Abstract

We reported the fabrication of a high-precision, long-length (>10 cm), four-hole, and As-free Ge15Sb15Se70 chalcogenide (ChG) suspended-core fiber (SCF) preform based on the computerized numerical control (CNC) precision mechanical drilling method. Four holes of the preform were highly symmetrical and have a depth of 103 mm. A fiber with a core diameter of 7 µm, cladding diameter of 300 µm, and regular air hole structure was drawn by using inflating methods through accurately controlling the inflation pressure. Theoretical simulation of the zero-dispersion wavelength (ZDW) of this fiber was located at approximately 3.3 µm. Under pumping at 3.5 µm with an average power of 23 mW, the fiber with length of 14 cm generates a mid-infrared (MIR) supercontinuum (SC) that spans from 1.5–12 µm within a 30 dB dynamics range.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber

Bo Wu, Zheming Zhao, Xunsi Wang, Youmei Tian, Nan Mi, Peng Chen, Zugang Xue, Zijun Liu, Peiqing Zhang, Xiang Shen, Qiuhua Nie, Shixun Dai, and Rongping Wang
Opt. Mater. Express 8(5) 1341-1348 (2018)

Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber

D. Jayasuriya, C. R. Petersen, D. Furniss, C. Markos, Z. Tang, MD. S. Habib, O. Bang, T. M Benson, and A. B Seddon
Opt. Mater. Express 9(6) 2617-2629 (2019)

Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber

Uffe Møller, Yi Yu, Irnis Kubat, Christian R. Petersen, Xin Gai, Laurent Brilland, David Méchin, Celine Caillaud, Johann Troles, Barry Luther-Davies, and Ole Bang
Opt. Express 23(3) 3282-3291 (2015)

References

  • View by:
  • |
  • |
  • |

  1. M. Hirano, T. Nakanishi, T. Okuno, and M. J. I. J. o. S. T. i. Q. E. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
    [Crossref]
  2. M. Szpulak and S. Fevrier, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
    [Crossref]
  3. H. Sakamoto, Q. Nguyen-The, G. M. Sharif, and N. Kishi, “All-optical NRZ to RZ format conversion with pulse compression by using only one highly nonlinear fiber,” in Optoelectronics & Communication Conference & Australian Conference on Optical Fibre Technology774–775 (2014).
  4. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [Crossref]
  5. Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
    [Crossref]
  6. D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
    [Crossref]
  7. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18(25), 26647–26654 (2010).
    [Crossref]
  8. E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
    [Crossref]
  9. T. Peng, T. F. Xu, and X. S. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
    [Crossref]
  10. J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
    [Crossref]
  11. Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
    [Crossref]
  12. C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
    [Crossref]
  13. W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
    [Crossref]
  14. T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
    [Crossref]
  15. W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
    [Crossref]
  16. M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
    [Crossref]
  17. J. Cimek, N. Liaros, S. Couris, R. Stepien, M. Klimczak, and R. Buczynski, “Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers,” Opt. Mater. Express 7(10), 3471–3483 (2017).
    [Crossref]
  18. I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
    [Crossref]
  19. M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
    [Crossref]
  20. T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
    [Crossref]
  21. U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
    [Crossref]
  22. B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
    [Crossref]
  23. N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
    [Crossref]
  24. K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. J. E. L. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
    [Crossref]
  25. Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
    [Crossref]
  26. M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 µm,” Opt. Lett. 36(15), 2859–2861 (2011).
    [Crossref]
  27. S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
    [Crossref]
  28. K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
    [Crossref]
  29. Z. G. Xue, S. Liu, Z. M. Zhao, N. Mi, B. Wu, X. Li, P. Q. Zhang, and X. S. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
    [Crossref]
  30. Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
    [Crossref]
  31. O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
    [Crossref]
  32. X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
    [Crossref]
  33. C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. J. A. P. B. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B: Lasers Opt. 116(3), 653–658 (2014).
    [Crossref]
  34. B. Lutherdavies, R. Wang, S. Madden, T. Wang, W. Wei, X. Shen, X. Gai, and Z. Yang, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
    [Crossref]
  35. H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
    [Crossref]
  36. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  37. W. Wei, L. Fang, X. Shen, and R. P. Wang, “Crystallization kinetics and thermal stability in Ge–Sb–Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
    [Crossref]
  38. Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, and R. J. O. E. Wang, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
    [Crossref]
  39. C. F. Ou and S. J. Chium, “Preparation and Characterisation of Polyethersulfone Filled with Silica Nanoparticles,” Polym. Polym. Compos. 23(3), 167–174 (2015).
    [Crossref]
  40. H. Y. Bai, X. Yang, Y. Z. Wei, and S. M. Gao, “Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber,” Appl. Opt. 55(3), 515–521 (2016).
    [Crossref]
  41. F. Brechet, J. Marcou, D. Pagnoux, and P. J. O. F. T. Roy, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
    [Crossref]
  42. K. Saitoh and M. J. I. J. o. Q. E. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
    [Crossref]
  43. M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. J. A. O. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
    [Crossref]
  44. Z. Yang, T. Luo, S. Jiang, J. Geng, and P. J. O. L. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360 (2010).
    [Crossref]

