Abstract

Chalcogenide glass (ChG) thin films have a wide range of applications in planar photonics that rely on the stability of their optical properties. However, most methods do not provide quantitative optical property data at sufficiently high resolution. We have employed a resonant cavity refractometry technique capable of detecting refractive index changes down to 10−6 refractive index unit (RIU) to study the aging, or sub-Tg structural relaxation kinetics, of Ge23Sb­7S70 ChG. Our study reveals that the refractive index (RI) change due to aging tends to follow stretched exponential behavior, with stretch exponents and rate of index change dependent on initial glass treatment. Thermally annealed devices show the best stability, suggesting that thermal annealing is the appropriate post-deposition treatment method for obtaining stable ChG films.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical waveguides in As2S3-Ag2S chalcogenide glass thin films

J. M. P. Almeida, E. C. Barbano, C. B. Arnold, L. Misoguti, and C. R. Mendonça
Opt. Mater. Express 7(1) 93-99 (2017)

Photoluminescence in Er-doped Ge-As-Se chalcogenide thin films

Kunlun Yan, Rongping Wang, Khu Vu, Steve Madden, Kidane Belay, Robert Elliman, and Barry Luther-Davies
Opt. Mater. Express 2(9) 1270-1277 (2012)

Solution processed As30Se70 chalcogenide glass thin films with specular optical quality: multi-component solvent approach

Stanislav Slang, Karel Palka, Petr Janicek, Marina Grinco, and Miroslav Vlcek
Opt. Mater. Express 8(4) 948-959 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
    [Crossref]
  2. S. V. Nemilov, “Physical Ageing of Silicate Glasses at Room Temperature: General Regularities as a Basis for the Theory and the Possibility of a priori Calculation of the Ageing Rate,” Glass Phys. Chem. 26(6), 511–530 (2000).
    [Crossref]
  3. R. D. Priestley, “Physical aging of confined glasses,” Soft Matter 5(5), 919–926 (2009).
    [Crossref]
  4. S. V. Nemilov, “Structural relaxation in oxide glasses at room temperature,” Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B 48, 291–295 (2007).
  5. J. P. Joule, “The Scientific Papers of Joule J.P.,” London Physical Society 1, 558 (1884).
  6. J. Phillips, “Microscopic theory of the Kohlrausch relaxation constant βK,” J. Non-Cryst. Solids 172-174, 98–103 (1994).
    [Crossref]
  7. J. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59(9), 1133–1207 (1996).
    [Crossref]
  8. J. C. Phillips, “Microscopic aspects of Stretched Exponential Relaxation (SER) in homogeneous molecular and network glasses and polymers,” J. Non-Cryst. Solids 357(22-23), 3853–3865 (2011).
    [Crossref]
  9. J. R. Macdonald and J. C. Phillips, “Topological derivation of shape exponents for stretched exponential relaxation,” J. Chem. Phys. 122(7), 074510 (2005).
    [Crossref]
  10. P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys.: Condens. Matter 18(24), 5629–5638 (2006).
    [Crossref]
  11. R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical Aging of Chalcogenide Glasses,” Inorg. Mater. 46(8), 911–913 (2010).
    [Crossref]
  12. J. Saiter, “Physical ageing in chalcogenide glasses,” J. Optoelectron. Adv. Mater. 3, 685–694 (2001).
  13. O. Shpotyuk, A. Kozdras, V. Balitska, and R. Golovchak, “On the compositional diversity of physical aging kinetics in chalcogenide glasses,” J. Non-Cryst. Solids 437, 1–5 (2016).
    [Crossref]
  14. A. Kozdras, “Kinetics of light-assisted physical ageing in S-rich arsenic sulphide glasses,” Bull. Mater. Sci. 39(4), 997–1000 (2016).
    [Crossref]
  15. R. Golovchak, A. Kozdras, and O. Shpotyuk, “Optical signature of structural relaxation in glassy As10Se90,” J. Non-Cryst. Solids 356(23-24), 1149–1152 (2010).
    [Crossref]
  16. D.-Y. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. J. J. o. A. P. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107, 053106 (2010).
    [Crossref]
  17. P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
    [Crossref]
  18. O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
    [Crossref]
  19. R. K. Puri, K. Vijaya, and R. N. Karekar, “Effect of minute’s-scale aging on refractive index of chopped and non-chopped optical films,” Pramana 21(5), 311–322 (1983).
    [Crossref]
  20. Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
    [Crossref]
  21. E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony series spectra of structural relaxation in N-BK7 for finite element modeling,” J. Phys. Chem. A 116(50), 12198–12205 (2012).
    [Crossref]
  22. E. Koontz, “Characterization of structural relaxation in inorganic glasses using length dilatometry,” (Clemson University, 2015).
  23. J. Lapointe, Y. Ledemi, S. Loranger, V. L. Iezzi, E. Soares de Lima Filho, F. Parent, S. Morency, Y. Messaddeq, and R. Kashyap, “Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape,” Opt. Lett. 41(2), 203–206 (2016).
    [Crossref]
  24. C. C. Huang, D. W. Hewak, and J. V. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12(11), 2501–2506 (2004).
    [Crossref]
  25. A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
    [Crossref]
  26. T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express 2(11), 1556–1561 (2012).
    [Crossref]
  27. J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
    [Crossref]
  28. V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40(9), 2016–2019 (2015).
    [Crossref]
  29. J. M. Morris, M. D. Mackenzie, C. R. Petersen, G. Demetriou, A. K. Kar, O. Bang, and H. T. Bookey, “Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics,” Opt. Mater. Express 8(4), 1001–1011 (2018).
    [Crossref]
  30. A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
    [Crossref]
  31. X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
    [Crossref]
  32. C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, M. Barillot, V. Kirschner, and A. Pradel, “Wide-range transmitting chalcogenide films and development of micro-components for infrared integrated optics applications,” Opt. Mater. Express 4(8), 1617–1631 (2014).
    [Crossref]
  33. M. Shokooh-Saremi, V. G. Ta’eed, N. J. Baker, I. C. M. Littler, D. J. Moss, B. J. Eggleton, Y. Ruan, and B. Luther-Davies, “High-performance Bragg gratings in chalcogenide rib waveguides written with a modified Sagnac interferometer,” J. Opt. Soc. Am. B 23(7), 1323–1331 (2006).
    [Crossref]
  34. A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and Second-Order Bragg Gratings in Single-Mode Planar Waveguides of Chalcogenide Glasses,” J. Lightwave Technol. 17(5), 837–842 (1999).
    [Crossref]
  35. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
    [Crossref]
  36. Y. H. Q. Du, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
    [Crossref]
  37. H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
    [Crossref]
  38. P. Ma, D.-Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23(15), 19969–19979 (2015).
    [Crossref]
  39. S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photonics Res. 3(3), 63–67 (2015).
    [Crossref]
  40. J. H. Choi, D.-H. Cha, J.-H. Kim, and H.-J. Kim, “Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses,” J. Mater. Res. 31(12), 1674–1680 (2016).
    [Crossref]
  41. E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50(14), 1974–1978 (2011).
    [Crossref]
  42. W. Zhou, L. Zhang, and A. Y. Yi, “Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays,” Optik 171, 294–303 (2018).
    [Crossref]
  43. P. Sachan, R. Singh, P. K. Dwivedi, and A. Sharma, “Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films,” RSC Adv. 8(49), 27946–27955 (2018).
    [Crossref]
  44. T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines 9(7), 337 (2018).
    [Crossref]
  45. R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and Flexible Free-Standing All-Dielectric Omnidirectional Reflectors,” Adv. Mater. 19(2), 193–196 (2007).
    [Crossref]
  46. H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94(11), 111110 (2009).
    [Crossref]
  47. J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
    [Crossref]
  48. T. Kohoutek, J. Orava, T. Sawada, and H. Fudouzi, “Inverse opal photonic crystal of chalcogenide glass by solution processing,” J. Colloid Interface Sci. 353(2), 454–458 (2011).
    [Crossref]
  49. D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
    [Crossref]
  50. H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
    [Crossref]
  51. P. Zhang, Z. Zhao, J. Zeng, Q. Zhang, X. Wang, F. Chen, X. Shen, and S. Dai, “Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography,” Opt. Mater. Express 6(6), 1853–1860 (2016).
    [Crossref]
  52. M. Asobe, “Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching,” Opt. Fiber Technol. 3(2), 142–148 (1997).
    [Crossref]
  53. V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
    [Crossref]
  54. J-É. Tremblay, M. Malinowski, K. A. Richardson, S. Fathpour, and M. C. Wu, “Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides,” Opt. Express 26(16), 21358–21363 (2018).
    [Crossref]
  55. Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
    [Crossref]
  56. C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
    [Crossref]
  57. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3(8), 1075–1086 (2013).
    [Crossref]
  58. F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
    [Crossref]
  59. M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
    [Crossref]
  60. A. Arriola, S. Gross, M. Ams, T. Gretzinger, D. Le Coq, R. P. Wang, H. Ebendorff-Heidepriem, J. Sanghera, S. Bayya, L. B. Shaw, M. Ireland, P. Tuthill, and M. J. Withford, “Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials,” Opt. Mater. Express 7(3), 698–711 (2017).
    [Crossref]
  61. J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
    [Crossref]
  62. L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lightwave Technol. 31(24), 4080–4086 (2013).
    [Crossref]
  63. L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
    [Crossref]
  64. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
    [Crossref]
  65. L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
    [Crossref]
  66. L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
    [Crossref]
  67. Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
    [Crossref]
  68. J. Choi, N. Carlie, L. Petit, T. Anderson, K. Richardson, and M. Richardson, “Measurement of Photo-Induced Refractive Index Change in As0.42-x-yGexSbyS0.58 Bulks Induced by Fs Near IR Laser Exposure,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007), 100–101.
  69. I. Camlibel, D. Pinnow, and F. Dabby, “Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides,” Appl. Phys. Lett. 26(4), 185–187 (1975).
    [Crossref]
  70. B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
    [Crossref]
  71. M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
    [Crossref]
  72. K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.
  73. V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
    [Crossref]
  74. J. C. Dyre, “Heirs of liquid treasures,” Nat. Mater. 3(11), 749–750 (2004).
    [Crossref]
  75. J. C. Dyre, “Source of non-Arrhenius average relaxation time in glass-forming liquids,” J. Non-Cryst. Solids 235-237, 142–149 (1998).
    [Crossref]
  76. J. M. Saiter, M. Arnoult, and J. Grenet, “Very long physical ageing in inorganic polymers exemplified by the GexSe1−x vitreous system,” Phys. B 355(1-4), 370–376 (2005).
    [Crossref]
  77. R. Golovchak, A. Kovalskiy, O. Shpotyuk, and H. Jain, “In search of energy landscape for network glasses,” Appl. Phys. Lett. 98(17), 171905 (2011).
    [Crossref]
  78. R. Golovchak, A. Kozdras, O. Shpotyuk, and V. Balitska, “Crossover between cooperative and fractal relaxation in complex glass-formers,” J. Phys.: Condens. Matter 28(35), 355101 (2016).
    [Crossref]
  79. J. Hu, unpublished results. Data available upon request.
  80. J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
    [Crossref]
  81. M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
    [Crossref]
  82. L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
    [Crossref]
  83. H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
    [Crossref]
  84. J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).
  85. C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the Ge–Sb–Te–S–O system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
    [Crossref]
  86. C. Ping, P. Boolchand, and D. G. Georgiev, “Long term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms,” J. Phys.: Condens. Matter 22(6), 065104 (2010).
    [Crossref]
  87. J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
    [Crossref]
  88. L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
    [Crossref]
  89. Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
    [Crossref]
  90. J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
    [Crossref]
  91. G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
    [Crossref]
  92. H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79(1), 95–98 (2004).
    [Crossref]
  93. P. Knotek, L. Tichy, and P. Kutalek, “Photo-induced effects of the virgin Ge24.9Sb11.6S63.5 film,” Thin Solid Films 594, 67–73 (2015).
    [Crossref]

