Abstract

While 3D direct laser writing is a technique with growing popularity, there is little information about the quality of custom-made optical scatterers in current literature. The present work investigates a 3D direct laser writing system in view of its capability of producing micron scaled scatterers. Angular resolved scattering measurements on these scatterers are compared to numerical and analytical simulations proving the feasibility to produce elementary shaped particles with almost ideal shapes. Possible promising applications of these particles as scattering phantoms for biological samples are examined. Without the need for templates and molds, and a production cycle of less than a day, this method is ideally suited for the rapid prototyping of particle designs.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
3D whispering-gallery-mode microlasers by direct laser writing and subsequent soft nanoimprint lithography

Philipp Brenner, Ofer Bar-On, Tobias Siegle, Tobias Leonhard, Raz Gvishi, Carsten Eschenbaum, Heinz Kalt, Jacob Scheuer, and Uli Lemmer
Appl. Opt. 56(13) 3703-3708 (2017)

Beat the diffraction limit in 3D direct laser writing in photosensitive glass

Matthieu Bellec, Arnaud Royon, Bruno Bousquet, Kevin Bourhis, Mona Treguer, Thierry Cardinal, Martin Richardson, and Lionel Canioni
Opt. Express 17(12) 10304-10318 (2009)

3D conducting nanostructures fabricated using direct laser writing

Konstantina Terzaki, Nikos Vasilantonakis, Arune Gaidukeviciute, Carsten Reinhardt, Costas Fotakis, Maria Vamvakaki, and Maria Farsari
Opt. Mater. Express 1(4) 586-597 (2011)

References

  • View by:
  • |
  • |
  • |

  1. C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, “Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations,” J. Phys. Chem. 82(12), 1375–1378 (1978).
    [Crossref]
  2. M. Schmitz, T. Rothe, and A. Kienle, “Evaluation of a spectrally resolved scattering microscope,” Biomed. Opt. Express 2(9), 2665–2678 (2011).
    [Crossref]
  3. H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
    [Crossref]
  4. J. Stark, T. Rothe, S. Kieß, S. Simon, and A. Kienle, “Light scattering microscopy measurements of single nuclei compared with gpu-accelerated fdtd simulations,” Phys. Med. Biol. 61(7), 2749–2761 (2016).
    [Crossref]
  5. W. Bickel and M. Stafford, “Polarized light scattering from biological systems: a technique for cell differentiation,” J. Biol. Phys. 9(2), 53–66 (1981).
    [Crossref]
  6. B. V. Bronk, S. D. Druger, J. Czege, and W. Van De Merwe, “Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering,” Biophys. J. 69(3), 1170–1177 (1995).
    [Crossref]
  7. Y. Jo, J. Jung, M.-h. Kim, H. Park, S.-J. Kang, and Y. Park, “Label-free identification of individual bacteria using fourier transform light scattering,” Opt. Express 23(12), 15792–15805 (2015).
    [Crossref]
  8. V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
    [Crossref]
  9. I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
    [Crossref]
  10. A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
    [Crossref]
  11. Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett. 30(18), 2445–2447 (2005).
    [Crossref]
  12. A. Amelink, M. P. Bard, S. A. Burgers, and H. J. Sterenborg, “Single-scattering spectroscopy for the endoscopic analysis of particle size in superficial layers of turbid media,” Appl. Opt. 42(19), 4095–4101 (2003).
    [Crossref]
  13. F. K. Forster, A. Kienle, R. Michels, and R. Hibst, “Phase function measurements on nonspherical scatterers using a two-axis goniometer,” J. Biomed. Opt. 11(2), 024018 (2006).
    [Crossref]
  14. H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
    [Crossref]
  15. T. Rothe, M. Schmitz, and A. Kienle, “Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy,” J. Biomed. Opt. 17(11), 117006 (2012).
    [Crossref]
  16. W. Cottrell, J. Wilson, and T. Foster, “Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy,” Opt. Lett. 32(16), 2348–2350 (2007).
    [Crossref]
  17. G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
    [Crossref]
  18. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech house, 2005).
  19. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [Crossref]
  20. S. Stolnik, L. Illum, and S. Davis, “Long circulating microparticulate drug carriers,” Adv. Drug Delivery Rev. 16(2-3), 195–214 (1995).
    [Crossref]
  21. B. Y. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ. (1967) 8(7), 717–732 (1974).
    [Crossref]
  22. Q. Wang, S. Fu, and T. Yu, “Emulsion polymerization,” Prog. Polym. Sci. 19(4), 703–753 (1994).
    [Crossref]
  23. P. Foladori, A. Quaranta, and G. Ziglio, “Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume,” Water Res. 42(14), 3757–3766 (2008).
    [Crossref]
  24. W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
    [Crossref]
  25. M. Antonietti, S. Lohmann, and C. Van Niel, “Polymerization in microemulsion. 2. surface control and functionalization of microparticles,” Macromolecules 25(3), 1139–1143 (1992).
    [Crossref]
  26. S. Bhaskar, K. M. Pollock, M. Yoshida, and J. Lahann, “Towards designer microparticles: simultaneous control of anisotropy, shape, and size,” Small 6(3), 404–411 (2010).
    [Crossref]
  27. J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro-and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. 104(29), 11901–11904 (2007).
    [Crossref]
  28. J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, “Print: a novel platform toward shape and size specific nanoparticle theranostics,” Acc. Chem. Res. 44(10), 990–998 (2011).
    [Crossref]
  29. Y. He and K. Park, “Effects of the microparticle shape on cellular uptake,” Mol. Pharmaceutics 13(7), 2164–2171 (2016).
    [Crossref]
  30. J. Wang, J. Coburn, C.-P. Liang, N. Woolsey, J. C. Ramella-Roman, Y. Chen, and T. J. Pfefer, “Three-dimensional printing of tissue phantoms for biophotonic imaging,” Opt. Lett. 39(10), 3010–3013 (2014).
    [Crossref]
  31. T. Kairn, S. Crowe, and T. Markwell, “Use of 3d printed materials as tissue-equivalent phantoms,” in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada, (Springer, 2015), pp. 728–731
  32. M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
    [Crossref]
  33. M. Guney and G. Fedder, “Estimation of line dimensions in 3d direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
    [Crossref]
  34. D. Müller, D. Geiger, J. Stark, and A. Kienle, “Angle-resolved light scattering of single human chromosomes: experiments and simulations,” Phys. Med. Biol. 64(4), 045016 (2019).
    [Crossref]
  35. D. Nečas and P. Klapetek, “Gwyddion: an open-source software for spm data analysis,” Open Phys. 10(1), 181–188 (2012).
    [Crossref]
  36. T. Gissibl, S. Wagner, J. Sykora, M. Schmid, and H. Giessen, “Refractive index measurements of photo-resists for three-dimensional direct laser writing,” Opt. Mater. Express 7(7), 2293–2298 (2017).
    [Crossref]
  37. F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, and C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
    [Crossref]
  38. Z. Hu and D. C. Ripple, “The use of index-matched beads in optical particle counters,” J. Res. Natl. Inst. Stand. Technol. 119, 644 (2014).
    [Crossref]
  39. S. Dottermusch, D. Busko, M. Langenhorst, U. W. Paetzold, and B. S. Richards, “Exposure-dependent refractive index of nanoscribe ip-dip photoresist layers,” Opt. Lett. 44(1), 29–32 (2019).
    [Crossref]
  40. M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106(1-3), 546–557 (2007).
    [Crossref]
  41. R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).
  42. T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
    [Crossref]

