Abstract

All-normal dispersion supercontinuum generation (SG) in a large hollow core photonic crystal fiber (PCF) infiltrated with carbon tetrachloride is studied experimentally. The PCF is optimized to have a flat normal dispersion in a broadband range (0.8–1.7 µm) varying from -150 to 0 ps/nm/km. The effective mode area at pump wavelength (λ=1030 nm) is as large as 42.2 µm2 and readily meets the requirements for an all-fiber supercontinuum system. Infiltration of the core with carbon tetrachloride ensures a high nonlinear coefficient of the fiber equal to 22 1/W/km. Using an off-the-shelf 1030 nm fiber laser with 400 fs and 25 nJ input pulses, we generated an all-normal supercontinuum in the 850–1250 nm wavelength range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene

Van Thuy Hoang, Rafal Kasztelanic, Alicja Anuszkiewicz, Grzegorz Stepniewski, Adam Filipkowski, Slawomir Ertman, Dariusz Pysz, Tomasz Wolinski, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczynski
Opt. Mater. Express 8(11) 3568-3582 (2018)

Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses

Quang Ho Dinh, Jacek Pniewski, Hieu Le Van, Aleksandr Ramaniuk, Van Cao Long, Krzysztof Borzycki, Khoa Dinh Xuan, Mariusz Klimczak, and Ryszard Buczyński
Appl. Opt. 57(14) 3738-3746 (2018)

Coherent supercontinuum generation up to 2.3 µm in all-solid soft-glass photonic crystal fibers with flat all-normal dispersion

Mariusz Klimczak, Bartłomiej Siwicki, Piotr Skibiński, Dariusz Pysz, Ryszard Stępień, Alexander Heidt, Czesław Radzewicz, and Ryszard Buczyński
Opt. Express 22(15) 18824-18832 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Afano, The Supercontinuum Laser Source (Springer-Verlag, 2016).
  2. R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
    [Crossref]
  3. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref]
  4. G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, M. D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
    [Crossref]
  5. U. Sharma, E. W. Chang, and H. S. Yun, “Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
    [Crossref]
  6. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonic,” Laser Photonics Rev. 7(5), 628–645 (2013).
    [Crossref]
  7. C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
    [Crossref]
  8. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D. Y. Choi, S. Madden, and B. L. Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3(8), 1075–1086 (2013).
    [Crossref]
  9. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  10. Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
    [Crossref]
  11. N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
    [Crossref]
  12. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  13. S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
    [Crossref]
  14. C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
    [Crossref]
  15. M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25(7), 7637–7644 (2017).
    [Crossref]
  16. P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
    [Crossref]
  17. S. Kedenburg, M. Vieweg, T. Gissibl, and H. Giessen, “Linear refractive index and absorption measurements of nonlinear optical liquids in the visible and near-infrared spectral region,” Opt. Mater. Express 2(11), 1588–1611 (2012).
    [Crossref]
  18. C.D. Craver, The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, 1982).
  19. C. Wohlfarth, Refractive Indices of Pure Liquids and Binary Liquid Mixtures (Supplement to III/38) (Springer, 2008).
  20. L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
    [Crossref]
  21. Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak, and R. Buczyński, “Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses,” Appl. Opt. 57(14), 3738–3746 (2018).
    [Crossref]
  22. A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
    [Crossref]
  23. A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
    [Crossref]
  24. J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18(6), 6230–6240 (2010).
    [Crossref]
  25. D. Churin, T. N. Nguyen, K. Kieu, R. A. Norwood, and N. Peyghambarian, “Mid-IR supercontinuum generation in an integrated liquid-core optical fiber filled with CS2,” Opt. Mater. Express 3(9), 1358–1364 (2013).
    [Crossref]
  26. S. Kedenburg, T. Gissibl, T. Steinle, A. Steinman, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
    [Crossref]
  27. M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibers,” Nat. Commun. 8(1), 42 (2017).
    [Crossref]
  28. M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
    [Crossref]
  29. M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
    [Crossref]
  30. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
    [Crossref]
  31. G. Fanjoux, S. Margueron, J. C. Beugnot, and T. Sylvestre, “Supercontinuum generation by stimulated Raman–Kerr scattering in a liquid-core optical fiber,” J. Opt. Soc. Am. B 34(8), 1677–1683 (2017).
    [Crossref]
  32. V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
    [Crossref]
  33. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).
  34. M. McParland and N. Bates, Toxicology of Solvents (Rapra Technology Limited, 2002).
  35. M. Vieweg, S. Pricking, T. Gissibl, Y. Kartashov, L. Torner, and H. Giessen, “Tunable ultrafast nonlinear optofluidiccoupler,” Opt. Lett. 37(6), 1058–1060 (2012).
    [Crossref]
  36. J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-corelight guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25(5), 669–673 (2010).
    [Crossref]
  37. D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
    [Crossref]
  38. V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
    [Crossref]
  39. NKT Photonics, “Large Mode Area Photonic Crystal Fibers”. https://www.nktphotonics.com/lasers-fibers/product/large-mode-area-photonic-crystal-fibers/
  40. Thorlabs, “Single Mode Fiber: 1260 to 1650 nm”. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=949 .
  41. I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513 (2016).
    [Crossref]
  42. P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
    [Crossref]
  43. M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
    [Crossref]
  44. B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
    [Crossref]
  45. E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
    [Crossref]
  46. R. D. Engelsholm and O. Bang, “Supercontinuum noise reduction by fiber undertapering,” Opt. Express 27(7), 10320–10331 (2019).
    [Crossref]
  47. Thorlabs, “Femtosecond Fiber, Laser”. https://www.thorlabs.com/navigation.cfm?guide_id=2515 , 2019
  48. Fluence, Lasers. https://fluence.pl/#products
  49. J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
    [Crossref]
  50. S. Dinda, S. N. Bandyopadhyay, and D. Goswami, “On the interferometric coherent structures in femtosecond supercontinuum generation,” Appl. Phys. B 122(5), 148 (2016).
    [Crossref]
  51. H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
    [Crossref]
  52. Z. Zhu and T. G. Brown, “Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers,” J. Opt. Soc. Am. B 21(2), 249–257 (2004).
    [Crossref]
  53. I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
    [Crossref]
  54. S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).
  55. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
    [Crossref]
  56. I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35(9), 2102–2110 (2018).
    [Crossref]

