Abstract

We experimentally realize the ordered and disordered photonic structures in a single system by taking advantage of the nacre structures in the Haliotis fulgens abalone shell. The nacre layers naturally contain different degrees of disorder in thickness, ranging from quasi-order to strong disorder. Using optical characterization, numerical simulation, and SEM image analysis, we show that such wide range of disorder strength affords a full account of the transformation of periodicity-induced wave transport into disorder-induced wave transport. We believe this unique biophotonic platform will be an object of interest for both fundamental and applied photonic researches in the field of disordered photonics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Iridescence of a shell of mollusk Haliotis Glabra

T. L. Tan, D. Wong, and P. Lee
Opt. Express 12(20) 4847-4854 (2004)

Disordered packings of core-shell particles with angle-independent structural colors

Sofia Magkiriadou, Jin-Gyu Park, Young-Seok Kim, and Vinothan N. Manoharan
Opt. Mater. Express 2(10) 1343-1352 (2012)

Disordered photonic structures for light harvesting in solar cells

Filippo Pratesi, Matteo Burresi, Francesco Riboli, Kevin Vynck, and Diederik S. Wiersma
Opt. Express 21(S3) A460-A468 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
    [Crossref]
  2. J. D. Joannopoulos, Photonic Crystals : Molding the Flow of Light (Princeton University Press, 2008), pp. 1-305.
  3. D. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
    [Crossref]
  4. J. Wang and A. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
    [Crossref]
  5. Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60(3), 1555–1562 (1999).
    [Crossref]
  6. R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61(7), 4549–4553 (2000).
    [Crossref]
  7. Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62(3), 1516–1519 (2000).
    [Crossref]
  8. A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72(15), 153102 (2005).
    [Crossref]
  9. R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E 71(1), 016615 (2005).
    [Crossref]
  10. M. Allard and E. H. Sargent, “Impact of polydispersity on light propagation in colloidal photonic crystals,” Appl. Phys. Lett. 85(24), 5887–5889 (2004).
    [Crossref]
  11. A. Poddubny, M. Rybin, M. Limonov, and Y. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
    [Crossref]
  12. A. Lin and M. A. Meyers, “Growth and structure in abalone shell,” Mater. Sci. Eng., A 390(1-2), 27–41 (2005).
    [Crossref]
  13. T. L. Tan, D. Wong, and P. Lee, “Iridescence of a shell of mollusk Haliotis Glabra,” Opt. Express 12(20), 4847–4854 (2004).
    [Crossref]
  14. D. J. Brink and N. G. van der Berg, “An investigation of green iridescence on the mollusc Patella granatina,” J. Phys. D: Appl. Phys. 38(2), 338–343 (2005).
    [Crossref]
  15. A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
    [Crossref]
  16. D. J. Brink, N. G. van der Berg, and A. J. Botha, “Iridescent colors on seashells: an optical and structural investigation of Helcion pruinosus,” Appl. Opt. 41(4), 717–722 (2002).
    [Crossref]
  17. S. H. Choi, K. M. Byun, and Y. L. Kim, “Lasing Interactions Disclose Hidden Modes of Necklace States in the Anderson Localized Regime,” ACS Photonics 5(3), 881–889 (2018).
    [Crossref]
  18. S. H. Choi and Y. L. Kim, “Hybridized/coupled multiple resonances in nacre,” Phys. Rev. B 89(3), 035115 (2014).
    [Crossref]
  19. G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
    [Crossref]
  20. H. W. Zhao, Z. Yang, and L. Guo, “Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications,” NPG Asia Mater. 10(4), 1–22 (2018).
    [Crossref]
  21. T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Disordered animal multilayer reflectors and the localization of light,” J. R. Soc., Interface 11(101), 20140948 (2014).
    [Crossref]
  22. S. H. Choi, K. M. Byun, and Y. L. Kim, “Excitation of multiple resonances in 1D Anderson localized systems for efficient light amplification,” Opt. Lett. 40(5), 847–850 (2015).
    [Crossref]
  23. Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
    [Crossref]
  24. Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
    [Crossref]
  25. S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
    [Crossref]

2018 (3)

S. H. Choi, K. M. Byun, and Y. L. Kim, “Lasing Interactions Disclose Hidden Modes of Necklace States in the Anderson Localized Regime,” ACS Photonics 5(3), 881–889 (2018).
[Crossref]