2019 (2)

D. Müller, D. Geiger, J. Stark, and A. Kienle, “Angle-resolved light scattering of single human chromosomes: experiments and simulations,” Phys. Med. Biol. 64(4), 045016 (2019).
[Crossref]

S. Dottermusch, D. Busko, M. Langenhorst, U. W. Paetzold, and B. S. Richards, “Exposure-dependent refractive index of nanoscribe ip-dip photoresist layers,” Opt. Lett. 44(1), 29–32 (2019).
[Crossref]

2017 (1)

2016 (3)

Y. He and K. Park, “Effects of the microparticle shape on cellular uptake,” Mol. Pharmaceutics 13(7), 2164–2171 (2016).
[Crossref]

J. Stark, T. Rothe, S. Kieß, S. Simon, and A. Kienle, “Light scattering microscopy measurements of single nuclei compared with gpu-accelerated fdtd simulations,” Phys. Med. Biol. 61(7), 2749–2761 (2016).
[Crossref]

M. Guney and G. Fedder, “Estimation of line dimensions in 3d direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
[Crossref]

2015 (1)

2014 (2)

2012 (2)

D. Nečas and P. Klapetek, “Gwyddion: an open-source software for spm data analysis,” Open Phys. 10(1), 181–188 (2012).
[Crossref]

T. Rothe, M. Schmitz, and A. Kienle, “Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy,” J. Biomed. Opt. 17(11), 117006 (2012).
[Crossref]

2011 (2)

M. Schmitz, T. Rothe, and A. Kienle, “Evaluation of a spectrally resolved scattering microscope,” Biomed. Opt. Express 2(9), 2665–2678 (2011).
[Crossref]

J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, “Print: a novel platform toward shape and size specific nanoparticle theranostics,” Acc. Chem. Res. 44(10), 990–998 (2011).
[Crossref]

2010 (1)

S. Bhaskar, K. M. Pollock, M. Yoshida, and J. Lahann, “Towards designer microparticles: simultaneous control of anisotropy, shape, and size,” Small 6(3), 404–411 (2010).
[Crossref]

2009 (2)

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
[Crossref]

2008 (2)

P. Foladori, A. Quaranta, and G. Ziglio, “Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume,” Water Res. 42(14), 3757–3766 (2008).
[Crossref]

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref]

2007 (5)