2018 (11)

W. Zhou, L. Zhang, and A. Y. Yi, “Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays,” Optik 171, 294–303 (2018).
[Crossref]

P. Sachan, R. Singh, P. K. Dwivedi, and A. Sharma, “Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films,” RSC Adv. 8(49), 27946–27955 (2018).
[Crossref]

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines 9(7), 337 (2018).
[Crossref]

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

J. M. Morris, M. D. Mackenzie, C. R. Petersen, G. Demetriou, A. K. Kar, O. Bang, and H. T. Bookey, “Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics,” Opt. Mater. Express 8(4), 1001–1011 (2018).
[Crossref]

J-É. Tremblay, M. Malinowski, K. A. Richardson, S. Fathpour, and M. C. Wu, “Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides,” Opt. Express 26(16), 21358–21363 (2018).
[Crossref]

2017 (4)

A. Arriola, S. Gross, M. Ams, T. Gretzinger, D. Le Coq, R. P. Wang, H. Ebendorff-Heidepriem, J. Sanghera, S. Bayya, L. B. Shaw, M. Ireland, P. Tuthill, and M. J. Withford, “Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials,” Opt. Mater. Express 7(3), 698–711 (2017).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

2016 (9)

O. Shpotyuk, A. Kozdras, V. Balitska, and R. Golovchak, “On the compositional diversity of physical aging kinetics in chalcogenide glasses,” J. Non-Cryst. Solids 437, 1–5 (2016).
[Crossref]

A. Kozdras, “Kinetics of light-assisted physical ageing in S-rich arsenic sulphide glasses,” Bull. Mater. Sci. 39(4), 997–1000 (2016).
[Crossref]

J. H. Choi, D.-H. Cha, J.-H. Kim, and H.-J. Kim, “Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses,” J. Mater. Res. 31(12), 1674–1680 (2016).
[Crossref]

R. Golovchak, A. Kozdras, O. Shpotyuk, and V. Balitska, “Crossover between cooperative and fractal relaxation in complex glass-formers,” J. Phys.: Condens. Matter 28(35), 355101 (2016).
[Crossref]

J. Lapointe, Y. Ledemi, S. Loranger, V. L. Iezzi, E. Soares de Lima Filho, F. Parent, S. Morency, Y. Messaddeq, and R. Kashyap, “Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape,” Opt. Lett. 41(2), 203–206 (2016).
[Crossref]

P. Zhang, Z. Zhao, J. Zeng, Q. Zhang, X. Wang, F. Chen, X. Shen, and S. Dai, “Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography,” Opt. Mater. Express 6(6), 1853–1860 (2016).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

Y. H. Q. Du, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

2015 (8)

V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40(9), 2016–2019 (2015).
[Crossref]

P. Ma, D.-Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23(15), 19969–19979 (2015).
[Crossref]

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

P. Knotek, L. Tichy, and P. Kutalek, “Photo-induced effects of the virgin Ge24.9Sb11.6S63.5 film,” Thin Solid Films 594, 67–73 (2015).
[Crossref]

S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photonics Res. 3(3), 63–67 (2015).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

2014 (4)

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, M. Barillot, V. Kirschner, and A. Pradel, “Wide-range transmitting chalcogenide films and development of micro-components for infrared integrated optics applications,” Opt. Mater. Express 4(8), 1617–1631 (2014).
[Crossref]

2013 (6)

2012 (4)

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
[Crossref]

E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony series spectra of structural relaxation in N-BK7 for finite element modeling,” J. Phys. Chem. A 116(50), 12198–12205 (2012).
[Crossref]

T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express 2(11), 1556–1561 (2012).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

2011 (5)

T. Kohoutek, J. Orava, T. Sawada, and H. Fudouzi, “Inverse opal photonic crystal of chalcogenide glass by solution processing,” J. Colloid Interface Sci. 353(2), 454–458 (2011).
[Crossref]

J. C. Phillips, “Microscopic aspects of Stretched Exponential Relaxation (SER) in homogeneous molecular and network glasses and polymers,” J. Non-Cryst. Solids 357(22-23), 3853–3865 (2011).
[Crossref]

R. Golovchak, A. Kovalskiy, O. Shpotyuk, and H. Jain, “In search of energy landscape for network glasses,” Appl. Phys. Lett. 98(17), 171905 (2011).
[Crossref]

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

E. A. Sanchez, M. Waldmann, and C. B. Arnold, “Chalcogenide glass microlenses by inkjet printing,” Appl. Opt. 50(14), 1974–1978 (2011).
[Crossref]

2010 (6)

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref]

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the Ge–Sb–Te–S–O system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

C. Ping, P. Boolchand, and D. G. Georgiev, “Long term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms,” J. Phys.: Condens. Matter 22(6), 065104 (2010).
[Crossref]

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical Aging of Chalcogenide Glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

R. Golovchak, A. Kozdras, and O. Shpotyuk, “Optical signature of structural relaxation in glassy As10Se90,” J. Non-Cryst. Solids 356(23-24), 1149–1152 (2010).
[Crossref]

D.-Y. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. J. J. o. A. P. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107, 053106 (2010).
[Crossref]

2009 (2)

R. D. Priestley, “Physical aging of confined glasses,” Soft Matter 5(5), 919–926 (2009).
[Crossref]

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94(11), 111110 (2009).
[Crossref]

2008 (5)

2007 (3)

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and Flexible Free-Standing All-Dielectric Omnidirectional Reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[Crossref]

S. V. Nemilov, “Structural relaxation in oxide glasses at room temperature,” Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B 48, 291–295 (2007).