2019 (3)

2018 (11)

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak, and R. Buczyński, “Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses,” Appl. Opt. 57(14), 3738–3746 (2018).
[Crossref]

M. Chemnitz, R. Scheibinger, C. Gaida, M. Gebhardt, F. Stutzki, S. Pumpe, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Thermodynamic control of soliton dynamics in liquid-core fibers,” Optica 5(6), 695–703 (2018).
[Crossref]

I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35(9), 2102–2110 (2018).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

2017 (6)

A. M. Heidt, J. S. Feehan, J. H. V. Price, and T. Feurer, “Limits of coherent supercontinuum generation in normal dispersion fibers,” J. Opt. Soc. Am. B 34(4), 764–775 (2017).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25(7), 7637–7644 (2017).
[Crossref]

G. Fanjoux, S. Margueron, J. C. Beugnot, and T. Sylvestre, “Supercontinuum generation by stimulated Raman–Kerr scattering in a liquid-core optical fiber,” J. Opt. Soc. Am. B 34(8), 1677–1683 (2017).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibers,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

2016 (3)

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

S. Dinda, S. N. Bandyopadhyay, and D. Goswami, “On the interferometric coherent structures in femtosecond supercontinuum generation,” Appl. Phys. B 122(5), 148 (2016).
[Crossref]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513 (2016).
[Crossref]

2015 (1)

2014 (2)

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (3)

2012 (4)

2010 (4)

2008 (3)

2006 (1)

2004 (1)

2002 (2)

2000 (1)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

1979 (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Abdolvand, A.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Afano, R. R.

R. R. Afano, The Supercontinuum Laser Source (Springer-Verlag, 2016).

Alfano, R. R.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[Crossref]

Anuszkiewicz, A.

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Bache, M.

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Bandyopadhyay, S. N.