W. Cottrell, J. Wilson, and T. Foster, “Microscope enabling multimodality imaging, angle-resolved scattering, and scattering spectroscopy,” Opt. Lett. 32(16), 2348–2350 (2007).
[Crossref]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[Crossref]

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro-and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. 104(29), 11901–11904 (2007).
[Crossref]

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106(1-3), 546–557 (2007).
[Crossref]

2006 (1)

F. K. Forster, A. Kienle, R. Michels, and R. Hibst, “Phase function measurements on nonspherical scatterers using a two-axis goniometer,” J. Biomed. Opt. 11(2), 024018 (2006).
[Crossref]

2005 (1)

2003 (1)

2002 (2)

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, and C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[Crossref]

1999 (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

1995 (2)

B. V. Bronk, S. D. Druger, J. Czege, and W. Van De Merwe, “Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering,” Biophys. J. 69(3), 1170–1177 (1995).
[Crossref]

S. Stolnik, L. Illum, and S. Davis, “Long circulating microparticulate drug carriers,” Adv. Drug Delivery Rev. 16(2-3), 195–214 (1995).
[Crossref]

1994 (2)

1992 (1)

M. Antonietti, S. Lohmann, and C. Van Niel, “Polymerization in microemulsion. 2. surface control and functionalization of microparticles,” Macromolecules 25(3), 1139–1143 (1992).
[Crossref]

1981 (1)

W. Bickel and M. Stafford, “Polarized light scattering from biological systems: a technique for cell differentiation,” J. Biol. Phys. 9(2), 53–66 (1981).
[Crossref]

1978 (1)

C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, “Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations,” J. Phys. Chem. 82(12), 1375–1378 (1978).
[Crossref]

1974 (1)

B. Y. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ. (1967) 8(7), 717–732 (1974).
[Crossref]

1968 (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

1908 (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Agarwal, J. K.

B. Y. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ. (1967) 8(7), 717–732 (1974).
[Crossref]

Amelink, A.

Andersson, C.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[Crossref]

Antonietti, M.

M. Antonietti, S. Lohmann, and C. Van Niel, “Polymerization in microemulsion. 2. surface control and functionalization of microparticles,” Macromolecules 25(3), 1139–1143 (1992).
[Crossref]

Backman, V.

Y. Liu, X. Li, Y. L. Kim, and V. Backman, “Elastic backscattering spectroscopic microscopy,” Opt. Lett. 30(18), 2445–2447 (2005).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Badizadegan, K.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Bard, M. P.

Barrett, R.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Benedek, G. B.

C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, “Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations,” J. Phys. Chem. 82(12), 1375–1378 (1978).
[Crossref]

Berglund, R. N.

B. Y. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ. (1967) 8(7), 717–732 (1974).
[Crossref]

Berry, M. W.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Bhaskar, S.

S. Bhaskar, K. M. Pollock, M. Yoshida, and J. Lahann, “Towards designer microparticles: simultaneous control of anisotropy, shape, and size,” Small 6(3), 404–411 (2010).
[Crossref]

Bickel, W.

W. Bickel and M. Stafford, “Polarized light scattering from biological systems: a technique for cell differentiation,” J. Biol. Phys. 9(2), 53–66 (1981).
[Crossref]

Bohn, E.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Boone, C. W.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

Boppart, S. A.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref]

Bronk, B. V.

B. V. Bronk, S. D. Druger, J. Czege, and W. Van De Merwe, “Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering,” Biophys. J. 69(3), 1170–1177 (1995).
[Crossref]

Burgers, S. A.

Busko, D.

Carey, M. C.

C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, “Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations,” J. Phys. Chem. 82(12), 1375–1378 (1978).
[Crossref]

Champion, J. A.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro-and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. 104(29), 11901–11904 (2007).
[Crossref]

Chan, T. F.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Chen, Y.

Chichkov, B. N.

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Cipolloni, P. B.

Coburn, J.

Cottrell, W.

Crowe, S.

T. Kairn, S. Crowe, and T. Markwell, “Use of 3d printed materials as tissue-equivalent phantoms,” in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada, (Springer, 2015), pp. 728–731

Czege, J.

B. V. Bronk, S. D. Druger, J. Czege, and W. Van De Merwe, “Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering,” Biophys. J. 69(3), 1170–1177 (1995).
[Crossref]

Dasari, R. R.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Davis, S.

S. Stolnik, L. Illum, and S. Davis, “Long circulating microparticulate drug carriers,” Adv. Drug Delivery Rev. 16(2-3), 195–214 (1995).
[Crossref]

Demmel, J.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

DeSimone, J. M.

J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, “Print: a novel platform toward shape and size specific nanoparticle theranostics,” Acc. Chem. Res. 44(10), 990–998 (2011).
[Crossref]

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
[Crossref]

Ding, H.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref]

Donato, J.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Dongarra, J.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Dottermusch, S.

Draine, B. T.

Druger, S. D.