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[Crossref]

2006 (2)

2005 (3)

J. R. Macdonald and J. C. Phillips, “Topological derivation of shape exponents for stretched exponential relaxation,” J. Chem. Phys. 122(7), 074510 (2005).
[Crossref]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
[Crossref]

J. M. Saiter, M. Arnoult, and J. Grenet, “Very long physical ageing in inorganic polymers exemplified by the GexSe1−x vitreous system,” Phys. B 355(1-4), 370–376 (2005).
[Crossref]

2004 (5)

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
[Crossref]

J. C. Dyre, “Heirs of liquid treasures,” Nat. Mater. 3(11), 749–750 (2004).
[Crossref]

C. C. Huang, D. W. Hewak, and J. V. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12(11), 2501–2506 (2004).
[Crossref]

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79(1), 95–98 (2004).
[Crossref]

2002 (1)

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

2001 (1)

J. Saiter, “Physical ageing in chalcogenide glasses,” J. Optoelectron. Adv. Mater. 3, 685–694 (2001).

2000 (2)

S. V. Nemilov, “Physical Ageing of Silicate Glasses at Room Temperature: General Regularities as a Basis for the Theory and the Possibility of a priori Calculation of the Ageing Rate,” Glass Phys. Chem. 26(6), 511–530 (2000).
[Crossref]

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
[Crossref]

1999 (1)

1998 (1)

J. C. Dyre, “Source of non-Arrhenius average relaxation time in glass-forming liquids,” J. Non-Cryst. Solids 235-237, 142–149 (1998).
[Crossref]

1997 (1)

M. Asobe, “Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching,” Opt. Fiber Technol. 3(2), 142–148 (1997).
[Crossref]

1996 (1)

J. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59(9), 1133–1207 (1996).
[Crossref]

1994 (1)

J. Phillips, “Microscopic theory of the Kohlrausch relaxation constant βK,” J. Non-Cryst. Solids 172-174, 98–103 (1994).
[Crossref]

1983 (1)

R. K. Puri, K. Vijaya, and R. N. Karekar, “Effect of minute’s-scale aging on refractive index of chopped and non-chopped optical films,” Pramana 21(5), 311–322 (1983).
[Crossref]

1975 (1)

I. Camlibel, D. Pinnow, and F. Dabby, “Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides,” Appl. Phys. Lett. 26(4), 185–187 (1975).
[Crossref]

1884 (1)

J. P. Joule, “The Scientific Papers of Joule J.P.,” London Physical Society 1, 558 (1884).

Adam, J.-L.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Agarwal, A.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
[Crossref]

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref]

Agarwal, A. M.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
[Crossref]

Aghajani, A.

Aldana, J. R. V.

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Allan, D. C.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Alosno-Ramos, C.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Ams, M.

An, S.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Anderson, T.

J. Choi, N. Carlie, L. Petit, T. Anderson, K. Richardson, and M. Richardson, “Measurement of Photo-Induced Refractive Index Change in As0.42-x-yGexSbyS0.58 Bulks Induced by Fs Near IR Laser Exposure,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007), 100–101.

Arnold, C. B.

Arnoult, M.

J. M. Saiter, M. Arnoult, and J. Grenet, “Very long physical ageing in inorganic polymers exemplified by the GexSe1−x vitreous system,” Phys. B 355(1-4), 370–376 (2005).
[Crossref]

Arriola, A.

Åslund, M.

Asobe, M.

M. Asobe, “Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching,” Opt. Fiber Technol. 3(2), 142–148 (1997).
[Crossref]

Asokan, S.

Ayiriveetil, A.

Badding, J. V.

Baker, N. J.

Balitska, V.

O. Shpotyuk, A. Kozdras, V. Balitska, and R. Golovchak, “On the compositional diversity of physical aging kinetics in chalcogenide glasses,” J. Non-Cryst. Solids 437, 1–5 (2016).
[Crossref]

R. Golovchak, A. Kozdras, O. Shpotyuk, and V. Balitska, “Crossover between cooperative and fractal relaxation in complex glass-formers,” J. Phys.: Condens. Matter 28(35), 355101 (2016).
[Crossref]

Bang, O.

Barillot, M.

Baudet, E.

Bayindir, M.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94(11), 111110 (2009).
[Crossref]

Bayya, S.

Becla, P.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
[Crossref]

Beecher, S. J.

Bharadwaj, V.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Birkmire, R.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Blouin, V.

E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony series spectra of structural relaxation in N-BK7 for finite element modeling,” J. Phys. Chem. A 116(50), 12198–12205 (2012).
[Crossref]

Bodiou, L.

Bookey, H. T.

Boolchand, P.

C. Ping, P. Boolchand, and D. G. Georgiev, “Long term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms,” J. Phys.: Condens. Matter 22(6), 065104 (2010).
[Crossref]

Boussard-Plèdel, C.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Bowden, B. F.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Bulla, D.

D.-Y. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. J. J. o. A. P. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107, 053106 (2010).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref]

Bureau, B.

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Butement, J.

Camlibel, I.

I. Camlibel, D. Pinnow, and F. Dabby, “Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides,” Appl. Phys. Lett. 26(4), 185–187 (1975).
[Crossref]

Canning, J.

Cardinal, T.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Carlie, N.

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
[Crossref]

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref]

J. Choi, N. Carlie, L. Petit, T. Anderson, K. Richardson, and M. Richardson, “Measurement of Photo-Induced Refractive Index Change in As0.42-x-yGexSbyS0.58 Bulks Induced by Fs Near IR Laser Exposure,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007), 100–101.

Carpenter, L. G.

Cernošek, Z.

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

Cernošková, E.

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

Cha, D.-H.

J. H. Choi, D.-H. Cha, J.-H. Kim, and H.-J. Kim, “Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses,” J. Mater. Res. 31(12), 1674–1680 (2016).
[Crossref]

Charrier, J.

Chen, F.

P. Zhang, Z. Zhao, J. Zeng, Q. Zhang, X. Wang, F. Chen, X. Shen, and S. Dai, “Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography,” Opt. Mater. Express 6(6), 1853–1860 (2016).
[Crossref]

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Chen, G.

Choi, D. Y.

Choi, D.-Y.

Choi, J.

J. Choi, N. Carlie, L. Petit, T. Anderson, K. Richardson, and M. Richardson, “Measurement of Photo-Induced Refractive Index Change in As0.42-x-yGexSbyS0.58 Bulks Induced by Fs Near IR Laser Exposure,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007), 100–101.

Choi, J. H.

J. H. Choi, D.-H. Cha, J.-H. Kim, and H.-J. Kim, “Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses,” J. Mater. Res. 31(12), 1674–1680 (2016).
[Crossref]

Churbanov, M.

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Clement, T. J.

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and Flexible Free-Standing All-Dielectric Omnidirectional Reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[Crossref]

Couzi, M.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Dabby, F.

I. Camlibel, D. Pinnow, and F. Dabby, “Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides,” Appl. Phys. Lett. 26(4), 185–187 (1975).
[Crossref]

Dai, S.

Dana, A.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94(11), 111110 (2009).
[Crossref]

Danto, S.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lightwave Technol. 31(24), 4080–4086 (2013).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

Deckoff-Jones, S.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

DeCorby, R. G.

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and Flexible Free-Standing All-Dielectric Omnidirectional Reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[Crossref]

Demetriou, G.

Deng, F.

Désévédavy, F.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Dierolf, V.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

Ding, J.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Dobson, K. D.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Du, Q.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

Du, T.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Du, Y. H. Q.

Dwivedi, P. K.

P. Sachan, R. Singh, P. K. Dwivedi, and A. Sharma, “Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films,” RSC Adv. 8(49), 27946–27955 (2018).
[Crossref]

Dyre, J. C.

J. C. Dyre, “Heirs of liquid treasures,” Nat. Mater. 3(11), 749–750 (2004).
[Crossref]

J. C. Dyre, “Source of non-Arrhenius average relaxation time in glass-forming liquids,” J. Non-Cryst. Solids 235-237, 142–149 (1998).
[Crossref]

Eaton, S. M.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Ebendorff-Heidepriem, H.

Eggleton, B. J.

Ellison, A. J.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Englund, D.

Faijan, F.

Farries, M.

Fathpour, S.

Feng, N.

Feng, N.-N.

Fernández, P.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Finsterbusch, K.

Freeman, D.

Fu, L.

Fudouzi, H.

T. Kohoutek, J. Orava, T. Sawada, and H. Fudouzi, “Inverse opal photonic crystal of chalcogenide glass by solution processing,” J. Colloid Interface Sci. 353(2), 454–458 (2011).
[Crossref]

Gadret, G.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Gai, X.

Galstian, T.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Galstyan, T. V.

Ganjoo, A.

Gates, J. C.

Geiger, S. J.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Georgiev, D. G.

C. Ping, P. Boolchand, and D. G. Georgiev, “Long term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms,” J. Phys.: Condens. Matter 22(6), 065104 (2010).
[Crossref]

Gerasimenko, V.

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Gholipour, B.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Golovchak, R.