H. W. Zhao, Z. Yang, and L. Guo, “Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications,” NPG Asia Mater. 10(4), 1–22 (2018).
[Crossref]

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

2015 (1)

2014 (2)

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Disordered animal multilayer reflectors and the localization of light,” J. R. Soc., Interface 11(101), 20140948 (2014).
[Crossref]

S. H. Choi and Y. L. Kim, “Hybridized/coupled multiple resonances in nacre,” Phys. Rev. B 89(3), 035115 (2014).
[Crossref]

2013 (2)

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

D. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

2012 (2)

A. Poddubny, M. Rybin, M. Limonov, and Y. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

2011 (1)

J. Wang and A. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
[Crossref]

2010 (2)

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

2005 (4)

D. J. Brink and N. G. van der Berg, “An investigation of green iridescence on the mollusc Patella granatina,” J. Phys. D: Appl. Phys. 38(2), 338–343 (2005).
[Crossref]

A. Lin and M. A. Meyers, “Growth and structure in abalone shell,” Mater. Sci. Eng., A 390(1-2), 27–41 (2005).
[Crossref]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72(15), 153102 (2005).
[Crossref]

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E 71(1), 016615 (2005).
[Crossref]

2004 (2)

M. Allard and E. H. Sargent, “Impact of polydispersity on light propagation in colloidal photonic crystals,” Appl. Phys. Lett. 85(24), 5887–5889 (2004).
[Crossref]

T. L. Tan, D. Wong, and P. Lee, “Iridescence of a shell of mollusk Haliotis Glabra,” Opt. Express 12(20), 4847–4854 (2004).
[Crossref]

2002 (1)

2000 (2)

R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61(7), 4549–4553 (2000).
[Crossref]

Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62(3), 1516–1519 (2000).
[Crossref]

1999 (2)

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60(3), 1555–1562 (1999).
[Crossref]

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Akkus, O.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

Allard, M.

M. Allard and E. H. Sargent, “Impact of polydispersity on light propagation in colloidal photonic crystals,” Appl. Phys. Lett. 85(24), 5887–5889 (2004).
[Crossref]

Biswas, R.

R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61(7), 4549–4553 (2000).
[Crossref]

Botha, A. J.

Brink, D. J.

D. J. Brink and N. G. van der Berg, “An investigation of green iridescence on the mollusc Patella granatina,” J. Phys. D: Appl. Phys. 38(2), 338–343 (2005).
[Crossref]

D. J. Brink, N. G. van der Berg, and A. J. Botha, “Iridescent colors on seashells: an optical and structural investigation of Helcion pruinosus,” Appl. Opt. 41(4), 717–722 (2002).
[Crossref]

Byun, K. M.

S. H. Choi, K. M. Byun, and Y. L. Kim, “Lasing Interactions Disclose Hidden Modes of Necklace States in the Anderson Localized Regime,” ACS Photonics 5(3), 881–889 (2018).
[Crossref]

S. H. Choi, K. M. Byun, and Y. L. Kim, “Excitation of multiple resonances in 1D Anderson localized systems for efficient light amplification,” Opt. Lett. 40(5), 847–850 (2015).
[Crossref]

Choi, K. H.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Choi, S. H.

S. H. Choi, K. M. Byun, and Y. L. Kim, “Lasing Interactions Disclose Hidden Modes of Necklace States in the Anderson Localized Regime,” ACS Photonics 5(3), 881–889 (2018).
[Crossref]

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

S. H. Choi, K. M. Byun, and Y. L. Kim, “Excitation of multiple resonances in 1D Anderson localized systems for efficient light amplification,” Opt. Lett. 40(5), 847–850 (2015).
[Crossref]

S. H. Choi and Y. L. Kim, “Hybridized/coupled multiple resonances in nacre,” Phys. Rev. B 89(3), 035115 (2014).
[Crossref]

Choi, W.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Chua, S. L.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Colvin, V.

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E 71(1), 016615 (2005).
[Crossref]

Cunha, P.

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

Finnemore, A.

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

Genack, A.

J. Wang and A. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
[Crossref]

Ghosh, G.

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Goo, T. W.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Guldin, S.

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

Guo, L.