2018 (4)

2017 (6)

M. Diouf, A. B. Salem, R. Cherif, H. Saghaei, and A. J. A. O. Wague, “Super-flat coherent supercontinuum source in As38.8Se61.2 chalcogenide photonic crystal fiber with all-normal dispersion engineering at a very low input energy,” Appl. Opt. 56(2), 163–169 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref]

J. Cimek, N. Liaros, S. Couris, R. Stepien, M. Klimczak, and R. Buczynski, “Experimental investigation of the nonlinear refractive index of various soft glasses dedicated for development of nonlinear photonic crystal fibers,” Opt. Mater. Express 7(10), 3471–3483 (2017).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

T. Peng, T. F. Xu, and X. S. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
[Crossref]

2016 (6)

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

H. Y. Bai, X. Yang, Y. Z. Wei, and S. M. Gao, “Broadband mid-infrared fiber optical parametric oscillator based on a three-hole suspended-core chalcogenide fiber,” Appl. Opt. 55(3), 515–521 (2016).
[Crossref]

H. Ou, S. Dai, P. Zhang, Z. Liu, X. Wang, F. Chen, H. Xu, B. Luo, Y. Huang, and R. Wang, “Ultrabroad supercontinuum generated from a highly nonlinear Ge-Sb-Se fiber,” Opt. Lett. 41(14), 3201–3204 (2016).
[Crossref]

2015 (5)

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

C. F. Ou and S. J. Chium, “Preparation and Characterisation of Polyethersulfone Filled with Silica Nanoparticles,” Polym. Polym. Compos. 23(3), 167–174 (2015).
[Crossref]

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, and R. J. O. E. Wang, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

2014 (4)

B. Lutherdavies, R. Wang, S. Madden, T. Wang, W. Wei, X. Shen, X. Gai, and Z. Yang, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
[Crossref]

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. J. A. P. B. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B: Lasers Opt. 116(3), 653–658 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (2)

2010 (6)

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref]

Z. Yang, T. Luo, S. Jiang, J. Geng, and P. J. O. L. Lucas, “Single-mode low-loss optical fibers for long-wave infrared transmission,” Opt. Lett. 35(20), 3360 (2010).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

2009 (2)

M. Hirano, T. Nakanishi, T. Okuno, and M. J. I. J. o. S. T. i. Q. E. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

M. Szpulak and S. Fevrier, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
[Crossref]

2006 (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

2002 (1)

K. Saitoh and M. J. I. J. o. Q. E. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

2000 (1)

F. Brechet, J. Marcou, D. Pagnoux, and P. J. O. F. T. Roy, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

1997 (1)

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. J. E. L. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Adam, J. L.

Amrani, F.

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Asano, K.

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

Bai, H. Y.

Bang, O.

Besnard, P.

Bony, P. Y.

Bourdon, P.

Bramerie, L.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

Brechet, F.

F. Brechet, J. Marcou, D. Pagnoux, and P. J. O. F. T. Roy, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Brilland, L.

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 µm,” Opt. Lett. 36(15), 2859–2861 (2011).
[Crossref]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

Buczynski, R.

Caillaud, C.

Calvez, L.

Canat, G.

Chartier, T.

Chen, F.

Chen, P.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Cheng, T.

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
[Crossref]

Cheng, T. L.

Cherif, R.

Chium, S. J.