O. Shpotyuk, A. Kozdras, V. Balitska, and R. Golovchak, “On the compositional diversity of physical aging kinetics in chalcogenide glasses,” J. Non-Cryst. Solids 437, 1–5 (2016).
[Crossref]

R. Golovchak, A. Kozdras, O. Shpotyuk, and V. Balitska, “Crossover between cooperative and fractal relaxation in complex glass-formers,” J. Phys.: Condens. Matter 28(35), 355101 (2016).
[Crossref]

R. Golovchak, A. Kovalskiy, O. Shpotyuk, and H. Jain, “In search of energy landscape for network glasses,” Appl. Phys. Lett. 98(17), 171905 (2011).
[Crossref]

R. Golovchak, A. Kozdras, and O. Shpotyuk, “Optical signature of structural relaxation in glassy As10Se90,” J. Non-Cryst. Solids 356(23-24), 1149–1152 (2010).
[Crossref]

Golovchak, R. Y.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical Aging of Chalcogenide Glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Grenet, J.

J. M. Saiter, M. Arnoult, and J. Grenet, “Very long physical ageing in inorganic polymers exemplified by the GexSe1−x vitreous system,” Phys. B 355(1-4), 370–376 (2005).
[Crossref]

Gretzinger, T.

Gross, S.

Gu, T.

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lightwave Technol. 31(24), 4080–4086 (2013).
[Crossref]

Guo, X.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Gutierrez-Arroyo, A.

Han, T.

Haney, M.

Hardy, I.

Hewak, D. W.

Hirao, K.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

Hu, J.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

Y. H. Q. Du, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lightwave Technol. 31(24), 4080–4086 (2013).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
[Crossref]

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
[Crossref]

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref]

J. Hu, unpublished results. Data available upon request.

Huang, C. C.

Huang, Y.

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

Huang, Y.-Z.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Iezzi, V. L.

Ireland, M.

Jackson, J.

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the Ge–Sb–Te–S–O system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

Jain, H.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

R. Golovchak, A. Kovalskiy, O. Shpotyuk, and H. Jain, “In search of energy landscape for network glasses,” Appl. Phys. Lett. 98(17), 171905 (2011).
[Crossref]

G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
[Crossref]

Janícek, P.

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

Joule, J. P.

J. P. Joule, “The Scientific Papers of Joule J.P.,” London Physical Society 1, 558 (1884).

Jules, J. C.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Kar, A. K.

Karekar, R. N.

R. K. Puri, K. Vijaya, and R. N. Karekar, “Effect of minute’s-scale aging on refractive index of chopped and non-chopped optical films,” Pramana 21(5), 311–322 (1983).
[Crossref]

Kashyap, R.

J. Lapointe, Y. Ledemi, S. Loranger, V. L. Iezzi, E. Soares de Lima Filho, F. Parent, S. Morency, Y. Messaddeq, and R. Kashyap, “Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape,” Opt. Lett. 41(2), 203–206 (2016).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

Kiczenski, T.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Kim, H.-J.

J. H. Choi, D.-H. Cha, J.-H. Kim, and H.-J. Kim, “Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses,” J. Mater. Res. 31(12), 1674–1680 (2016).
[Crossref]

Kim, J.-H.

J. H. Choi, D.-H. Cha, J.-H. Kim, and H.-J. Kim, “Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses,” J. Mater. Res. 31(12), 1674–1680 (2016).
[Crossref]

Kimerling, L.

Kimerling, L. C.

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
[Crossref]

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

King, E. A.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Kirschner, V.

Kita, D.

Klebanov, M.

S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photonics Res. 3(3), 63–67 (2015).
[Crossref]

Knotek, P.

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

P. Knotek, L. Tichy, and P. Kutalek, “Photo-induced effects of the virgin Ge24.9Sb11.6S63.5 film,” Thin Solid Films 594, 67–73 (2015).
[Crossref]

Kohoutek, T.

T. Kohoutek, J. Orava, T. Sawada, and H. Fudouzi, “Inverse opal photonic crystal of chalcogenide glass by solution processing,” J. Colloid Interface Sci. 353(2), 454–458 (2011).
[Crossref]

Kondakci, H. E.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94(11), 111110 (2009).
[Crossref]

Koontz, E.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony series spectra of structural relaxation in N-BK7 for finite element modeling,” J. Phys. Chem. A 116(50), 12198–12205 (2012).
[Crossref]

E. Koontz, “Characterization of structural relaxation in inorganic glasses using length dilatometry,” (Clemson University, 2015).

Kovalskiy, A.

R. Golovchak, A. Kovalskiy, O. Shpotyuk, and H. Jain, “In search of energy landscape for network glasses,” Appl. Phys. Lett. 98(17), 171905 (2011).
[Crossref]

Koylu, O.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94(11), 111110 (2009).
[Crossref]

Kozacik, S.

Kozdras, A.

O. Shpotyuk, A. Kozdras, V. Balitska, and R. Golovchak, “On the compositional diversity of physical aging kinetics in chalcogenide glasses,” J. Non-Cryst. Solids 437, 1–5 (2016).
[Crossref]

A. Kozdras, “Kinetics of light-assisted physical ageing in S-rich arsenic sulphide glasses,” Bull. Mater. Sci. 39(4), 997–1000 (2016).
[Crossref]

R. Golovchak, A. Kozdras, O. Shpotyuk, and V. Balitska, “Crossover between cooperative and fractal relaxation in complex glass-formers,” J. Phys.: Condens. Matter 28(35), 355101 (2016).
[Crossref]

R. Golovchak, A. Kozdras, and O. Shpotyuk, “Optical signature of structural relaxation in glassy As10Se90,” J. Non-Cryst. Solids 356(23-24), 1149–1152 (2010).
[Crossref]

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical Aging of Chalcogenide Glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Kozyukhin, S. A.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical Aging of Chalcogenide Glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Kribich, R.

Kutalek, P.

P. Knotek, L. Tichy, and P. Kutalek, “Photo-induced effects of the virgin Ge24.9Sb11.6S63.5 film,” Thin Solid Films 594, 67–73 (2015).
[Crossref]

Kutálek, P.

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

Lamont, M. R. E.

Lapointe, J.

J. Lapointe, Y. Ledemi, S. Loranger, V. L. Iezzi, E. Soares de Lima Filho, F. Parent, S. Morency, Y. Messaddeq, and R. Kashyap, “Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape,” Opt. Lett. 41(2), 203–206 (2016).
[Crossref]

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

LaRochelle, S.

Le Coq, D.

Ledemi, Y.

Lemaitre, J.

Lesniewska, E.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Levy, S.

S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photonics Res. 3(3), 63–67 (2015).
[Crossref]

Li, J.

Li, J.-Y.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Li, L.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Y. H. Q. Du, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lightwave Technol. 31(24), 4080–4086 (2013).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

Liang, Z.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines 9(7), 337 (2018).
[Crossref]

Lin, H.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

Y. H. Q. Du, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lightwave Technol. 31(24), 4080–4086 (2013).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

Lin, P. T.

Lipson, M.

Littler, I. C. M.

Liu, X.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines 9(7), 337 (2018).
[Crossref]

Liu, Y.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Lloyd, G. R.

Lopez, C.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Loranger, S.

Lu, N.

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Lubchenko, V.

V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
[Crossref]

Lucas, J.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Lucas, P.

P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys.: Condens. Matter 18(24), 5629–5638 (2006).
[Crossref]

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Luo, Z.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Luther-Davies, B.

Luther-Davies, B. J. J. o. A. P.

D.-Y. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. J. J. o. A. P. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107, 053106 (2010).
[Crossref]

Ma, H.-l.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Ma, P.

Ma, Z.

Macdonald, J. R.

J. R. Macdonald and J. C. Phillips, “Topological derivation of shape exponents for stretched exponential relaxation,” J. Chem. Phys. 122(7), 074510 (2005).
[Crossref]

Mackenzie, M. D.

Madden, S.

Malinowski, M.

Maulion, G.

Mauro, J. C.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Messaddeq, Y.

Michon, J.

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

Y. H. Q. Du, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

Mitchell, A.

Mittal, V.

Miura, K.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

Moreel, L.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Morency, S.

Morris, J. M.

Moss, D. J.

Mouawad, O.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Murakowski, M.

Murugan, G. S.

Musgraves, J. D.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony series spectra of structural relaxation in N-BK7 for finite element modeling,” J. Phys. Chem. A 116(50), 12198–12205 (2012).
[Crossref]

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

Nallala, J.

Napier, B.

Nazabal, V.

Nemilov, S. V.

S. V. Nemilov, “Structural relaxation in oxide glasses at room temperature,” Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B 48, 291–295 (2007).

S. V. Nemilov, “Physical Ageing of Silicate Glasses at Room Temperature: General Regularities as a Basis for the Theory and the Possibility of a priori Calculation of the Ageing Rate,” Glass Phys. Chem. 26(6), 511–530 (2000).
[Crossref]

Nguyen, H. C.

Nguyen, H. T.

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and Flexible Free-Standing All-Dielectric Omnidirectional Reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[Crossref]

Nguyen, T.

Ni, C.

Novak, J.

Novak, S.

Novotortsev, V. M.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical Aging of Chalcogenide Glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Ogbuu, O.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

Orava, J.