B. V. Bronk, S. D. Druger, J. Czege, and W. Van De Merwe, “Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering,” Biophys. J. 69(3), 1170–1177 (1995).
[Crossref]

Eijkhout, V.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Fang, H.

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[Crossref]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

Farsari, M.

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Fedder, G.

M. Guney and G. Fedder, “Estimation of line dimensions in 3d direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
[Crossref]

Feld, M. S.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Fink, A.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Flatau, P. J.

Foladori, P.

P. Foladori, A. Quaranta, and G. Ziglio, “Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume,” Water Res. 42(14), 3757–3766 (2008).
[Crossref]

Forster, F. K.

F. K. Forster, A. Kienle, R. Michels, and R. Hibst, “Phase function measurements on nonspherical scatterers using a two-axis goniometer,” J. Biomed. Opt. 11(2), 024018 (2006).
[Crossref]

Foster, T.

Fu, S.

Q. Wang, S. Fu, and T. Yu, “Emulsion polymerization,” Prog. Polym. Sci. 19(4), 703–753 (1994).
[Crossref]

Garcia-Santamaria, F.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, and C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[Crossref]

Geiger, D.

D. Müller, D. Geiger, J. Stark, and A. Kienle, “Angle-resolved light scattering of single human chromosomes: experiments and simulations,” Phys. Med. Biol. 64(4), 045016 (2019).
[Crossref]

Ghiran, I. C.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

Giessen, H.

Gissibl, T.

Guney, M.

M. Guney and G. Fedder, “Estimation of line dimensions in 3d direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
[Crossref]

Gurjar, R.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech house, 2005).

He, Y.

Y. He and K. Park, “Effects of the microparticle shape on cellular uptake,” Mol. Pharmaceutics 13(7), 2164–2171 (2016).
[Crossref]

Herlihy, K. P.

J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, “Print: a novel platform toward shape and size specific nanoparticle theranostics,” Acc. Chem. Res. 44(10), 990–998 (2011).
[Crossref]

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
[Crossref]

Hibst, R.

F. K. Forster, A. Kienle, R. Michels, and R. Hibst, “Phase function measurements on nonspherical scatterers using a two-axis goniometer,” J. Biomed. Opt. 11(2), 024018 (2006).
[Crossref]

Hoekstra, A. G.

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106(1-3), 546–557 (2007).
[Crossref]

Hu, Z.

Z. Hu and D. C. Ripple, “The use of index-matched beads in optical particle counters,” J. Res. Natl. Inst. Stand. Technol. 119, 644 (2014).
[Crossref]

Ibisate, M.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, and C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[Crossref]

Illum, L.

S. Stolnik, L. Illum, and S. Davis, “Long circulating microparticulate drug carriers,” Adv. Drug Delivery Rev. 16(2-3), 195–214 (1995).
[Crossref]

Itzkan, I.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Jo, Y.

Jung, J.

Kairn, T.

T. Kairn, S. Crowe, and T. Markwell, “Use of 3d printed materials as tissue-equivalent phantoms,” in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada, (Springer, 2015), pp. 728–731

Kang, S.-J.

Katare, Y. K.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro-and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. 104(29), 11901–11904 (2007).
[Crossref]

Kienle, A.

D. Müller, D. Geiger, J. Stark, and A. Kienle, “Angle-resolved light scattering of single human chromosomes: experiments and simulations,” Phys. Med. Biol. 64(4), 045016 (2019).
[Crossref]

J. Stark, T. Rothe, S. Kieß, S. Simon, and A. Kienle, “Light scattering microscopy measurements of single nuclei compared with gpu-accelerated fdtd simulations,” Phys. Med. Biol. 61(7), 2749–2761 (2016).
[Crossref]

T. Rothe, M. Schmitz, and A. Kienle, “Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy,” J. Biomed. Opt. 17(11), 117006 (2012).
[Crossref]

M. Schmitz, T. Rothe, and A. Kienle, “Evaluation of a spectrally resolved scattering microscope,” Biomed. Opt. Express 2(9), 2665–2678 (2011).
[Crossref]

F. K. Forster, A. Kienle, R. Michels, and R. Hibst, “Phase function measurements on nonspherical scatterers using a two-axis goniometer,” J. Biomed. Opt. 11(2), 024018 (2006).
[Crossref]

Kieß, S.

J. Stark, T. Rothe, S. Kieß, S. Simon, and A. Kienle, “Light scattering microscopy measurements of single nuclei compared with gpu-accelerated fdtd simulations,” Phys. Med. Biol. 61(7), 2749–2761 (2016).
[Crossref]

Kim, M.-h.

Kim, Y. L.

Kimerer, L. M.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[Crossref]

Klapetek, P.

D. Nečas and P. Klapetek, “Gwyddion: an open-source software for spm data analysis,” Open Phys. 10(1), 181–188 (2012).
[Crossref]

Lahann, J.

S. Bhaskar, K. M. Pollock, M. Yoshida, and J. Lahann, “Towards designer microparticles: simultaneous control of anisotropy, shape, and size,” Small 6(3), 404–411 (2010).
[Crossref]

Langenhorst, M.