H. W. Zhao, Z. Yang, and L. Guo, “Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications,” NPG Asia Mater. 10(4), 1–22 (2018).
[Crossref]

Ho, K. M.

R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61(7), 4549–4553 (2000).
[Crossref]

Hong, D. H.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

Hsu, C. W.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Joannopoulos, J. D.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

J. D. Joannopoulos, Photonic Crystals : Molding the Flow of Light (Princeton University Press, 2008), pp. 1-305.

Johnson, S. G.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Jordan, T. M.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Disordered animal multilayer reflectors and the localization of light,” J. R. Soc., Interface 11(101), 20140948 (2014).
[Crossref]

Kaliteevski, M. A.

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60(3), 1555–1562 (1999).
[Crossref]

Kim, M. R.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

Kim, S. R.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Kim, S. W.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Kim, Y. L.

S. H. Choi, K. M. Byun, and Y. L. Kim, “Lasing Interactions Disclose Hidden Modes of Necklace States in the Anderson Localized Regime,” ACS Photonics 5(3), 881–889 (2018).
[Crossref]

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

S. H. Choi, K. M. Byun, and Y. L. Kim, “Excitation of multiple resonances in 1D Anderson localized systems for efficient light amplification,” Opt. Lett. 40(5), 847–850 (2015).
[Crossref]

S. H. Choi and Y. L. Kim, “Hybridized/coupled multiple resonances in nacre,” Phys. Rev. B 89(3), 035115 (2014).
[Crossref]

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

Kivshar, Y.

A. Poddubny, M. Rybin, M. Limonov, and Y. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

Ko, H.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Koenderink, A. F.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72(15), 153102 (2005).
[Crossref]

Ku, Z.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Lagendijk, A.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72(15), 153102 (2005).
[Crossref]

Lee, J.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Lee, P.

Li, Z. Y.

Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62(3), 1516–1519 (2000).
[Crossref]

Limonov, M.

A. Poddubny, M. Rybin, M. Limonov, and Y. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

Lin, A.

A. Lin and M. A. Meyers, “Growth and structure in abalone shell,” Mater. Sci. Eng., A 390(1-2), 27–41 (2005).
[Crossref]

Liu, J.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

Meyers, M. A.

A. Lin and M. A. Meyers, “Growth and structure in abalone shell,” Mater. Sci. Eng., A 390(1-2), 27–41 (2005).
[Crossref]

Mittleman, D.

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E 71(1), 016615 (2005).
[Crossref]

Mohammed, S. I.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

Muckley, M.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

Nguyen, V. Q.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

Nikolaev, V. V.

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60(3), 1555–1562 (1999).
[Crossref]

Oyen, M.

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

Partridge, J. C.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Disordered animal multilayer reflectors and the localization of light,” J. R. Soc., Interface 11(101), 20140948 (2014).
[Crossref]

Poddubny, A.

A. Poddubny, M. Rybin, M. Limonov, and Y. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

Rengarajan, R.

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E 71(1), 016615 (2005).
[Crossref]

Rich, C.

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E 71(1), 016615 (2005).
[Crossref]

Roberts, N. W.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Disordered animal multilayer reflectors and the localization of light,” J. R. Soc., Interface 11(101), 20140948 (2014).
[Crossref]

Rybin, M.

A. Poddubny, M. Rybin, M. Limonov, and Y. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

Sargent, E. H.

M. Allard and E. H. Sargent, “Impact of polydispersity on light propagation in colloidal photonic crystals,” Appl. Phys. Lett. 85(24), 5887–5889 (2004).
[Crossref]

Shean, T.

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

Sigalas, M. M.

R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61(7), 4549–4553 (2000).
[Crossref]

Soljacic, M.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

Song, Q.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

Soukoulis, C. M.

R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61(7), 4549–4553 (2000).
[Crossref]

Steiner, U.

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

Subramania, G.

R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61(7), 4549–4553 (2000).
[Crossref]

Sun, X.

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

Tan, T. L.

Urbas, A. M.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

van der Berg, N. G.

D. J. Brink and N. G. van der Berg, “An investigation of green iridescence on the mollusc Patella granatina,” J. Phys. D: Appl. Phys. 38(2), 338–343 (2005).
[Crossref]

D. J. Brink, N. G. van der Berg, and A. J. Botha, “Iridescent colors on seashells: an optical and structural investigation of Helcion pruinosus,” Appl. Opt. 41(4), 717–722 (2002).
[Crossref]

Vignolini, S.