T. Kohoutek, J. Orava, T. Sawada, and H. Fudouzi, “Inverse opal photonic crystal of chalcogenide glass by solution processing,” J. Colloid Interface Sci. 353(2), 454–458 (2011).
[Crossref]

Painter, O.

Parent, F.

Petersen, C. R.

Petit, L.

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the Ge–Sb–Te–S–O system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
[Crossref]

J. Choi, N. Carlie, L. Petit, T. Anderson, K. Richardson, and M. Richardson, “Measurement of Photo-Induced Refractive Index Change in As0.42-x-yGexSbyS0.58 Bulks Induced by Fs Near IR Laser Exposure,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007), 100–101.

Phillips, J.

J. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59(9), 1133–1207 (1996).
[Crossref]

J. Phillips, “Microscopic theory of the Kohlrausch relaxation constant βK,” J. Non-Cryst. Solids 172-174, 98–103 (1994).
[Crossref]

Phillips, J. C.

J. C. Phillips, “Microscopic aspects of Stretched Exponential Relaxation (SER) in homogeneous molecular and network glasses and polymers,” J. Non-Cryst. Solids 357(22-23), 3853–3865 (2011).
[Crossref]

J. R. Macdonald and J. C. Phillips, “Topological derivation of shape exponents for stretched exponential relaxation,” J. Chem. Phys. 122(7), 074510 (2005).
[Crossref]

Physics,

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

Picot-Clémente, J.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Ping, C.

C. Ping, P. Boolchand, and D. G. Georgiev, “Long term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms,” J. Phys.: Condens. Matter 22(6), 065104 (2010).
[Crossref]

Pinnow, D.

I. Camlibel, D. Pinnow, and F. Dabby, “Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides,” Appl. Phys. Lett. 26(4), 185–187 (1975).
[Crossref]

Plotnichenko, V.

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Ponnampalam, N.

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and Flexible Free-Standing All-Dielectric Omnidirectional Reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[Crossref]

Potuzak, M.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Pradel, A.

Prasad, A.

Prather, D.

Preston, K.

Priestley, R. D.

R. D. Priestley, “Physical aging of confined glasses,” Soft Matter 5(5), 919–926 (2009).
[Crossref]

Prtljaga, N.

Pun, E. Y. B.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79(1), 95–98 (2004).
[Crossref]

Puri, R. K.

R. K. Puri, K. Vijaya, and R. N. Karekar, “Effect of minute’s-scale aging on refractive index of chopped and non-chopped optical films,” Pramana 21(5), 311–322 (1983).
[Crossref]

Pushkin, A.

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Qiao, S.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Rampini, S.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Ramponi, R.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Richardson, K.

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

Y. H. Q. Du, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lightwave Technol. 31(24), 4080–4086 (2013).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony series spectra of structural relaxation in N-BK7 for finite element modeling,” J. Phys. Chem. A 116(50), 12198–12205 (2012).
[Crossref]

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the Ge–Sb–Te–S–O system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
[Crossref]

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and Second-Order Bragg Gratings in Single-Mode Planar Waveguides of Chalcogenide Glasses,” J. Lightwave Technol. 17(5), 837–842 (1999).
[Crossref]

J. Choi, N. Carlie, L. Petit, T. Anderson, K. Richardson, and M. Richardson, “Measurement of Photo-Induced Refractive Index Change in As0.42-x-yGexSbyS0.58 Bulks Induced by Fs Near IR Laser Exposure,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007), 100–101.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Richardson, K. A.

J-É. Tremblay, M. Malinowski, K. A. Richardson, S. Fathpour, and M. C. Wu, “Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides,” Opt. Express 26(16), 21358–21363 (2018).
[Crossref]

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

Richardson, M.

J. Choi, N. Carlie, L. Petit, T. Anderson, K. Richardson, and M. Richardson, “Measurement of Photo-Induced Refractive Index Change in As0.42-x-yGexSbyS0.58 Bulks Induced by Fs Near IR Laser Exposure,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007), 100–101.

Rivero, C.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Rivero-Baleine, C.

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the Ge–Sb–Te–S–O system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

Robinson, J. T.

Rode, A.

D.-Y. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. J. J. o. A. P. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107, 053106 (2010).
[Crossref]

Ruan, Y.

Sabapathy, T.

Sachan, P.

P. Sachan, R. Singh, P. K. Dwivedi, and A. Sharma, “Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films,” RSC Adv. 8(49), 27946–27955 (2018).
[Crossref]

Saiter, J.

J. Saiter, “Physical ageing in chalcogenide glasses,” J. Optoelectron. Adv. Mater. 3, 685–694 (2001).

Saiter, J. M.

J. M. Saiter, M. Arnoult, and J. Grenet, “Very long physical ageing in inorganic polymers exemplified by the GexSe1−x vitreous system,” Phys. B 355(1-4), 370–376 (2005).
[Crossref]

Sakakura, M.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

Saliminia, A.

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and Second-Order Bragg Gratings in Single-Mode Planar Waveguides of Chalcogenide Glasses,” J. Lightwave Technol. 17(5), 837–842 (1999).
[Crossref]

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Sanchez, E. A.

Sanghera, J.

Sawada, T.

T. Kohoutek, J. Orava, T. Sawada, and H. Fudouzi, “Inverse opal photonic crystal of chalcogenide glass by solution processing,” J. Colloid Interface Sci. 353(2), 454–458 (2011).
[Crossref]

Schulte, A.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Sharma, A.

P. Sachan, R. Singh, P. K. Dwivedi, and A. Sharma, “Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films,” RSC Adv. 8(49), 27946–27955 (2018).
[Crossref]

Shaw, L. B.

Shen, X.

Shimotsuma, Y.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

Shiryaev, V.

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Shiue, R.-J.

Shokooh-Saremi, M.

Shpotyuk, O.

R. Golovchak, A. Kozdras, O. Shpotyuk, and V. Balitska, “Crossover between cooperative and fractal relaxation in complex glass-formers,” J. Phys.: Condens. Matter 28(35), 355101 (2016).
[Crossref]

O. Shpotyuk, A. Kozdras, V. Balitska, and R. Golovchak, “On the compositional diversity of physical aging kinetics in chalcogenide glasses,” J. Non-Cryst. Solids 437, 1–5 (2016).
[Crossref]

R. Golovchak, A. Kovalskiy, O. Shpotyuk, and H. Jain, “In search of energy landscape for network glasses,” Appl. Phys. Lett. 98(17), 171905 (2011).
[Crossref]

R. Golovchak, A. Kozdras, and O. Shpotyuk, “Optical signature of structural relaxation in glassy As10Se90,” J. Non-Cryst. Solids 356(23-24), 1149–1152 (2010).
[Crossref]

Shpotyuk, O. I.

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical Aging of Chalcogenide Glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

Singh, R.

P. Sachan, R. Singh, P. K. Dwivedi, and A. Sharma, “Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films,” RSC Adv. 8(49), 27946–27955 (2018).
[Crossref]

Singh, V.

Skripachev, I.

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Smektala, F.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Smith, C.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the Ge–Sb–Te–S–O system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

Smith, J. R.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Smith, P. G. R.

Snopatin, G.

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Soares de Lima Filho, E.

Soci, C.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Song, Y.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Sotillo, B.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Stone, A.

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

Stone, N.

Strutynski, C.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Sun, X.

Ta’eed, V. G.

Tang, H. Y.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79(1), 95–98 (2004).
[Crossref]

Tarasov, V.

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

Thi, M. V.

Tichy, L.

P. Knotek, L. Tichy, and P. Kutalek, “Photo-induced effects of the virgin Ge24.9Sb11.6S63.5 film,” Thin Solid Films 594, 67–73 (2015).
[Crossref]

Tichý, L.

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

Tremblay, J-É.

Troles, J.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Turcotte, K.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Tuthill, P.

Vázquez, M. R.

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

Vigreux, C.

Vijaya, K.

R. K. Puri, K. Vijaya, and R. N. Karekar, “Effect of minute’s-scale aging on refractive index of chopped and non-chopped optical films,” Pramana 21(5), 311–322 (1983).
[Crossref]

Villeneuve, A.

A. Saliminia, A. Villeneuve, T. V. Galstyan, S. LaRochelle, and K. Richardson, “First- and Second-Order Bragg Gratings in Single-Mode Planar Waveguides of Chalcogenide Glasses,” J. Lightwave Technol. 17(5), 837–842 (1999).
[Crossref]

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Vitry, P.

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Vivien, L.

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

Vlasová, M.

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

Vu, K.

Wachtel, P.

E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony series spectra of structural relaxation in N-BK7 for finite element modeling,” J. Phys. Chem. A 116(50), 12198–12205 (2012).
[Crossref]

Waldmann, M.

Wang, J.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
[Crossref]

Wang, K.

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Wang, R.

Wang, R. P.

Wang, T.

Wang, W.-M.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Wang, X.

Ward, J.

Welch, R. C.

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Wilkinson, J. S.

Withford, M. J.

Wolynes, P. G.

V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
[Crossref]

Wong, W. H.