Li, X.

Liang, C.-P.

Liu, B. Y.

B. Y. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ. (1967) 8(7), 717–732 (1974).
[Crossref]

Liu, Y.

Lohmann, S.

M. Antonietti, S. Lohmann, and C. Van Niel, “Polymerization in microemulsion. 2. surface control and functionalization of microparticles,” Macromolecules 25(3), 1139–1143 (1992).
[Crossref]

Lopez, C.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, and C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[Crossref]

Maltsev, V. P.

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106(1-3), 546–557 (2007).
[Crossref]

Markwell, T.

T. Kairn, S. Crowe, and T. Markwell, “Use of 3d printed materials as tissue-equivalent phantoms,” in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada, (Springer, 2015), pp. 728–731

Mazer, N. A.

C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, “Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations,” J. Phys. Chem. 82(12), 1375–1378 (1978).
[Crossref]

Merkel, T. J.

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
[Crossref]

Meseguer, F.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, and C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[Crossref]

Michels, R.

F. K. Forster, A. Kienle, R. Michels, and R. Hibst, “Phase function measurements on nonspherical scatterers using a two-axis goniometer,” J. Biomed. Opt. 11(2), 024018 (2006).
[Crossref]

Mie, G.

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Miguez, H.

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, and C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[Crossref]

Missel, P. J.

C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, “Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations,” J. Phys. Chem. 82(12), 1375–1378 (1978).
[Crossref]

Mitragotri, S.

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro-and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. 104(29), 11901–11904 (2007).
[Crossref]

Modell, M.

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

Modell, M. D.

Müller, D.

D. Müller, D. Geiger, J. Stark, and A. Kienle, “Angle-resolved light scattering of single human chromosomes: experiments and simulations,” Phys. Med. Biol. 64(4), 045016 (2019).
[Crossref]

Napier, M. E.

J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, “Print: a novel platform toward shape and size specific nanoparticle theranostics,” Acc. Chem. Res. 44(10), 990–998 (2011).
[Crossref]

Necas, D.

D. Nečas and P. Klapetek, “Gwyddion: an open-source software for spm data analysis,” Open Phys. 10(1), 181–188 (2012).
[Crossref]

Nguyen, F.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref]

Nunes, J.

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
[Crossref]

Orgel, R. M.

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
[Crossref]

Paetzold, U. W.

Park, H.

Park, K.

Y. He and K. Park, “Effects of the microparticle shape on cellular uptake,” Mol. Pharmaceutics 13(7), 2164–2171 (2016).
[Crossref]

Park, Y.

Perelman, L. T.

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

Perry, J. L.

J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, “Print: a novel platform toward shape and size specific nanoparticle theranostics,” Acc. Chem. Res. 44(10), 990–998 (2011).
[Crossref]

Pfefer, T. J.

Pollock, K. M.

S. Bhaskar, K. M. Pollock, M. Yoshida, and J. Lahann, “Towards designer microparticles: simultaneous control of anisotropy, shape, and size,” Small 6(3), 404–411 (2010).
[Crossref]

Popescu, G.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref]

Pozo, R.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Qiu, L.

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[Crossref]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

Quaranta, A.

P. Foladori, A. Quaranta, and G. Ziglio, “Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume,” Water Res. 42(14), 3757–3766 (2008).
[Crossref]

Ramella-Roman, J. C.

Richards, B. S.

Ripple, D. C.

Z. Hu and D. C. Ripple, “The use of index-matched beads in optical particle counters,” J. Res. Natl. Inst. Stand. Technol. 119, 644 (2014).
[Crossref]

Rolland, J. P.

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
[Crossref]

Romine, C.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Rothe, T.

J. Stark, T. Rothe, S. Kieß, S. Simon, and A. Kienle, “Light scattering microscopy measurements of single nuclei compared with gpu-accelerated fdtd simulations,” Phys. Med. Biol. 61(7), 2749–2761 (2016).
[Crossref]

T. Rothe, M. Schmitz, and A. Kienle, “Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy,” J. Biomed. Opt. 17(11), 117006 (2012).
[Crossref]

M. Schmitz, T. Rothe, and A. Kienle, “Evaluation of a spectrally resolved scattering microscope,” Biomed. Opt. Express 2(9), 2665–2678 (2011).
[Crossref]

Salahuddin, S.

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[Crossref]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

Schmid, M.

Schmitz, M.

T. Rothe, M. Schmitz, and A. Kienle, “Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy,” J. Biomed. Opt. 17(11), 117006 (2012).
[Crossref]

M. Schmitz, T. Rothe, and A. Kienle, “Evaluation of a spectrally resolved scattering microscope,” Biomed. Opt. Express 2(9), 2665–2678 (2011).
[Crossref]

Simon, S.

J. Stark, T. Rothe, S. Kieß, S. Simon, and A. Kienle, “Light scattering microscopy measurements of single nuclei compared with gpu-accelerated fdtd simulations,” Phys. Med. Biol. 61(7), 2749–2761 (2016).
[Crossref]

Stafford, M.

