dNidt=Niτ1Niτ2
τ(0)=τ1τ2τ1+τ2
dNidt=Niτ1pesc(L)Niτ2
τ(L)=τ1τ2τ1+τ2pesc(L)
τ(0)τ(L)=τ1τ1+τ2+τ2τ1+τ2pesc(L)
τ1(0)τ1(L)=pesc(1)(L)
τ2(0)τ2(L)=τ20τ20+τ21+τ21τ20+τ21pesc(2)(L)
τ20τ20+τ21+τ21τ20+τ21pesc(2)(L)=(1a)+apesc(1)(L)
τ20τ20+τ21=(1a)ora=τ21τ21+τ20
τ20=τ2(0)aandτ21=τ2(0)1a

Metrics