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79(1), 95–98 (2004).
[Crossref]

Wu, M. C.

Xiao, N.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Xu, Y.

Yadav, A.

L. Li, H. Lin, Y. Huang, R.-J. Shiue, A. Yadav, J. Li, J. Michon, D. Englund, K. Richardson, T. Gu, and J. Hu, “High-performance flexible waveguide-integrated photodetectors,” Optica 5(1), 44–51 (2018).
[Crossref]

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

Yaman, M.

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94(11), 111110 (2009).
[Crossref]

Yang, G.

Yang, Z.

Yi, A. Y.

W. Zhou, L. Zhang, and A. Y. Yi, “Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays,” Optik 171, 294–303 (2018).
[Crossref]

Yin, G.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Yu, Y.

Zadok, A.

S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photonics Res. 3(3), 63–67 (2015).
[Crossref]

Zeng, H.

Zeng, J.

Zens, T.

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
[Crossref]

Zerdoum, A. B.

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Zhang, L.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

W. Zhou, L. Zhang, and A. Y. Yi, “Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays,” Optik 171, 294–303 (2018).
[Crossref]

Zhang, P.

Zhang, Q.

Zhang, W.

Zhang, X. H.

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

Zhang, Y.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zhao, D.

Zhao, Z.

Zheng, B.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Zheng, H.

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

Zhong, H.

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Zhou, J.

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Zhou, T.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines 9(7), 337 (2018).
[Crossref]

Zhou, W.

W. Zhou, L. Zhang, and A. Y. Yi, “Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays,” Optik 171, 294–303 (2018).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

Zhu, Z.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines 9(7), 337 (2018).
[Crossref]

Zou, Y.

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

L. Li, Y. Zou, H. Lin, J. Hu, X. Sun, N. Feng, S. Danto, K. Richardson, T. Gu, and M. Haney, “A Fully-Integrated Flexible Photonic Platform for Chip-to-Chip Optical Interconnects,” J. Lightwave Technol. 31(24), 4080–4086 (2013).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

Acta Mater. (1)

J. D. Musgraves, N. Carlie, J. Hu, L. Petit, A. Agarwal, L. C. Kimerling, and K. A. Richardson, “Comparison of the optical, thermal and structural properties of Ge–Sb–S thin films deposited using thermal evaporation and pulsed laser deposition techniques,” Acta Mater. 59(12), 5032–5039 (2011).
[Crossref]

Adv. Mater. (1)

R. G. DeCorby, N. Ponnampalam, H. T. Nguyen, and T. J. Clement, “Robust and Flexible Free-Standing All-Dielectric Omnidirectional Reflectors,” Adv. Mater. 19(2), 193–196 (2007).
[Crossref]

Adv. Opt. Mater. (1)

Y. Zou, L. Moreel, H. Lin, J. Zhou, L. Li, S. Danto, J. D. Musgraves, E. Koontz, K. Richardson, K. D. Dobson, R. Birkmire, and J. Hu, “Solution Processing and Resist-Free Nanoimprint Fabrication of Thin Film Chalcogenide Glass Devices: Inorganic–Organic Hybrid Photonic Integration,” Adv. Opt. Mater. 2(8), 759–764 (2014).
[Crossref]

Am. Ceram. Soc. Bull. (1)

J. Hu, L. Li, H. Lin, Y. Zou, Q. Du, C. Smith, S. Novak, K. Richardson, and J. D. Musgraves, “Chalcogenide glass microphotonics: Stepping into the spotlight,” Am. Ceram. Soc. Bull. 94, 24–29 (2015).

Appl. Opt. (1)

Appl. Phys. B: Lasers Opt. (1)

H. Y. Tang, W. H. Wong, and E. Y. B. Pun, “Long period polymer waveguide grating device with positive temperature sensitivity,” Appl. Phys. B: Lasers Opt. 79(1), 95–98 (2004).
[Crossref]

Appl. Phys. Lett. (4)

R. Golovchak, A. Kovalskiy, O. Shpotyuk, and H. Jain, “In search of energy landscape for network glasses,” Appl. Phys. Lett. 98(17), 171905 (2011).
[Crossref]

H. E. Kondakci, M. Yaman, O. Koylu, A. Dana, and M. Bayindir, “All-chalcogenide glass omnidirectional photonic band gap variable infrared filters,” Appl. Phys. Lett. 94(11), 111110 (2009).
[Crossref]

J. Wang, T. Zens, J. Hu, P. Becla, L. C. Kimerling, and A. M. Agarwal, “Monolithically integrated, resonant-cavity-enhanced dual-band mid-infrared photodetector on silicon,” Appl. Phys. Lett. 100(21), 211106 (2012).
[Crossref]

I. Camlibel, D. Pinnow, and F. Dabby, “Optical aging characteristics of borosilicate clad fused silica core fiber optical waveguides,” Appl. Phys. Lett. 26(4), 185–187 (1975).
[Crossref]

Bull. Mater. Sci. (1)

A. Kozdras, “Kinetics of light-assisted physical ageing in S-rich arsenic sulphide glasses,” Bull. Mater. Sci. 39(4), 997–1000 (2016).
[Crossref]

Glass Phys. Chem. (1)

S. V. Nemilov, “Physical Ageing of Silicate Glasses at Room Temperature: General Regularities as a Basis for the Theory and the Possibility of a priori Calculation of the Ageing Rate,” Glass Phys. Chem. 26(6), 511–530 (2000).
[Crossref]

Inorg. Mater. (2)

R. Y. Golovchak, S. A. Kozyukhin, A. Kozdras, O. I. Shpotyuk, and V. M. Novotortsev, “Physical Aging of Chalcogenide Glasses,” Inorg. Mater. 46(8), 911–913 (2010).
[Crossref]

M. Churbanov, V. Shiryaev, V. Gerasimenko, A. Pushkin, I. Skripachev, G. Snopatin, and V. Plotnichenko, “Stability of the optical and mechanical properties of chalcogenide fibers,” Inorg. Mater. 38(10), 1063–1068 (2002).
[Crossref]

Int. J. Appl. Glass Sci. (1)

L. Li, H. Lin, J. Michon, Y. Huang, J. Li, Q. Du, A. Yadav, K. Richardson, T. Gu, and J. Hu, “A new twist on glass: A brittle material enabling flexible integrated photonics,” Int. J. Appl. Glass Sci. 8(1), 61–68 (2017).
[Crossref]

J. Appl. Phys. (1)

D.-Y. Choi, S. Madden, D. Bulla, R. Wang, A. Rode, and B. J. J. o. A. P. Luther-Davies, “Thermal annealing of arsenic tri-sulphide thin film and its influence on device performance,” J. Appl. Phys. 107, 053106 (2010).
[Crossref]

J. Chem. Phys. (2)

J. R. Macdonald and J. C. Phillips, “Topological derivation of shape exponents for stretched exponential relaxation,” J. Chem. Phys. 122(7), 074510 (2005).
[Crossref]

V. Lubchenko and P. G. Wolynes, “Theory of aging in structural glasses,” J. Chem. Phys. 121(7), 2852–2865 (2004).
[Crossref]

J. Colloid Interface Sci. (1)

T. Kohoutek, J. Orava, T. Sawada, and H. Fudouzi, “Inverse opal photonic crystal of chalcogenide glass by solution processing,” J. Colloid Interface Sci. 353(2), 454–458 (2011).
[Crossref]

J. Lightwave Technol. (2)

J. Mater. Res. (1)

J. H. Choi, D.-H. Cha, J.-H. Kim, and H.-J. Kim, “Development of thermally stable and moldable chalcogenide glass for flexible infrared lenses,” J. Mater. Res. 31(12), 1674–1680 (2016).
[Crossref]

J. Non-Cryst. Solids (6)

B. Bureau, X. H. Zhang, F. Smektala, J.-L. Adam, J. Troles, H.-l. Ma, C. Boussard-Plèdel, J. Lucas, P. Lucas, and D. Le Coq, “Recent advances in chalcogenide glasses,” J. Non-Cryst. Solids 345–346, 276–283 (2004).
[Crossref]

J. Phillips, “Microscopic theory of the Kohlrausch relaxation constant βK,” J. Non-Cryst. Solids 172-174, 98–103 (1994).
[Crossref]

J. C. Phillips, “Microscopic aspects of Stretched Exponential Relaxation (SER) in homogeneous molecular and network glasses and polymers,” J. Non-Cryst. Solids 357(22-23), 3853–3865 (2011).
[Crossref]

R. Golovchak, A. Kozdras, and O. Shpotyuk, “Optical signature of structural relaxation in glassy As10Se90,” J. Non-Cryst. Solids 356(23-24), 1149–1152 (2010).
[Crossref]

O. Shpotyuk, A. Kozdras, V. Balitska, and R. Golovchak, “On the compositional diversity of physical aging kinetics in chalcogenide glasses,” J. Non-Cryst. Solids 437, 1–5 (2016).
[Crossref]