W. Bickel and M. Stafford, “Polarized light scattering from biological systems: a technique for cell differentiation,” J. Biol. Phys. 9(2), 53–66 (1981).
[Crossref]

Stark, J.

D. Müller, D. Geiger, J. Stark, and A. Kienle, “Angle-resolved light scattering of single human chromosomes: experiments and simulations,” Phys. Med. Biol. 64(4), 045016 (2019).
[Crossref]

J. Stark, T. Rothe, S. Kieß, S. Simon, and A. Kienle, “Light scattering microscopy measurements of single nuclei compared with gpu-accelerated fdtd simulations,” Phys. Med. Biol. 61(7), 2749–2761 (2016).
[Crossref]

Sterenborg, H. J.

Stöber, W.

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

Stolnik, S.

S. Stolnik, L. Illum, and S. Davis, “Long circulating microparticulate drug carriers,” Adv. Drug Delivery Rev. 16(2-3), 195–214 (1995).
[Crossref]

Sykora, J.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech house, 2005).

Turner, B. S.

Van De Merwe, W.

B. V. Bronk, S. D. Druger, J. Czege, and W. Van De Merwe, “Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering,” Biophys. J. 69(3), 1170–1177 (1995).
[Crossref]

Van der Vorst, H.

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Van Niel, C.

M. Antonietti, S. Lohmann, and C. Van Niel, “Polymerization in microemulsion. 2. surface control and functionalization of microparticles,” Macromolecules 25(3), 1139–1143 (1992).
[Crossref]

Vitkin, E.

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[Crossref]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

Wagner, S.

Wang, J.

Wang, Q.

Q. Wang, S. Fu, and T. Yu, “Emulsion polymerization,” Prog. Polym. Sci. 19(4), 703–753 (1994).
[Crossref]

Wang, Z.

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref]

Wax, A.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

Wilson, J.

Woolsey, N.

Yang, C.

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

Yoshida, M.

S. Bhaskar, K. M. Pollock, M. Yoshida, and J. Lahann, “Towards designer microparticles: simultaneous control of anisotropy, shape, and size,” Small 6(3), 404–411 (2010).
[Crossref]

Young, C. Y.

C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, “Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations,” J. Phys. Chem. 82(12), 1375–1378 (1978).
[Crossref]

Yu, T.

Q. Wang, S. Fu, and T. Yu, “Emulsion polymerization,” Prog. Polym. Sci. 19(4), 703–753 (1994).
[Crossref]

Yurkin, M. A.

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106(1-3), 546–557 (2007).
[Crossref]

Zaman, M. M.

H. Fang, L. Qiu, E. Vitkin, M. M. Zaman, C. Andersson, S. Salahuddin, L. M. Kimerer, P. B. Cipolloni, M. D. Modell, B. S. Turner, and et al., “Confocal light absorption and scattering spectroscopic microscopy,” Appl. Opt. 46(10), 1760–1769 (2007).
[Crossref]

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

Ziglio, G.

P. Foladori, A. Quaranta, and G. Ziglio, “Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume,” Water Res. 42(14), 3757–3766 (2008).
[Crossref]

Acc. Chem. Res. (1)

J. L. Perry, K. P. Herlihy, M. E. Napier, and J. M. DeSimone, “Print: a novel platform toward shape and size specific nanoparticle theranostics,” Acc. Chem. Res. 44(10), 990–998 (2011).
[Crossref]

Adv. Drug Delivery Rev. (1)

S. Stolnik, L. Illum, and S. Davis, “Long circulating microparticulate drug carriers,” Adv. Drug Delivery Rev. 16(2-3), 195–214 (1995).
[Crossref]

Ann. Phys. (1)

G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 330(3), 377–445 (1908).
[Crossref]

Appl. Opt. (2)

Atmos. Environ. (1967) (1)

B. Y. Liu, R. N. Berglund, and J. K. Agarwal, “Experimental studies of optical particle counters,” Atmos. Environ. (1967) 8(7), 717–732 (1974).
[Crossref]

Biomed. Opt. Express (1)

Biophys. J. (2)

B. V. Bronk, S. D. Druger, J. Czege, and W. Van De Merwe, “Measuring diameters of rod-shaped bacteria in vivo with polarized light scattering,” Biophys. J. 69(3), 1170–1177 (1995).
[Crossref]

A. Wax, C. Yang, V. Backman, K. Badizadegan, C. W. Boone, R. R. Dasari, and M. S. Feld, “Cellular organization and substructure measured using angle-resolved low-coherence interferometry,” Biophys. J. 82(4), 2256–2264 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

V. Backman, R. Gurjar, K. Badizadegan, I. Itzkan, R. R. Dasari, L. T. Perelman, and M. S. Feld, “Polarized light scattering spectroscopy for quantitative measurement of epithelial cellular structures in situ,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1019–1026 (1999).
[Crossref]