C. F. Ou and S. J. Chium, “Preparation and Characterisation of Polyethersulfone Filled with Silica Nanoparticles,” Polym. Polym. Compos. 23(3), 167–174 (2015).
[Crossref]

Cimek, J.

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Coscelli, E.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Coulombier, Q.

Couris, S.

Cucinotta, A.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Dai, S.

Dai, S. X.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Deng, D.

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
[Crossref]

Deng, D. H.

Desevedavy, F.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

Désévédavy, F.

Diouf, M.

Duan, Z.

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

Duan, Z. C.

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Duhant, M.

El Amraoui, M.

El-Amraoui, M.

Fang, L.

W. Wei, L. Fang, X. Shen, and R. P. Wang, “Crystallization kinetics and thermal stability in Ge–Sb–Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

Fatome, J.

Fevrier, S.

M. Szpulak and S. Fevrier, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
[Crossref]

Fortier, C.

Gadret, G.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

Gai, X.

Gao, S. M.

Gao, W.

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

Gao, W. Q.

Gay, M.

Geng, J.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Giessen, H.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

Guo, F. X.

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Han, X.

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref]

Hirano, M.

M. Hirano, T. Nakanishi, T. Okuno, and M. J. I. J. o. S. T. i. Q. E. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Hoang Tuan, T.

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

Houizot, P.

Hu, M. L.

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

Huang, Y.

Huang, Y. L.

Jia, Z. X.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

Jiang, L.

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

Jiang, S.

Jules, J. C.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

Kanou, Y.

Kawanishi, S.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. J. E. L. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Kawashima, H.

Kedenburg, S.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

Kibler, B.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

Kishi, N.

H. Sakamoto, Q. Nguyen-The, G. M. Sharif, and N. Kishi, “All-optical NRZ to RZ format conversion with pulse compression by using only one highly nonlinear fiber,” in Optoelectronics & Communication Conference & Australian Conference on Optical Fibre Technology774–775 (2014).

Klimczak, M.

Kohoutek, T.

Koshiba, M. J. I. J. o. Q. E.

K. Saitoh and M. J. I. J. o. Q. E. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Kubat, I.

Le, S. D.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

Leguillon, Y.

Lengle, K.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

Li, G.

Li, J.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Li, Q.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

Li, X.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

Z. G. Xue, S. Liu, Z. M. Zhao, N. Mi, B. Wu, X. Li, P. Q. Zhang, and X. S. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

Liao, M. S.

Liaros, N.

Liu, L.

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

Liu, S.

Liu, Z.

Liu, Z. J.

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

Lucas, P. J. O. L.

Luo, B.

Luo, B. H.

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Luo, T.

Lutherdavies, B.

Luther-Davies, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

Madden, S.

Marcou, J.

F. Brechet, J. Marcou, D. Pagnoux, and P. J. O. F. T. Roy, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Matsumoto, M.

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
[Crossref]

Mechin, D.

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

Méchin, D.

Messaddeq, Y.

Mi, N.

Misumi, T.

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
[Crossref]

Molin, S.

Moller, U.

Monteville, A.

Mori, K.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. J. E. L. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Morioka, T. J. E. L.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. J. E. L. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Mouawad, O.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

N’Guyen, T. N.

Nagasaka, K.

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Nakanishi, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. J. I. J. o. S. T. i. Q. E. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Nguyen, D. M.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

Nguyen, T. N.

Nguyen-The, Q.

H. Sakamoto, Q. Nguyen-The, G. M. Sharif, and N. Kishi, “All-optical NRZ to RZ format conversion with pulse compression by using only one highly nonlinear fiber,” in Optoelectronics & Communication Conference & Australian Conference on Optical Fibre Technology774–775 (2014).

Nie, Q. H.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

Nie, Q. J. A. P. B.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. J. A. P. B. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B: Lasers Opt. 116(3), 653–658 (2014).
[Crossref]

Ohishi, Y.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

Okuno, T.

M. Hirano, T. Nakanishi, T. Okuno, and M. J. I. J. o. S. T. i. Q. E. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Onishi, M. J. I. J. o. S. T. i. Q. E.

M. Hirano, T. Nakanishi, T. Okuno, and M. J. I. J. o. S. T. i. Q. E. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

Orain, H.