J. C. Dyre, “Source of non-Arrhenius average relaxation time in glass-forming liquids,” J. Non-Cryst. Solids 235-237, 142–149 (1998).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Optoelectron. Adv. Mater. (1)

J. Saiter, “Physical ageing in chalcogenide glasses,” J. Optoelectron. Adv. Mater. 3, 685–694 (2001).

J. Phys. Chem. A (1)

E. Koontz, V. Blouin, P. Wachtel, J. D. Musgraves, and K. Richardson, “Prony series spectra of structural relaxation in N-BK7 for finite element modeling,” J. Phys. Chem. A 116(50), 12198–12205 (2012).
[Crossref]

J. Phys. Photonics (1)

M. R. Vázquez, B. Sotillo, S. Rampini, V. Bharadwaj, B. Gholipour, P. Fernández, R. Ramponi, C. Soci, and S. M. Eaton, “Femtosecond laser inscription of nonlinear photonic circuits in Gallium Lanthanum Sulphide glass,” J. Phys. Photonics 1(1), 015006 (2018).
[Crossref]

J. Phys.: Condens. Matter (3)

P. Lucas, “Energy landscape and photoinduced structural changes in chalcogenide glasses,” J. Phys.: Condens. Matter 18(24), 5629–5638 (2006).
[Crossref]

R. Golovchak, A. Kozdras, O. Shpotyuk, and V. Balitska, “Crossover between cooperative and fractal relaxation in complex glass-formers,” J. Phys.: Condens. Matter 28(35), 355101 (2016).
[Crossref]

C. Ping, P. Boolchand, and D. G. Georgiev, “Long term aging of selenide glasses: evidence of sub-Tg endotherms and pre-Tg exotherms,” J. Phys.: Condens. Matter 22(6), 065104 (2010).
[Crossref]

J. Solid State Chem. (1)

C. Smith, J. Jackson, L. Petit, C. Rivero-Baleine, and K. Richardson, “Processing and characterization of new oxy-sulfo-telluride glasses in the Ge–Sb–Te–S–O system,” J. Solid State Chem. 183(8), 1891–1899 (2010).
[Crossref]

Laser Photonics Rev. (1)

F. Chen and J. R. V. Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond-laser micromachining,” Laser Photonics Rev. 8(2), 251–275 (2014).
[Crossref]

Light: Sci. Appl. (1)

L. Li, H. Lin, S. Qiao, Y.-Z. Huang, J.-Y. Li, J. Michon, T. Gu, C. Alosno-Ramos, L. Vivien, and A. Yadav, “Monolithically integrated stretchable photonics,” Light: Sci. Appl. 7(2), 17138 (2018).
[Crossref]

London Physical Society (1)

J. P. Joule, “The Scientific Papers of Joule J.P.,” London Physical Society 1, 558 (1884).

Mater. Chem. Phys. (1)

P. Knotek, P. Kutálek, M. Vlasová, E. Černošková, P. Janíček, Z. Černošek, L. Tichý, and Physics, “Ageing of Ge24.9Sb11.6S63.5 thin films under various conditions,” Mater. Chem. Phys. 195, 236–246 (2017).
[Crossref]

Micromachines (1)

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines 9(7), 337 (2018).
[Crossref]

Nat. Commun. (1)

L. Zhang, J. Ding, H. Zheng, S. An, H. Lin, B. Zheng, Q. Du, G. Yin, J. Michon, and Y. Zhang, “Ultra-thin high-efficiency mid-infrared transmissive Huygens meta-optics,” Nat. Commun. 9(1), 1481 (2018).
[Crossref]

Nat. Mater. (1)

J. C. Dyre, “Heirs of liquid treasures,” Nat. Mater. 3(11), 749–750 (2004).
[Crossref]

Nat. Photonics (2)

H. Lin, Y. Song, Y. Huang, D. Kita, S. Deckoff-Jones, K. Wang, L. Li, J. Li, H. Zheng, and Z. Luo, “Chalcogenide glass-on-graphene photonics,” Nat. Photonics 11(12), 798–805 (2017).
[Crossref]

L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J. D. Musgraves, N. Lu, and J. Hu, “Integrated flexible chalcogenide glass photonic devices,” Nat. Photonics 8(8), 643–649 (2014).
[Crossref]

Opt. Express (9)

V. G. Ta’eed, N. J. Baker, L. Fu, K. Finsterbusch, M. R. E. Lamont, D. J. Moss, H. C. Nguyen, B. J. Eggleton, D. Y. Choi, S. Madden, and B. Luther-Davies, “Ultrafast all-optical chalcogenide glass photonic circuits,” Opt. Express 15(15), 9205–9221 (2007).
[Crossref]

J-É. Tremblay, M. Malinowski, K. A. Richardson, S. Fathpour, and M. C. Wu, “Picojoule-level octave-spanning supercontinuum generation in chalcogenide waveguides,” Opt. Express 26(16), 21358–21363 (2018).
[Crossref]

D. Freeman, S. Madden, and B. Luther-Davies, “Fabrication of planar photonic crystals in a chalcogenide glass using a focused ion beam,” Opt. Express 13(8), 3079–3086 (2005).
[Crossref]

P. Ma, D.-Y. Choi, Y. Yu, Z. Yang, K. Vu, T. Nguyen, A. Mitchell, B. Luther-Davies, and S. Madden, “High Q factor chalcogenide ring resonators for cavity-enhanced MIR spectroscopic sensing,” Opt. Express 23(15), 19969–19979 (2015).
[Crossref]

C. C. Huang, D. W. Hewak, and J. V. Badding, “Deposition and characterization of germanium sulphide glass planar waveguides,” Opt. Express 12(11), 2501–2506 (2004).
[Crossref]

A. Gutierrez-Arroyo, E. Baudet, L. Bodiou, J. Lemaitre, I. Hardy, F. Faijan, B. Bureau, V. Nazabal, and J. Charrier, “Optical characterization at 7.7 µm of an integrated platform based on chalcogenide waveguides for sensing applications in the mid-infrared,” Opt. Express 24(20), 23109–23117 (2016).
[Crossref]

X. Gai, T. Han, A. Prasad, S. Madden, D.-Y. Choi, R. Wang, D. Bulla, and B. Luther-Davies, “Progress in optical waveguides fabricated from chalcogenide glasses,” Opt. Express 18(25), 26635–26646 (2010).
[Crossref]

J. T. Robinson, K. Preston, O. Painter, and M. Lipson, “First-principle derivation of gain in high-index-contrast waveguides,” Opt. Express 16(21), 16659–16669 (2008).
[Crossref]

G. Yang, H. Jain, A. Ganjoo, D. Zhao, Y. Xu, H. Zeng, and G. Chen, “A photo-stable chalcogenide glass,” Opt. Express 16(14), 10565–10571 (2008).
[Crossref]

Opt. Fiber Technol. (1)

M. Asobe, “Nonlinear Optical Properties of Chalcogenide Glass Fibers and Their Application to All-Optical Switching,” Opt. Fiber Technol. 3(2), 142–148 (1997).
[Crossref]

Opt. Lett. (10)

C. R. Petersen, N. Prtljaga, M. Farries, J. Ward, B. Napier, G. R. Lloyd, J. Nallala, N. Stone, and O. Bang, “Mid-infrared multispectral tissue imaging using a chalcogenide fiber supercontinuum source,” Opt. Lett. 43(5), 999–1002 (2018).
[Crossref]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Demonstration of chalcogenide glass racetrack microresonators,” Opt. Lett. 33(8), 761–763 (2008).
[Crossref]

Y. H. Q. Du, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, W. Zhang, and J. Hu, “Low-loss photonic device in Ge-Sb-S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

H. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38(9), 1470–1472 (2013).
[Crossref]

H. Lin, L. Li, F. Deng, C. Ni, S. Danto, J. D. Musgraves, K. Richardson, and J. Hu, “Demonstration of mid-infrared waveguide photonic crystal cavities,” Opt. Lett. 38(15), 2779–2782 (2013).
[Crossref]

J. Lapointe, Y. Ledemi, S. Loranger, V. L. Iezzi, E. Soares de Lima Filho, F. Parent, S. Morency, Y. Messaddeq, and R. Kashyap, “Fabrication of ultrafast laser written low-loss waveguides in flexible As2S3 chalcogenide glass tape,” Opt. Lett. 41(2), 203–206 (2016).
[Crossref]

V. Mittal, A. Aghajani, L. G. Carpenter, J. C. Gates, J. Butement, P. G. R. Smith, J. S. Wilkinson, and G. S. Murugan, “Fabrication and characterization of high-contrast mid-infrared GeTe4 channel waveguides,” Opt. Lett. 40(9), 2016–2019 (2015).
[Crossref]

Q. Du, Y. Huang, J. Li, D. Kita, J. Michon, H. Lin, L. Li, S. Novak, K. Richardson, and W. Zhang, “Low-loss photonic device in Ge–Sb–S chalcogenide glass,” Opt. Lett. 41(13), 3090–3093 (2016).
[Crossref]