S. Dinda, S. N. Bandyopadhyay, and D. Goswami, “On the interferometric coherent structures in femtosecond supercontinuum generation,” Appl. Phys. B 122(5), 148 (2016).
[Crossref]

Bang,

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Bang, O.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
[Crossref]

R. D. Engelsholm and O. Bang, “Supercontinuum noise reduction by fiber undertapering,” Opt. Express 27(7), 10320–10331 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35(9), 2102–2110 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Barh, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Bates, N.

M. McParland and N. Bates, Toxicology of Solvents (Rapra Technology Limited, 2002).

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bethge, J.

Beugnot, J. C.

Birks, T.

Bongartz, J.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-corelight guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25(5), 669–673 (2010).
[Crossref]

Boppart, S. A.

Borzycki, K.

Bowen, P.

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
[Crossref]

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Bozolan, A.

Breuer, E.

Brown, T. G.

Buczynski, R.

Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak, and R. Buczyński, “Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses,” Appl. Opt. 57(14), 3738–3746 (2018).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Buzniak, J.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Cassataro, M.

Chang, E. W.

Chemnitz, M.

Choi, D. Y.

Churin, D.

Coen, S.

Cordeiro, C. M. B.

Craver, C.D.

C.D. Craver, The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, 1982).

Dai, S.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Davies, B. L.

de Matos, C. J. S.

Dias, F.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Dinda, S.

S. Dinda, S. N. Bandyopadhyay, and D. Goswami, “On the interferometric coherent structures in femtosecond supercontinuum generation,” Appl. Phys. B 122(5), 148 (2016).
[Crossref]

Dinh, Q. H.

dos Santos, E. M.

Dudley, J. M.

E. Genier, P. Bowen, T. Sylvestre, J. M. Dudley, P. Moselund, and O. Bang, “Amplitude noise and coherence degradation of femtosecond supercontinuum generation in all-normal-dispersion fibers,” J. Opt. Soc. Am. B 36(2), A161–A167 (2019).
[Crossref]

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

J. M. Dudley and S. Coen, “Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers,” Opt. Lett. 27(13), 1180–1182 (2002).
[Crossref]

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Edavalath, N. N.

Eggleton, B. J.

Engelsholm, R. D.

R. D. Engelsholm and O. Bang, “Supercontinuum noise reduction by fiber undertapering,” Opt. Express 27(7), 10320–10331 (2019).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Ensley, T. R.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Ertman, S.

Eyrich, G.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-corelight guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25(5), 669–673 (2010).
[Crossref]

Fanjoux, G.

Farries, M.

Feehan, J. S.

Feurer, T.

Filipkowski, A.

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Finot, C.

Franczyk, M.

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Franzen, R.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-corelight guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25(5), 669–673 (2010).
[Crossref]

Frosz, M. H.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

Gaida, C.

Gebhardt, M.

Genier, E.

Genty, G.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Giessen, H.

Gissibl, T.

Gonzalo, I. B.

I. B. Gonzalo and O. Bang, “Role of the Raman gain in the noise dynamics of all-normal dispersion silica fiber supercontinuum generation,” J. Opt. Soc. Am. B 35(9), 2102–2110 (2018).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Goswami, D.

S. Dinda, S. N. Bandyopadhyay, and D. Goswami, “On the interferometric coherent structures in femtosecond supercontinuum generation,” Appl. Phys. B 122(5), 148 (2016).
[Crossref]

Griebner, U.

Günendi, M. C.

Gutknecht, N.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-corelight guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25(5), 669–673 (2010).
[Crossref]

Hagan, D. J.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Hannesschläger, G.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Harasny, K.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Heidt, A. M.

Hering, P.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-corelight guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25(5), 669–673 (2010).
[Crossref]

Herrmann, J.

Ho, P. P.

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[Crossref]

Hoang, V. T.

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Hooper, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Hu, L. L.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Humbert, G.

Huot, L.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

Husakou, A.

Israelsen, N. M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jain, D.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jensen, M.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Jia, S. J.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Jia, Z. X.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Kartashov, Y.

Kasztelanic, R.

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Kedenburg, S.

Kibler, B.

Kieu, K.

Klimczak, M.

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak, and R. Buczyński, “Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses,” Appl. Opt. 57(14), 3738–3746 (2018).
[Crossref]

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Knight, J.

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Kobelke, J.