J. Biol. Phys. (1)

W. Bickel and M. Stafford, “Polarized light scattering from biological systems: a technique for cell differentiation,” J. Biol. Phys. 9(2), 53–66 (1981).
[Crossref]

J. Biomed. Opt. (2)

F. K. Forster, A. Kienle, R. Michels, and R. Hibst, “Phase function measurements on nonspherical scatterers using a two-axis goniometer,” J. Biomed. Opt. 11(2), 024018 (2006).
[Crossref]

T. Rothe, M. Schmitz, and A. Kienle, “Angular and spectrally resolved investigation of single particles by darkfield scattering microscopy,” J. Biomed. Opt. 17(11), 117006 (2012).
[Crossref]

J. Colloid Interface Sci. (1)

W. Stöber, A. Fink, and E. Bohn, “Controlled growth of monodisperse silica spheres in the micron size range,” J. Colloid Interface Sci. 26(1), 62–69 (1968).
[Crossref]

J. Micromech. Microeng. (1)

M. Guney and G. Fedder, “Estimation of line dimensions in 3d direct laser writing lithography,” J. Micromech. Microeng. 26(10), 105011 (2016).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. (1)

C. Y. Young, P. J. Missel, N. A. Mazer, G. B. Benedek, and M. C. Carey, “Deduction of micellar shape from angular dissymmetry measurements of light scattered from aqueous sodium dodecyl sulfate solutions at high sodium chloride concentrations,” J. Phys. Chem. 82(12), 1375–1378 (1978).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (1)

M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106(1-3), 546–557 (2007).
[Crossref]

J. Res. Natl. Inst. Stand. Technol. (1)

Z. Hu and D. C. Ripple, “The use of index-matched beads in optical particle counters,” J. Res. Natl. Inst. Stand. Technol. 119, 644 (2014).
[Crossref]

Langmuir (2)

F. Garcia-Santamaria, H. Miguez, M. Ibisate, F. Meseguer, and C. Lopez, “Refractive index properties of calcined silica submicrometer spheres,” Langmuir 18(5), 1942–1944 (2002).
[Crossref]

T. J. Merkel, K. P. Herlihy, J. Nunes, R. M. Orgel, J. P. Rolland, and J. M. DeSimone, “Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles,” Langmuir 26(16), 13086–13096 (2009).
[Crossref]

Macromolecules (1)

M. Antonietti, S. Lohmann, and C. Van Niel, “Polymerization in microemulsion. 2. surface control and functionalization of microparticles,” Macromolecules 25(3), 1139–1143 (1992).
[Crossref]

Mol. Pharmaceutics (1)

Y. He and K. Park, “Effects of the microparticle shape on cellular uptake,” Mol. Pharmaceutics 13(7), 2164–2171 (2016).
[Crossref]

Nat. Photonics (1)

M. Farsari and B. N. Chichkov, “Materials processing: Two-photon fabrication,” Nat. Photonics 3(8), 450–452 (2009).
[Crossref]

Open Phys. (1)

D. Nečas and P. Klapetek, “Gwyddion: an open-source software for spm data analysis,” Open Phys. 10(1), 181–188 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (4)

Opt. Mater. Express (1)

Phys. Med. Biol. (2)

D. Müller, D. Geiger, J. Stark, and A. Kienle, “Angle-resolved light scattering of single human chromosomes: experiments and simulations,” Phys. Med. Biol. 64(4), 045016 (2019).
[Crossref]

J. Stark, T. Rothe, S. Kieß, S. Simon, and A. Kienle, “Light scattering microscopy measurements of single nuclei compared with gpu-accelerated fdtd simulations,” Phys. Med. Biol. 61(7), 2749–2761 (2016).
[Crossref]

Phys. Rev. Lett. (1)

H. Ding, Z. Wang, F. Nguyen, S. A. Boppart, and G. Popescu, “Fourier transform light scattering of inhomogeneous and dynamic structures,” Phys. Rev. Lett. 101(23), 238102 (2008).
[Crossref]

Proc. Natl. Acad. Sci. (2)

I. Itzkan, L. Qiu, H. Fang, M. M. Zaman, E. Vitkin, I. C. Ghiran, S. Salahuddin, M. Modell, C. Andersson, L. M. Kimerer, , et al., “Confocal light absorption and scattering spectroscopic microscopy monitors organelles in live cells with no exogenous labels,” Proc. Natl. Acad. Sci. 104(44), 17255–17260 (2007).
[Crossref]

J. A. Champion, Y. K. Katare, and S. Mitragotri, “Making polymeric micro-and nanoparticles of complex shapes,” Proc. Natl. Acad. Sci. 104(29), 11901–11904 (2007).
[Crossref]

Prog. Polym. Sci. (1)

Q. Wang, S. Fu, and T. Yu, “Emulsion polymerization,” Prog. Polym. Sci. 19(4), 703–753 (1994).
[Crossref]

Small (1)