J. Hu, N. Carlie, N.-N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
[Crossref]

M. Åslund and J. Canning, “Annealing properties of gratings written into UV-presensitized hydrogen-outdiffused optical fiber,” Opt. Lett. 25(10), 692–694 (2000).
[Crossref]

Opt. Mater. (2)

J. Hu, V. Tarasov, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. Kimerling, “Exploration of waveguide fabrication from thermally evaporated Ge–Sb–S glass films,” Opt. Mater. 30(10), 1560–1566 (2008).
[Crossref]

O. Mouawad, P. Vitry, C. Strutynski, J. Picot-Clémente, F. Désévédavy, G. Gadret, J. C. Jules, E. Lesniewska, and F. Smektala, “Atmospheric aging and surface degradation in As2S3 fibers in relation with suspended-core profile,” Opt. Mater. 44, 25–32 (2015).
[Crossref]

Opt. Mater. Express (8)

C. Vigreux, M. V. Thi, G. Maulion, R. Kribich, M. Barillot, V. Kirschner, and A. Pradel, “Wide-range transmitting chalcogenide films and development of micro-components for infrared integrated optics applications,” Opt. Mater. Express 4(8), 1617–1631 (2014).
[Crossref]

J. M. Morris, M. D. Mackenzie, C. R. Petersen, G. Demetriou, A. K. Kar, O. Bang, and H. T. Bookey, “Ge22As20Se58 glass ultrafast laser inscribed waveguides for mid-IR integrated optics,” Opt. Mater. Express 8(4), 1001–1011 (2018).
[Crossref]

T. Sabapathy, A. Ayiriveetil, A. K. Kar, S. Asokan, and S. J. Beecher, “Direct ultrafast laser written C-band waveguide amplifier in Er-doped chalcogenide glass,” Opt. Mater. Express 2(11), 1556–1561 (2012).
[Crossref]

Y. Zou, H. Lin, O. Ogbuu, L. Li, S. Danto, S. Novak, J. Novak, J. D. Musgraves, K. Richardson, and J. Hu, “Effect of annealing conditions on the physio-chemical properties of spin-coated As2Se3 chalcogenide glass films,” Opt. Mater. Express 2(12), 1723–1732 (2012).
[Crossref]

P. Zhang, Z. Zhao, J. Zeng, Q. Zhang, X. Wang, F. Chen, X. Shen, and S. Dai, “Fabrication and characterization of Ge20As20Se15Te45 chalcogenide glass for photonic crystal by nanoimprint lithography,” Opt. Mater. Express 6(6), 1853–1860 (2016).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3(8), 1075–1086 (2013).
[Crossref]

A. Arriola, S. Gross, M. Ams, T. Gretzinger, D. Le Coq, R. P. Wang, H. Ebendorff-Heidepriem, J. Sanghera, S. Bayya, L. B. Shaw, M. Ireland, P. Tuthill, and M. J. Withford, “Mid-infrared astrophotonics: study of ultrafast laser induced index change in compatible materials,” Opt. Mater. Express 7(3), 698–711 (2017).
[Crossref]

J. Hu, L. Li, H. Lin, P. Zhang, W. Zhou, and Z. Ma, “Flexible integrated photonics: where materials, mechanics and optics meet [Invited],” Opt. Mater. Express 3(9), 1313–1331 (2013).
[Crossref]

Optica (1)

Optik (1)

W. Zhou, L. Zhang, and A. Y. Yi, “Design and fabrication of a compound-eye system using precision molded chalcogenide glass freeform microlens arrays,” Optik 171, 294–303 (2018).
[Crossref]

Photonics Res. (2)

S. Levy, M. Klebanov, and A. Zadok, “High-Q ring resonators directly written in As2S3 chalcogenide glass films,” Photonics Res. 3(3), 63–67 (2015).
[Crossref]

Q. Du, Z. Luo, H. Zhong, Y. Zhang, Y. Huang, T. Du, W. Zhang, T. Gu, and J. Hu, “Chip-scale broadband spectroscopic chemical sensing using an integrated supercontinuum source in a chalcogenide glass waveguide,” Photonics Res. 6(6), 506–510 (2018).
[Crossref]

Phys. B (1)

J. M. Saiter, M. Arnoult, and J. Grenet, “Very long physical ageing in inorganic polymers exemplified by the GexSe1−x vitreous system,” Phys. B 355(1-4), 370–376 (2005).
[Crossref]

Phys. Rev. Lett. (1)

R. C. Welch, J. R. Smith, M. Potuzak, X. Guo, B. F. Bowden, T. Kiczenski, D. C. Allan, E. A. King, A. J. Ellison, and J. C. Mauro, “Dynamics of glass relaxation at room temperature,” Phys. Rev. Lett. 110(26), 265901 (2013).
[Crossref]

Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B (1)

S. V. Nemilov, “Structural relaxation in oxide glasses at room temperature,” Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B 48, 291–295 (2007).

Pramana (1)

R. K. Puri, K. Vijaya, and R. N. Karekar, “Effect of minute’s-scale aging on refractive index of chopped and non-chopped optical films,” Pramana 21(5), 311–322 (1983).
[Crossref]

Rep. Prog. Phys. (1)

J. Phillips, “Stretched exponential relaxation in molecular and electronic glasses,” Rep. Prog. Phys. 59(9), 1133–1207 (1996).
[Crossref]

RSC Adv. (1)

P. Sachan, R. Singh, P. K. Dwivedi, and A. Sharma, “Infrared microlenses and gratings of chalcogenide: confined self-organization in solution processed thin liquid films,” RSC Adv. 8(49), 27946–27955 (2018).
[Crossref]

Sci. Rep. (2)

A. Stone, H. Jain, V. Dierolf, M. Sakakura, Y. Shimotsuma, K. Miura, K. Hirao, J. Lapointe, and R. Kashyap, “Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics,” Sci. Rep. 5(1), 10391 (2015).
[Crossref]

L. Li, P. Zhang, W.-M. Wang, H. Lin, A. B. Zerdoum, S. J. Geiger, Y. Liu, N. Xiao, Y. Zou, and O. Ogbuu, “Foldable and cytocompatible sol-gel TiO2 photonics,” Sci. Rep. 5(1), 13832 (2015).
[Crossref]

Soft Matter (1)

R. D. Priestley, “Physical aging of confined glasses,” Soft Matter 5(5), 919–926 (2009).
[Crossref]

Thin Solid Films (1)

P. Knotek, L. Tichy, and P. Kutalek, “Photo-induced effects of the virgin Ge24.9Sb11.6S63.5 film,” Thin Solid Films 594, 67–73 (2015).
[Crossref]

Other (4)

J. Hu, unpublished results. Data available upon request.

E. Koontz, “Characterization of structural relaxation in inorganic glasses using length dilatometry,” (Clemson University, 2015).

J. Choi, N. Carlie, L. Petit, T. Anderson, K. Richardson, and M. Richardson, “Measurement of Photo-Induced Refractive Index Change in As0.42-x-yGexSbyS0.58 Bulks Induced by Fs Near IR Laser Exposure,” in LEOS 2007 - IEEE Lasers and Electro-Optics Society Annual Meeting Conference Proceedings, 2007), 100–101.

K. Richardson, C. Lopez, A. Schulte, C. Rivero, A. Saliminia, T. Galstian, K. Turcotte, A. Villeneuve, T. Cardinal, and M. Couzi, “Aging Behavior of Photo-Induced As2S3 Gratings,” in Conference on Lasers and Electro-Optics, (Optical Society of America, 2001), CTuM29.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. A) 3D perspective drawing of the device arrays used in this experiment. B) Optical microscope image of the device chip (Scale bar 300 µm).
Fig. 2.
Fig. 2. TE mode profiles for each waveguide simulated with FDTD. The labeled widths are the approximate width of each waveguide at ½ its thickness.
Fig. 3.
Fig. 3. Average calculated normalized confinement factor for each waveguide width and polarization
Fig. 4.
Fig. 4. TDWS of each calibration device with respect to room temperature (18.3 °C)
Fig. 5.
Fig. 5. A) Change in left-hand-side of Eq. 6 versus normalized confinement factor (defined by Eq. 5) during photo-saturation. Data in purple is fit from the earliest time point and red corresponds to the last measurement taken. B) The change in GSS refractive index vs exposure dose of broadband light.
Fig. 6.
Fig. 6. Refractive index change of GSS as a function of time during aging of photo-saturated devices
Fig. 7.
Fig. 7. Refractive index change of GSS as a function of time during aging of untreated devices
Fig. 8.
Fig. 8. Refractive index change of GSS as a function of time during aging of annealed devices

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

e(t/τ)β
β=dd+2
Δλr=ΓChG×ΔnChG+ΓSU8×ΔnSU8ng×λr
ng=λr2FSR×L
Γnorm=ΓChGΓChG+ΓSU8
ngλrΔλrΓChG+ΓSU8=Γnorm×ΔnChG+(1Γnorm)×ΔnSU8=(ΔnChGΔnSU8)×Γnorm+ΔnSU8

Metrics