Kociszewski, L.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Kopf, M. D.

Kubat, I.

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513 (2016).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kudlinski, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Kuhlmey, B. T.

Kujawa, I.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Lacourt, P. A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Lægsgaard, J.

Larger, L.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Lederer, M.

Leon-Saval, S.

Liao, M. S.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Limpert, J.

Liu, X.

Liu, Y.

Lloyd, G. R.

Long, V. C.

Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak, and R. Buczyński, “Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses,” Appl. Opt. 57(14), 3738–3746 (2018).
[Crossref]

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Ma, P.

Madden, S.

Margueron, S.

Markos, C.

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

McParland, M.

M. McParland and N. Bates, Toxicology of Solvents (Rapra Technology Limited, 2002).

Meister, J.

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-corelight guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25(5), 669–673 (2010).
[Crossref]

Merolla, J. M.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Mitschke, F.

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moselund, P.

Moselund, P. M.

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Mott, A. G.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Mussot, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Nallala, J.

Napier, B.

Nguyen, T. N.

Noack, F.

Norwood, R. A.

Novoa, D.

Ohishi, Y.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Pedersen, C.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Peng, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Petersen, C. R.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Peyghambarian, N.

Pniewski, J.

Podoleanu, A.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Price, J. H. V.

Pricking, S.

Provost, L.

Prtljaga, N.

Pumpe, S.

Pysz, D.

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Qin, G. S.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Qin, W. P.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Ramaniuk, A.

Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak, and R. Buczyński, “Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses,” Appl. Opt. 57(14), 3738–3746 (2018).
[Crossref]

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Rao, S. S.

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Reichert, M.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Russell, P. S. J.

Scheibinger, R.

Schmidt, M. A.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sharma, U.

Shensky, W. M.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Siwicki, B.

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

Sørensen, M. P.

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Stefani, A.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Steinle, T.

Steinman, A.

Steinmeyer, G.

Stepien, R.

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Stepniewski, G.

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

V. T. Hoang, R. Kasztelanic, A. Anuszkiewicz, G. Stepniewski, A. Filipkowski, S. Ertman, D. Pysz, T. Wolinski, K. D. Xuan, M. Klimczak, and R. Buczynski, “All-normal dispersion supercontinuum generation in photonic crystal fibers with large hollow cores infiltrated with toluene,” Opt. Mater. Express 8(11), 3568–3582 (2018).
[Crossref]

Stifter, D.

Stone, N.

Stutzki, F.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sylvestre, T.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

Tidemand-Lichtenberg, P.

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Torner, L.

Travers, J.

Travers, J. C.

Trippenbach, M.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Tu, H.

Tünnermann, A.

Turchinovich, D.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Van, H. L.

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

Q. H. Dinh, J. Pniewski, H. L. Van, A. Ramaniuk, V. C. Long, K. Borzycki, K. D. Xuan, M. Klimczak, and R. Buczyński, “Optimization of optical properties of photonic crystal fibers infiltrated with carbon tetrachloride for supercontinuum generation with subnanojoule femtosecond pulses,” Appl. Opt. 57(14), 3738–3746 (2018).
[Crossref]

Van, L. C.

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

Van Stryland, E. W.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Vieweg, M.

Wabnitz, S.

Wadsworth, W.

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Wang, F.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Wang, R.

Wang, S. B.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Wang, T.

Wang, X.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Wang, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Ward, J.

Wetzel, B.

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

Wiesauer, K.

Wohlfarth, C.

C. Wohlfarth, Refractive Indices of Pure Liquids and Binary Liquid Mixtures (Supplement to III/38) (Springer, 2008).

Wolinski, T.

Wu, D. C.

Xu, Y.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Xuan, K. D.

Yang, Z.

Yao, C. F.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Yu, Y.

Yun, H. S.

Zhang, P.

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Zhao, P.

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Zhao, Z. P.

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Zhu, Z.