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

Visbal-Onufrak, M. A.

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Vlasov, Y. A.

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60(3), 1555–1562 (1999).
[Crossref]

Vos, W. L.

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72(15), 153102 (2005).
[Crossref]

Wang, J.

J. Wang and A. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
[Crossref]

Wiersma, D.

D. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

Wong, D.

Xu, Z.

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

Yang, Z.

H. W. Zhao, Z. Yang, and L. Guo, “Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications,” NPG Asia Mater. 10(4), 1–22 (2018).
[Crossref]

Zhang, Z. Q.

Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62(3), 1516–1519 (2000).
[Crossref]

Zhao, H. W.

H. W. Zhao, Z. Yang, and L. Guo, “Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications,” NPG Asia Mater. 10(4), 1–22 (2018).
[Crossref]

Zhen, B.

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

ACS Photonics (1)

S. H. Choi, K. M. Byun, and Y. L. Kim, “Lasing Interactions Disclose Hidden Modes of Necklace States in the Anderson Localized Regime,” ACS Photonics 5(3), 881–889 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Allard and E. H. Sargent, “Impact of polydispersity on light propagation in colloidal photonic crystals,” Appl. Phys. Lett. 85(24), 5887–5889 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Z. Xu, J. Liu, D. H. Hong, V. Q. Nguyen, M. R. Kim, S. I. Mohammed, and Y. L. Kim, “Back-directional gated spectroscopic imaging for diffuse light suppression in high anisotropic media and its preclinical applications for microvascular imaging,” IEEE J. Sel. Top. Quantum Electron. 16(4), 815–823 (2010).
[Crossref]

J. Biomed. Opt. (1)

Z. Xu, X. Sun, J. Liu, Q. Song, M. Muckley, O. Akkus, and Y. L. Kim, “Spectroscopic visualization of nanoscale deformation in bone: interaction of light with partially disordered nanostructure,” J. Biomed. Opt. 15(6), 060503 (2010).
[Crossref]

J. Phys. D: Appl. Phys. (1)

D. J. Brink and N. G. van der Berg, “An investigation of green iridescence on the mollusc Patella granatina,” J. Phys. D: Appl. Phys. 38(2), 338–343 (2005).
[Crossref]

J. R. Soc., Interface (1)

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Disordered animal multilayer reflectors and the localization of light,” J. R. Soc., Interface 11(101), 20140948 (2014).
[Crossref]

Mater. Sci. Eng., A (1)

A. Lin and M. A. Meyers, “Growth and structure in abalone shell,” Mater. Sci. Eng., A 390(1-2), 27–41 (2005).
[Crossref]

Nat. Commun. (3)

A. Finnemore, P. Cunha, T. Shean, S. Vignolini, S. Guldin, M. Oyen, and U. Steiner, “Biomimetic layer-by-layer assembly of artificial nacre,” Nat. Commun. 3(1), 966 (2012).
[Crossref]

A. Poddubny, M. Rybin, M. Limonov, and Y. Kivshar, “Fano interference governs wave transport in disordered systems,” Nat. Commun. 3(1), 914 (2012).
[Crossref]

S. H. Choi, S. W. Kim, Z. Ku, M. A. Visbal-Onufrak, S. R. Kim, K. H. Choi, H. Ko, W. Choi, A. M. Urbas, T. W. Goo, and Y. L. Kim, “Anderson light localization in biological nanostructures of native silk,” Nat. Commun. 9(1), 1–14 (2018).
[Crossref]

Nat. Photonics (1)

D. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013).
[Crossref]

Nature (2)

J. Wang and A. Genack, “Transport through modes in random media,” Nature 471(7338), 345–348 (2011).
[Crossref]

C. W. Hsu, B. Zhen, J. Lee, S. L. Chua, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, “Observation of trapped light within the radiation continuum,” Nature 499(7457), 188–191 (2013).
[Crossref]

NPG Asia Mater. (1)

H. W. Zhao, Z. Yang, and L. Guo, “Nacre-inspired composites with different macroscopic dimensions: strategies for improved mechanical performance and applications,” NPG Asia Mater. 10(4), 1–22 (2018).
[Crossref]

Opt. Commun. (1)