Ou, C. F.

C. F. Ou and S. J. Chium, “Preparation and Characterisation of Polyethersulfone Filled with Silica Nanoparticles,” Polym. Polym. Compos. 23(3), 167–174 (2015).
[Crossref]

Ou, H.

Pagnoux, D.

F. Brechet, J. Marcou, D. Pagnoux, and P. J. O. F. T. Roy, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Pain, T.

Pan, Z. H.

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

Peng, T.

T. Peng, T. F. Xu, and X. S. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
[Crossref]

Petersen, C. R.

Picot-Clemente, J.

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Polacchini, C. F.

Poli, F.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Qi, S.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Qin, G. S.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

Qin, W. P.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

Renard, W.

Renversez, G.

Roy, P. J. O. F. T.

F. Brechet, J. Marcou, D. Pagnoux, and P. J. O. F. T. Roy, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

Saghaei, H.

Saitoh, K.

K. Saitoh and M. J. I. J. o. Q. E. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

Sakamoto, H.

H. Sakamoto, Q. Nguyen-The, G. M. Sharif, and N. Kishi, “All-optical NRZ to RZ format conversion with pulse compression by using only one highly nonlinear fiber,” in Optoelectronics & Communication Conference & Australian Conference on Optical Fibre Technology774–775 (2014).

Salem, A. B.

Sangleboeuf, J.-C.

Saruwatari, M.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. J. E. L. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Savelii, I.

Selleri, S.

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

Sharif, G. M.

H. Sakamoto, Q. Nguyen-The, G. M. Sharif, and N. Kishi, “All-optical NRZ to RZ format conversion with pulse compression by using only one highly nonlinear fiber,” in Optoelectronics & Communication Conference & Australian Conference on Optical Fibre Technology774–775 (2014).

Shen, X.

Silva, M. C. E.

Skripatchev, I.

Smektala, F.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 µm,” Opt. Lett. 36(15), 2859–2861 (2011).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref]

Steinle, T.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

Steinmann, A.

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

Stepien, R.

Strutynski, C.

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Sun, L. H.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

Sun, Y.

Suzuki, T.

Szpulak, M.

Takara, H.

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. J. E. L. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

Tezuka, H.

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

Thual, M.

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

Tian, Y. M.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Toupin, P.

Tow, K. H.

Tregoat, D.

Troles, J.

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

K. H. Tow, Y. Leguillon, P. Besnard, L. Brilland, J. Troles, P. Toupin, D. Mechin, D. Tregoat, and S. Molin, “Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber,” Opt. Lett. 37(7), 1157–1159 (2012).
[Crossref]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

M. Duhant, W. Renard, G. Canat, T. N. Nguyen, F. Smektala, J. Troles, Q. Coulombier, P. Toupin, L. Brilland, P. Bourdon, and G. Renversez, “Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 µm,” Opt. Lett. 36(15), 2859–2861 (2011).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

Trolès, J.

Wague, A. J. A. O.

Wang, R.

Wang, R. J. O. E.

Wang, R. P.

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

W. Wei, L. Fang, X. Shen, and R. P. Wang, “Crystallization kinetics and thermal stability in Ge–Sb–Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

Wang, T.

Wang, X.

Wang, X. S.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Z. G. Xue, S. Liu, Z. M. Zhao, N. Mi, B. Wu, X. Li, P. Q. Zhang, and X. S. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

T. Peng, T. F. Xu, and X. S. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
[Crossref]

Wang, Y.

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Wang, Y. Y.

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Wei, W.

B. Lutherdavies, R. Wang, S. Madden, T. Wang, W. Wei, X. Shen, X. Gai, and Z. Yang, “Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses,” Opt. Mater. Express 4(5), 1011–1022 (2014).
[Crossref]

W. Wei, L. Fang, X. Shen, and R. P. Wang, “Crystallization kinetics and thermal stability in Ge–Sb–Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

Wei, Y. Z.

Wu, B.

Wu, Y.

Xu, D.

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2  µm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458 (2017).
[Crossref]

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Xu, H.

Xu, P.

Xu, P. P.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Xu, T.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. J. A. P. B. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B: Lasers Opt. 116(3), 653–658 (2014).
[Crossref]

Xu, T. F.