Appl. Opt. (1)

Appl. Phys. B (1)

S. Dinda, S. N. Bandyopadhyay, and D. Goswami, “On the interferometric coherent structures in femtosecond supercontinuum generation,” Appl. Phys. B 122(5), 148 (2016).
[Crossref]

Appl. Sci. (1)

S. Dai, Y. Wang, X. Peng, P. Zhang, X. Wang, and Y. Xu, “A review of mid-infrared supercontinuum generation in chalcogenide glass fibers,” Appl. Sci. 8(5), 707 (2018).
[Crossref]

Bull. Pol. Acad. Sci.: Tech. Sci. (1)

D. Pysz, I. Kujawa, R. Stępień, M. Klimczak, A. Filipkowski, M. Franczyk, L. Kociszewski, J. Buźniak, K. Haraśny, and R. Buczyński, “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Pol. Acad. Sci.: Tech. Sci. 62(4), 667–682 (2014).
[Crossref]

Infrared Phys. Technol. (1)

C. R. Petersen, P. M. Moselund, L. Huot, L. Hooper, and O. Bang, “Towards a table-top synchrotron based on supercontinuum generation,” Infrared Phys. Technol. 91, 182–186 (2018).
[Crossref]

J. Opt. (1)

L. C. Van, A. Anuszkiewicz, A. Ramaniuk, R. Kasztelanic, K. D. Xuan, V. C. Long, M. Trippenbach, and R. Buczyński, “Supercontinuum generation in photonic crystal fibers with core filled with toluene,” J. Opt. 19(12), 125604 (2017).
[Crossref]

J. Opt. Soc. Am. B (6)

Laser Med. Sci. (1)

J. Meister, R. Franzen, G. Eyrich, J. Bongartz, N. Gutknecht, and P. Hering, “First clinical application of a liquid-corelight guide connected to an Er:YAG laser for oral treatment of leukoplakia,” Laser Med. Sci. 25(5), 669–673 (2010).
[Crossref]

Laser Photonics Rev. (1)

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonic,” Laser Photonics Rev. 7(5), 628–645 (2013).
[Crossref]

Laser Phys. Lett. (1)

Z. X. Jia, C. F. Yao, S. J. Jia, F. Wang, S. B. Wang, Z. P. Zhao, M. S. Liao, G. S. Qin, L. L. Hu, Y. Ohishi, and W. P. Qin, “Supercontinuum generation covering the entire 0.4–5 μm transmission window in a tapered ultrahigh numerical aperturę all-solid fluorotellurite fiber,” Laser Phys. Lett. 15(2), 025102 (2018).
[Crossref]

Light: Sci. Appl. (1)

N. M. Israelsen, C. R. Petersen, A. Barh, D. Jain, M. Jensen, G. Hannesschläger, P. Tidemand-Lichtenberg, C. Pedersen, A. Podoleanu, and O. Bang, “Real-time High-Resolution Mid-infrared Optical Coherence Tomography,” Light: Sci. Appl. 8(1), 11 (2019).
[Crossref]

Nat. Commun. (1)

M. Chemnitz, M. Gebhardt, C. Gaida, F. Stutzki, J. Kobelke, J. Limpert, A. Tünnermann, and M. A. Schmidt, “Hybrid soliton dynamics in liquid-core fibers,” Nat. Commun. 8(1), 42 (2017).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fiber,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref]

Opt. Express (12)

G. Humbert, W. Wadsworth, S. Leon-Saval, J. Knight, T. Birks, P. S. J. Russell, M. Lederer, M. D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006).
[Crossref]

U. Sharma, E. W. Chang, and H. S. Yun, “Long-wavelength optical coherence tomography at 1.7 µm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).
[Crossref]

M. Cassataro, D. Novoa, M. C. Günendi, N. N. Edavalath, M. H. Frosz, J. C. Travers, and P. S. J. Russell, “Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF,” Opt. Express 25(7), 7637–7644 (2017).
[Crossref]

S. Kedenburg, T. Gissibl, T. Steinle, A. Steinman, and H. Giessen, “Towards integration of a liquid-filled fiber capillary for supercontinuum generation in the 1.2–2.4 µm range,” Opt. Express 23(7), 8281–8289 (2015).
[Crossref]

A. Bozolan, C. J. S. de Matos, C. M. B. Cordeiro, E. M. dos Santos, and J. Travers, “Supercontinuum generation in a water-core photonic crystal fiber,” Opt. Express 16(13), 9671–9676 (2008).
[Crossref]