G. Ghosh, “Dispersion-equation coefficients for the refractive index and birefringence of calcite and quartz crystals,” Opt. Commun. 163(1-3), 95–102 (1999).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (5)

S. H. Choi and Y. L. Kim, “Hybridized/coupled multiple resonances in nacre,” Phys. Rev. B 89(3), 035115 (2014).
[Crossref]

Y. A. Vlasov, M. A. Kaliteevski, and V. V. Nikolaev, “Different regimes of light localization in a disordered photonic crystal,” Phys. Rev. B 60(3), 1555–1562 (1999).
[Crossref]

R. Biswas, M. M. Sigalas, G. Subramania, C. M. Soukoulis, and K. M. Ho, “Photonic band gaps of porous solids,” Phys. Rev. B 61(7), 4549–4553 (2000).
[Crossref]

Z. Y. Li and Z. Q. Zhang, “Fragility of photonic band gaps in inverse-opal photonic crystals,” Phys. Rev. B 62(3), 1516–1519 (2000).
[Crossref]

A. F. Koenderink, A. Lagendijk, and W. L. Vos, “Optical extinction due to intrinsic structural variations of photonic crystals,” Phys. Rev. B 72(15), 153102 (2005).
[Crossref]

Phys. Rev. E (1)

R. Rengarajan, D. Mittleman, C. Rich, and V. Colvin, “Effect of disorder on the optical properties of colloidal crystals,” Phys. Rev. E 71(1), 016615 (2005).
[Crossref]

Other (1)

J. D. Joannopoulos, Photonic Crystals : Molding the Flow of Light (Princeton University Press, 2008), pp. 1-305.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Nanoscale structure and optical property of nacre. (a) Photographs of the Haliotis fulgens abalone shell and schematic of the nanoscale structure of the nacre layers. Inset: The refractive index of aragonite layer [19]. (b) A type of disorder in nacre. Spatial profiles of thickness of layers are shown for no δ-disorder and strong δ-disorder.
Fig. 2.
Fig. 2. Schematic of the protein pigments clearing procedure. Going from native abalone shell to the final deproteinized nacre takes 7 days. The aragonite platelets are strongly assembled in the x–y plane, while the aragonite layers can be disassembled in the z-direction as the biopolymer interlayers are removed (right).
Fig. 3.
Fig. 3. Hyperspectral imaging of nacre. (a) Schematic of the hyperspectral imaging system that enhances imaging depth by back-directional gating. (b) Typical reflectance spectra for the nacre layers close to the outer surface of abalone shell (left) and for the nacre layers close to the inner surface of abalone shell (right). When the nacre layers are close to the outer surface of abalone shell, the reflectance shows the second, third, and fourth order Bragg bands, h = 2,3,4.
Fig. 4.
Fig. 4. Optical characterization of ordered and disordered nacre structures in the Haliotis fulgens abalone shell. (a) Experimentally measured reflection in space and wavelength for visible light. The key feature of interest is the Bragg bands, which are emphasized by the vertical black lines. At the edge of sample y = 2.3 mm, the narrow Bragg bands degrade and this indicates that the sample contains more disordered layers. The sample is sliced to contain different ratio of ordered and disordered layers that leads to spatially changing degree of δ-disorder in the y-direction. A beam is normally incident on the sample. (b) The wavelengths of the h-order Bragg bands λh as a function of thickness of pair of layers δA + δB (Eq. (3)). (c) Experimentally measured reflection at five representative locations of the sample in (a). (d) Calculated ensemble-averaged reflection (black lines) and reflection for two realizations (red and blue lines). For TMM calculation, we use the refractive index described in Eq. (1) and the layer thicknesses described in Eq. (2).
Fig. 5.
Fig. 5. Quantification of disorder in nacre using the SEM images. (a) SEM showing the nacre layers close to the outer surface of abalone shell. (b) Histogram of thickness of the nacre layers in (a). (c) 2D Fast Fourier transform of (a). (d) SEM showing the nacre layers close to the inner surface of abalone shell. (e) Histogram of thickness of the nacre layers in (d). (f) 2D Fast Fourier transform of (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

nA21=0.733+0.964λ2λ21.943×102+1.828λ2λ2120
σ=sA2+sB2δA¯+δB¯
λh=2neff(δA+δB)h

Metrics