T. Peng, T. F. Xu, and X. S. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
[Crossref]

Xu, Y.

Xue, X.

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
[Crossref]

Xue, Z. G.

Yang, A.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Yang, X.

Yang, Z.

Yao, C. F.

Q. Li, Y. L. Huang, Z. X. Jia, C. F. Yao, G. S. Qin, Y. Ohishi, and W. P. Qin, “Design of Fluorotellurite Microstructured Fibers With Near-Zero-Flattened Dispersion Profiles for Optical-Frequency Comb Generation,” J. Lightwave Technol. 36(11), 2211–2215 (2018).
[Crossref]

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

Yi, C.

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. J. A. P. B. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B: Lasers Opt. 116(3), 653–658 (2014).
[Crossref]

You, C.

You, C. Y.

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Yu, Y.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

Zhai, C.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, B.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Zhang, P.

Zhang, P. Q.

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Z. G. Xue, S. Liu, Z. M. Zhao, N. Mi, B. Wu, X. Li, P. Q. Zhang, and X. S. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Zhang, Y.

Zhao, Z. M.

Z. G. Xue, S. Liu, Z. M. Zhao, N. Mi, B. Wu, X. Li, P. Q. Zhang, and X. S. Wang, “Infrared Suspended-Core Fiber Fabrication Based on Stacked Chalcogenide Glass Extrusion,” J. Lightwave Technol. 36(12), 2416–2421 (2018).
[Crossref]

B. Wu, Z. M. Zhao, X. S. Wang, Y. M. Tian, N. Mi, P. Chen, Z. G. Xue, Z. J. Liu, P. Q. Zhang, X. Shen, Q. H. Nie, S. X. Dai, and R. P. Wang, “Mid-infrared supercontinuum generation in a suspended-core tellurium-based chalcogenide fiber,” Opt. Mater. Express 8(5), 1341–1348 (2018).
[Crossref]

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

Zhao, Z. P.

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B: Lasers Opt. (3)

W. Gao, Z. Duan, K. Asano, T. Cheng, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a four-hole As2S5 chalcogenide microstructured optical fiber,” Appl. Phys. B: Lasers Opt. 116(4), 847–853 (2014).
[Crossref]

C. Yi, P. Zhang, F. Chen, S. Dai, X. Wang, T. Xu, and Q. J. A. P. B. Nie, “Fabrication and characterization of Ge20Sb15S65 chalcogenide glass for photonic crystal fibers,” Appl. Phys. B: Lasers Opt. 116(3), 653–658 (2014).
[Crossref]

O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, H. Giessen, and F. Smektala, “Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers,” Appl. Phys. B: Lasers Opt. 122(6), 177 (2016).
[Crossref]

Appl. Phys. Express (1)

T. Cheng, T. Hoang Tuan, L. Liu, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Fabrication of all-solid AsSe2–As2S5 microstructured optical fiber with two zero-dispersion wavelengths for generation of mid-infrared dispersive waves,” Appl. Phys. Express 9(2), 022502 (2016).
[Crossref]

Appl. Phys. Lett. (1)

C. F. Yao, Z. P. Zhao, Z. X. Jia, Q. Li, M. L. Hu, G. S. Qin, Y. Ohishi, and W. P. Qin, “Mid-infrared dispersive waves generation in a birefringent fluorotellurite microstructured fiber,” Appl. Phys. Lett. 109(10), 101102 (2016).
[Crossref]

Electron. Lett. (1)

K. Mori, H. Takara, S. Kawanishi, M. Saruwatari, and T. J. E. L. Morioka, “Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile,” Electron. Lett. 33(21), 1806–1808 (1997).
[Crossref]

IEEE Access (2)

Y. M. Tian, L. H. Sun, P. Chen, Z. G. Xue, X. S. Wang, S. X. Dai, Z. M. Zhao, Z. J. Liu, P. P. Xu, P. Q. Zhang, X. Li, Q. H. Nie, and R. P. Wang, “Fabrication and Characterization of Three-hole As2S3 Suspended-Core Fibers Based on Robust Extrusion,” IEEE Access 6, 41093–41098 (2018).
[Crossref]

T. Peng, T. F. Xu, and X. S. Wang, “Simulation Study on Dispersion Properties of As2S3 Three-Bridge Suspended-Core Fiber,” IEEE Access 5, 17240–17245 (2017).
[Crossref]