J. Bethge, A. Husakou, F. Mitschke, F. Noack, U. Griebner, G. Steinmeyer, and J. Herrmann, “Two-octave supercontinuum generation in a water-filled photonic crystal fiber,” Opt. Express 18(6), 6230–6240 (2010).
[Crossref]

M. Chemnitz, C. Gaida, M. Gebhardt, F. Stutzki, J. Kobelke, A. Tünnermann, J. Limpert, and M. A. Schmidt, “Carbon chloride-core fibers for soliton mediated supercontinuum generation,” Opt. Express 26(3), 3221–3235 (2018).
[Crossref]

M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen, “Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers,” Opt. Express 18(24), 25232–25240 (2010).
[Crossref]

R. D. Engelsholm and O. Bang, “Supercontinuum noise reduction by fiber undertapering,” Opt. Express 27(7), 10320–10331 (2019).
[Crossref]

H. Tu, Y. Liu, X. Liu, D. Turchinovich, J. Lægsgaard, and S. A. Boppart, “Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber: toward a practical coherent fiber supercontinuum laser,” Opt. Express 20(2), 1113–1128 (2012).
[Crossref]

I. Kubat and O. Bang, “Multimode supercontinuum generation in chalcogenide glass fibres,” Opt. Express 24(3), 2513 (2016).
[Crossref]

M. H. Frosz, “Validation of input-noise model for simulations of supercontinuum generation and rogue waves,” Opt. Express 18(14), 14778–14787 (2010).
[Crossref]

Opt. Fiber Technol. (1)

V. T. Hoang, B. Siwicki, M. Franczyk, G. Stępniewski, H. L. Van, V. C. Long, M. Klimczak, and R. Buczyński, “Broadband low-dispersion low-nonlinearity photonic crystal fiber dedicated to near-infrared high-power femtosecond pulse delivery,” Opt. Fiber Technol. 42, 119–125 (2018).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (4)

Optica (1)

Phys. Rev. A (1)

P. P. Ho and R. R. Alfano, “Optical Kerr effect in liquids,” Phys. Rev. A 20(5), 2170–2187 (1979).
[Crossref]

Phys. Rev. Lett. (1)

R. Holzwarth, T. Udem, T. W. Hänsch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85(11), 2264–2267 (2000).
[Crossref]

Proc. SPIE (1)

P. Zhao, M. Reichert, T. R. Ensley, W. M. Shensky, A. G. Mott, D. J. Hagan, and E. W. Van Stryland, “Nonlinear refraction dynamics of solvents and gases,” Proc. SPIE 9731, 97310F (2016).
[Crossref]

Rev. Mod. Phys. (1)

C. Markos, J. C. Travers, A. Abdolvand, B. J. Eggleton, and O. Bang, “Hybrid photonic-crystal fiber,” Rev. Mod. Phys. 89(4), 045003 (2017).
[Crossref]

Sci. Rep. (2)

B. Wetzel, A. Stefani, L. Larger, P. A. Lacourt, J. M. Merolla, T. Sylvestre, A. Kudlinski, A. Mussot, G. Genty, F. Dias, and J. M. Dudley, “Real-time full bandwidth measurement of spectral noise in supercontinuum generation,” Sci. Rep. 2(1), 882 (2012).
[Crossref]

I. B. Gonzalo, R. D. Engelsholm, M. P. Sørensen, and O. Bang, “Polarization noise places severe constraints on coherence of all-normal dispersion femtosecond supercontinuum generation,” Sci. Rep. 8(1), 6579 (2018).
[Crossref]

Other (10)

S. S. Rao, R. D. Engelsholm, I. B. Gonzalo, B. Zhou, P. Bowen, P. M. Moselund, and M. Bache, and O. Bang “Ultra-low noise supercontinuum generation with flat near-zero normal dispersion fiber,” arXiv preprint https://arXiv:1812.03877 (2018).

Thorlabs, “Femtosecond Fiber, Laser”. https://www.thorlabs.com/navigation.cfm?guide_id=2515 , 2019

Fluence, Lasers. https://fluence.pl/#products

NKT Photonics, “Large Mode Area Photonic Crystal Fibers”. https://www.nktphotonics.com/lasers-fibers/product/large-mode-area-photonic-crystal-fibers/

Thorlabs, “Single Mode Fiber: 1260 to 1650 nm”. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=949 .