S. Bhaskar, K. M. Pollock, M. Yoshida, and J. Lahann, “Towards designer microparticles: simultaneous control of anisotropy, shape, and size,” Small 6(3), 404–411 (2010).
[Crossref]

Water Res. (1)

P. Foladori, A. Quaranta, and G. Ziglio, “Use of silica microspheres having refractive index similar to bacteria for conversion of flow cytometric forward light scatter into biovolume,” Water Res. 42(14), 3757–3766 (2008).
[Crossref]

Other (3)

T. Kairn, S. Crowe, and T. Markwell, “Use of 3d printed materials as tissue-equivalent phantoms,” in World Congress on Medical Physics and Biomedical Engineering, June 7-12, 2015, Toronto, Canada, (Springer, 2015), pp. 728–731

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method (Artech house, 2005).

R. Barrett, M. W. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst, Templates for the solution of linear systems: building blocks for iterative methods, vol. 43 (Siam, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. a) Photonic Professional GT 3D-DLW system by Nanoscribe GmbH, Germany. On top of an inverted microscope a piezoelectric xyz-stage is mounted. The sample is illuminated by an erbium-doped fibre laser at $\lambda =780$ nm which produces 100 fs pulses at a repetition rate of 80 MHz. b) An objective lens with a high numerical aperture (NA = 1.4) tightly focuses the laser in a small volume (i.e. voxel). Here, the immersion lithography mode is depicted.
Fig. 2.
Fig. 2. a) The scattering microscope setup used in this work. An RGB camera enables the control of the exact position of the scatterer in respect to a pinhole which is used to eliminate undesired scattered light from contaminations on the sample. b) and c) Setup coordinate system. $\varphi _1$ and $\theta _1$ denote the angles between the incident light and the axes of the coordinate system. The scatterer is depicted as a circle in all pictures.
Fig. 3.
Fig. 3. a) and c) A profile of a printed sphere with targeted radius of $r=1$ µm (red line) with a perfect sphere (green line) of radius $r=961$ nm and a printed sphere with targeted radius of $r=2$ µm in comparison to a perfect sphere with $r=1.91$ µm. b) and d) The relative deviation of the printed spheres from the respective ideal sphere using the aforementioned radii. Expect for the flank on the right, where the deviations from the ideal sphere are caused by the geometry of the used AFM tip, the relative difference is mostly below 5 %.
Fig. 4.
Fig. 4. a) SEM image of a sphere with target radius of $r=1$ µm. The brittle surface is due to the coating which was applied in order to measure the spheres with the SEM and not from the printing process. b) Sphere with targeted radius of $r=5$ µm. In contrast to the smaller sphere the individual layers are clearly visible. The scale bars are 200 nm and 2 µm, respectively.
Fig. 5.
Fig. 5. a) Experimentally obtained image and b) the theoretical image with the highest correlation at $r=1.0185$ µm with $n_s=1.4808$. Even though the imperfection of the printed spheres is clearly visible in the scattering image the similarities are evident. Furthermore it shows the robustness of the correlation method which yields good results even for stronger deviating scattering images.
Fig. 6.
Fig. 6. a) Experimentally obtained image and b) the theoretical image, both plotted logarithmically, with the highest correlation at $r=5.0095$ µm. The calculated image was obtained using the previously determined refractive image of $n_s=1.4808$.
Fig. 7.
Fig. 7. a) Simulated light scattering view for the whole solid angle of a cube with edge length 2 µm. The overview is plotted logarithmically to better visualise the comparably low backscattering. b) Linearly plotted close-up of the scattering pattern, which is detected by the scattering microscope, represented by the marked area in Fig. 7a). c) Measured scattering image from a cube with targeted edge length of 2 µm plotted linearly. Minor deviations are visible, which are mostly caused by effects due to the rotation of the scatterer.
Fig. 8.
Fig. 8. a) Simulated pattern and b) the corresponding experimentally obtained scattering image of a cube with edge length 3 µm, both plotted linearly. The simulation was again performed with the refractive index $n=1.4808$ and shows, apart from some minor deviations due to tilt, good similarity to the experimental image.
Fig. 9.
Fig. 9. a) SEM image showing an overview of cubes with an edge length of 10 µm. Cubic scatterers have a good surface quality which results in good similarity between the simulations and experiments as shown in Figs. 7 and 8. b) Close-up of a 10 µm cube which was printed standing on its tip. The orientation of the scatterer can affect the surface quality due to the layer-wise printing process. The scale bars in Fig. 7 and 8 are 10 µm and 2 µm, respectively.
Fig. 10.
Fig. 10. a) Logarithmically plotted angularly resolved scattering image of a printed E. coli phantom with targeted length of 5 µm and b) logarithmically plotted scattering image of a real E. coli bacterium of approximately the same length.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Cλ(r,ns)=Cov[IT,λ(θ,φ,r,ns),IE,λ(θ,φ)]Var[IT,λ(θ,φ,r,ns)]Var[IE,λ(θ,φ)],

Metrics