IEEE J. Quantum Electron. (1)

K. Saitoh and M. J. I. J. o. Q. E. Koshiba, “Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,” IEEE J. Quantum Electron. 38(7), 927–933 (2002).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Hirano, T. Nakanishi, T. Okuno, and M. J. I. J. o. S. T. i. Q. E. Onishi, “Silica-Based Highly Nonlinear Fibers and Their Application,” IEEE J. Sel. Top. Quantum Electron. 15(1), 103–113 (2009).
[Crossref]

IEEE Photonics J. (1)

E. Coscelli, F. Poli, J. Li, A. Cucinotta, and S. Selleri, “Dispersion Engineering of Highly Nonlinear Chalcogenide Suspended-Core Fibers,” IEEE Photonics J. 7(3), 1–8 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Szpulak and S. Fevrier, “Chalcogenide As2S3 Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing,” IEEE Photonics Technol. Lett. 21(13), 884–886 (2009).
[Crossref]

D. M. Nguyen, S. D. Le, K. Lengle, D. Mechin, M. Thual, T. Chartier, Q. Coulombier, J. Troles, L. Bramerie, and L. Brilland, “Demonstration of Nonlinear Effects in an Ultra-Highly Nonlinear AsSe Suspended-Core Chalcogenide Fiber,” IEEE Photonics Technol. Lett. 22(24), 1844–1846 (2010).
[Crossref]

J. Am. Ceram. Soc. (1)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High Brightness 2.2-12 µm m Mid-Infrared Supercontinuum Generation in a Nontoxic Chalcogenide Step-Index Fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

J. Lightwave Technol. (2)

J. Non-Cryst. Solids (1)

N. Mi, B. Wu, L. Jiang, L. H. Sun, Z. M. Zhao, X. S. Wang, P. Q. Zhang, Z. H. Pan, Z. J. Liu, S. X. Dai, and Q. H. Nie, “Structure design and numerical evaluation of highly nonlinear suspended-core chalcogenide fibers,” J. Non-Cryst. Solids 464, 44–50 (2017).
[Crossref]

Opt. Commun. (1)

J. Picot-Clemente, C. Strutynski, F. Amrani, F. Desevedavy, J. C. Jules, G. Gadret, D. Deng, T. Cheng, K. Nagasaka, Y. Ohishi, B. Kibler, and F. Smektala, “Enhanced supercontinuum generation in tapered tellurite suspended core fiber,” Opt. Commun. 354, 374–379 (2015).
[Crossref]

Opt. Express (10)

M. El-Amraoui, J. Fatome, J. C. Jules, B. Kibler, G. Gadret, C. Fortier, F. Smektala, I. Skripatchev, C. F. Polacchini, Y. Messaddeq, J. Troles, L. Brilland, M. Szpulak, and G. Renversez, “Strong infrared spectral broadening in low-loss As-S chalcogenide suspended core microstructured optical fibers,” Opt. Express 18(5), 4547–4556 (2010).
[Crossref]

Q. Coulombier, L. Brilland, P. Houizot, T. Chartier, T. N. N’Guyen, F. Smektala, G. Renversez, A. Monteville, D. Méchin, T. Pain, H. Orain, J.-C. Sangleboeuf, and J. Trolès, “Casting method for producing low-loss chalcogenide microstructured optical fibers,” Opt. Express 18(9), 9107–9112 (2010).
[Crossref]

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995nm,” Opt. Express 18(25), 26647–26654 (2010).
[Crossref]

M. El-Amraoui, G. Gadret, J. C. Jules, J. Fatome, C. Fortier, F. Désévédavy, I. Skripatchev, Y. Messaddeq, J. Troles, and L. Brilland, “Microstructured chalcogenide optical fibers from As(2)S(3) glass: towards new IR broadband sources,” Opt. Express 18(25), 26655–26665 (2010).
[Crossref]

S. D. Le, D. M. Nguyen, M. Thual, L. Bramerie, M. C. E. Silva, K. Lengle, M. Gay, T. Chartier, L. Brilland, D. Mechin, P. Toupin, and J. Troles, “Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber,” Opt. Express 19(26), B653–B660 (2011).
[Crossref]