C.D. Craver, The Coblentz Society Desk Book of Infrared Spectra (The Coblentz Society, 1982).

C. Wohlfarth, Refractive Indices of Pure Liquids and Binary Liquid Mixtures (Supplement to III/38) (Springer, 2008).

R. R. Afano, The Supercontinuum Laser Source (Springer-Verlag, 2016).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University, 2010).

M. McParland and N. Bates, Toxicology of Solvents (Rapra Technology Limited, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1. Optical properties of carbon tetrachloride, (a) refractive index and chromatic dispersion of bulk silica and carbon tetrachloride [14], (b) the transmittance of 20 cm thickness sample and imaginary part of the refractive index of carbon tetrachloride (after Kedenburg et al. [17]).
Fig. 2.
Fig. 2. Dispersion properties of PCFs with a core infiltrated with carbon tetrachloride for various lattice constants Λ=1 µm (a), Λ=2 µm (b), Λ=3 µm (c), Λ=4 µm (d) and Λ=5 µm (e) and various filling factors f (f = d/Λ). Size of carbon tetrachloride core is equal to 2.2×Λ.
Fig. 3.
Fig. 3. Effective refractive index (a) and conferment losses for the fundamental LP01 and higher order LP11 modes.
Fig. 4.
Fig. 4. Scanning electron microscopy (SEM) image of the hollow-core silica PCF (a), image of the end faced of the PCF fiber with the hollow core infiltrated selectively with carbon tetrachloride (b).
Fig. 5.
Fig. 5. Custom-made microfluidic reservoir for infiltration of hollow core fibers and direct light coupling: (a) a schematic of the microfluidic reservoir and (b) the experimental setup. The microfluidic reservoir is fully filled with carbon tetrachloride and connected to microfluidic pump to maintain increased pressure in the system. Glass window allows to couple light from external source with external microscope objective into the liquid core fiber.
Fig. 6.
Fig. 6. Measured dispersion characteristic of the developed PCF with core infiltrated with carbon tetrachloride. The PCF has the lattice constant Λ = 4.45 µm, and the diameter of the air-holes in the photonic cladding is 3.7 µm. The core dimeter is 9.8 µm.
Fig. 7.
Fig. 7. Effective mode area and the nonlinear refractive index for the investigated fiber. The blue lines depicts nonlinear coefficient, while the red trace represents the mode area.
Fig. 8.
Fig. 8. Broadness of the spectrum along length of the fiber and temporal shape at various length of the propagation with input pulse energy 25 nJ, pulse duration 400 fs, and pump wavelength 1030 nm. The color bar indicates normalized intensity in logarithmic scale.
Fig. 9.
Fig. 9. Numerical simulation of evolution of the pulse spectrum for increasing input pulse energy: (a) supercontinuum spectra obtained for various input pulse energies at the 20 cm of propagation along the fiber, (b) intensity distribution in supercontinuum obtained for selected input pulse energies. The color bar indicates normalized intensity in logarithmic scale.
Fig. 10.
Fig. 10. Schematic of experimental setup used for supercontinuum generation in tetrachloride infiltrated hollow core fiber.
Fig. 11.
Fig. 11. Far-field image of output beam from the tested fiber (a), a cross-section of the output beam fitted with Gaussian profile (b).
Fig. 12.
Fig. 12. Experimental results of supercontinuum generation in PCF with carbon tetrachloride core pumped with 400 fs pulses for low energy of 4 nJ (a) and high energy of 25 nJ (b) pulses with central wavelength of 1030 nm. Simulation results are provided for reference.

Tables (1)

Tables Icon

Table 1. State-of-the-art experimental results on supercontinuum generation in all normal dispersion liquid core optical

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

γ = 2 π n 2 λ A e f f
| g 12 ( 1 ) ( λ , t 1 t 2 = 0 ) | = | E 1 ( λ , t 1 ) E 2 ( λ , t 2 ) [ | E 1 ( λ , t 1 ) | 2 | E 2 ( λ , t 2 ) | 2 ] 1 / 1 2 2 |

Metrics