I. Savelii, O. Mouawad, J. Fatome, B. Kibler, F. Desevedavy, G. Gadret, J. C. Jules, P. Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, and F. Smektala, “Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers,” Opt. Express 20(24), 27083–27093 (2012).
[Crossref]

W. Q. Gao, M. El Amraoui, M. S. Liao, H. Kawashima, Z. C. Duan, D. H. Deng, T. L. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013).
[Crossref]

T. Cheng, Y. Kanou, X. Xue, D. Deng, M. Matsumoto, T. Misumi, T. Suzuki, and Y. Ohishi, “Mid-infrared supercontinuum generation in a novel AsSe2-As2S5 hybrid microstructured optical fiber,” Opt. Express 22(19), 23019–23025 (2014).
[Crossref]

U. Moller, Y. Yu, I. Kubat, C. R. Petersen, X. Gai, L. Brilland, D. Mechin, C. Caillaud, J. Troles, B. Luther-Davies, and O. Bang, “Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber,” Opt. Express 23(3), 3282–3291 (2015).
[Crossref]

Y. Sun, S. Dai, P. Zhang, X. Wang, Y. Xu, Z. Liu, F. Chen, Y. Wu, Y. Zhang, and R. J. O. E. Wang, “Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures,” Opt. Express 23(18), 23472–23483 (2015).
[Crossref]

Opt. Fiber Technol. (2)

F. Brechet, J. Marcou, D. Pagnoux, and P. J. O. F. T. Roy, “Complete Analysis of the Characteristics of Propagation into Photonic Crystal Fibers, by the Finite Element Method,” Opt. Fiber Technol. 6(2), 181–191 (2000).
[Crossref]

X. Han, C. Y. You, S. X. Dai, P. Q. Zhang, Y. Y. Wang, F. X. Guo, D. Xu, B. H. Luo, P. P. Xu, and X. S. Wang, “Mid-infrared supercontinuum generation in a three-hole Ge20Sb15Se65 chalcogenide suspended-core fiber,” Opt. Fiber Technol. 34, 74–79 (2017).
[Crossref]

Opt. Lett. (5)

Opt. Mater. Express (3)

Phys. Status Solidi B (1)

W. Wei, L. Fang, X. Shen, and R. P. Wang, “Crystallization kinetics and thermal stability in Ge–Sb–Se glasses,” Phys. Status Solidi B 250(1), 59–64 (2013).
[Crossref]

Polym. Polym. Compos. (1)

C. F. Ou and S. J. Chium, “Preparation and Characterisation of Polyethersulfone Filled with Silica Nanoparticles,” Polym. Polym. Compos. 23(3), 167–174 (2015).
[Crossref]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[Crossref]

Other (1)

H. Sakamoto, Q. Nguyen-The, G. M. Sharif, and N. Kishi, “All-optical NRZ to RZ format conversion with pulse compression by using only one highly nonlinear fiber,” in Optoelectronics & Communication Conference & Australian Conference on Optical Fibre Technology774–775 (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic diagram of CNC precision drilling (b) Four-hole Ge15Sb15Se70 preform with a length of 103 mm (c) Cross-section of preform (the hole diameter is 2.1 mm; the average hole pitch is 3.52 mm).
Fig. 2.
Fig. 2. Experimental setup for SC generation and measurement.
Fig. 3.
Fig. 3. Cross-section of the fabricated Ge15Sb15Se70 SCFs and the corresponding simulated geometrical profiles under the different gas pressure.
Fig. 4.
Fig. 4. (a) Refractive index and material dispersion of Ge15Sb15Se70 glass and calculated fundamental mode dispersion of Fiber-1, Fiber-2, Fiber-3, and Fiber-4 (b) Calculated fundamental mode Aeff and γ of Fiber-4.
Fig. 5.
Fig. 5. Transmission loss of fabricated Ge15Sb15Se70 SCF.
Fig. 6.
Fig. 6. (a) Measured SC spectra generated from 14-cm-long Ge15Sb15Se70 SCF pumped at 3.5 µm with increasing pump power. Figure 6(b). Simulated MIR SC generation at 3.5 µm with 153 kW peak power.

Tables (1)

Tables Icon

Table 1. Loss of chalcogenide MOFs fabricated by different methods

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ=2πn2λAeff

Metrics