Abstract

The crystal structure, photoluminescence and some cathodoluminescent spectra of Sr0.99-xCaxEu0.01Al2O4 (Eu2+) are described. Five different phases have been found: three different monoclinic phases, one hexagonal and one cubic phase. Based on the cathodoluminescence of SrAl2O4:Eu2+ at low temperature and photoluminescence of Sr1-xCaxAl2O4:Eu2+ at 0 ≤ x ≤ 0.1, we consider an alternative explanation for the origin of the 440 nm peak in the low temperature spectrum of SrAl2O4:Eu2+, namely that it can be attributed to the emission from Eu2+ ions situated on the alkaline earth sites of the monoclinic P21/n structure that generate the 440 nm emission of CaAl2O4. However, this alternative hypothesis has been eliminated by XRD analyses of SrAl2O4 at low temperature.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Crystal structure, photoluminescence and cathodoluminescence of Ba1-xCaxAl2O4 doped with Eu2+

Max Volhard, Daniel den Engelsen, George R. Fern, Terry G. Ireland, and Jack Silver
Opt. Mater. Express 9(10) 3895-3910 (2019)

Valence states of europium in CaAl2O4:Eu phosphors

Nursen Avci, Katleen Korthout, Mark A. Newton, Philippe F. Smet, and Dirk Poelman
Opt. Mater. Express 2(3) 321-330 (2012)

Reducing particle size of persistent luminescent SrAl2O4:Eu2+,Dy3+via microwave-assisted, reverse micelle synthesis

Erin Finley, Andrew S. Paterson, Angelica Cobb, Richard C. Willson, and Jakoah Brgoch
Opt. Mater. Express 7(7) 2597-2616 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. M. Yen and M. J. Weber, Inorganic Phosphors (CRC Press, 2004).
  2. G. Blasse and A. Bril, “Fluorescence of Eu2+ -activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).
  3. G. Blasse, W. I. Wanmaker, and J. W. Ter Vrugt, “Some new classes of efficient Eu2+ -activated phosphors,” J. Electrochem. Soc. 115(6), 673 (1968).
    [Crossref]
  4. F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
    [Crossref]
  5. V. Abbruscato, “Optical and Electrical Properties of SrAl2O4:Eu2+,” J. Electrochem. Soc. 118(6), 930–933 (1971).
    [Crossref]
  6. S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
    [Crossref]
  7. B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca,Ba,Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
    [Crossref]
  8. T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAI2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
    [Crossref]
  9. K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+ -doped compounds: A Review,” Materials 3(4), 2536–2566 (2010).
    [Crossref]
  10. J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N.S. Suryanarayana, “Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
    [Crossref]
  11. Y. Lin, Z. Tang, Z. Zhang, and C. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc. 23(1), 175–178 (2003).
    [Crossref]
  12. D. S. Kshatri and A. Khare, “Characterization and optical properties of Dy3+ doped nanocrystallineSrAl2O4:Eu2+ phosphor,” J. Alloys Compd. 588, 488–495 (2014).
    [Crossref]
  13. P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application (InTech, 2014), Chap. 1.
  14. R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chap. 6.
  15. A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
    [Crossref]
  16. M. Avdeev, S. Yakovlev, A.A. Yaremchenko, and V.V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
    [Crossref]
  17. W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
    [Crossref]
  18. W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
    [Crossref]
  19. S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
    [Crossref]
  20. A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
    [Crossref]
  21. T. Aitasalo, J. Hölsa, H. Junger, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci. 20(1), 15–20 (2002).
  22. B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk, “2SrO. 3Al2O3:Eu2+ and 1.29(Ba,Ca)O, 6Al2O3:Eu2+ Two new blue-emitting phosphors,” J. Electrochem. Soc. 136(7), 2119–2123 (1989).
    [Crossref]
  23. D. Wang, M. Wang, and G. Lü, “Synthesis, crystal structure and X-ray powder diffraction data of the phosphor matrix 4SrO.7Al2O3,” J. Mater. Sci. 34(20), 4959–4964 (1999).
    [Crossref]
  24. D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
    [Crossref]
  25. F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
    [Crossref]
  26. J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
    [Crossref]
  27. G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994), p. 123.
  28. J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
    [Crossref]
  29. A. Shukla, “Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides,” Thesis, University of Montreal, (2012).
  30. V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
    [Crossref]
  31. E. Cordoncillo, B. Julian-Lopez, M. Martinez, M. L. Sanjuán, and P. Escribano, “New insights in the structure–luminescence relationship of Eu:SrAl2O4,” J. Alloys Compd. 484(1-2), 693–697 (2009).
    [Crossref]
  32. X. B. Yu, C. L. Zhou, X. H. He, X. F. Peng, and S. P. Yang, “The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method,” Mater. Lett. 58(6), 1087–1091 (2004).
    [Crossref]
  33. S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
    [Crossref]
  34. A. K. Prodjosantoso and B. J. Kennedy, “Synthesis and evolution of the crystalline phases in Ca1-XSrxAl2O4,” J. Solid State Chem. 168(1), 229–236 (2002).
    [Crossref]
  35. H. Pöllmann and R. Kaden, “X-ray investigations of solid solutions of monocalcium aluminate and monostrontium aluminate important phases in cement and phosphorescence materials,” Powder Diffr. 29(02), 141–146 (2014).
    [Crossref]
  36. Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
    [Crossref]
  37. D. W. Goodwin and A.J. Lindop, “The crystal structure of CaO.2AI2O3,” Acta Cryst. B 26(9), 1230–1235 (1970).
    [Crossref]
  38. M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general non-aqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
    [Crossref]
  39. A. J. Lindop and D. W. Goodwin, “The refined structure of SrO.2A1203,” Acta Cryst. B 28(8), 2625–2626 (1972).
    [Crossref]
  40. H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Cryst. B 63(5), 675–682 (2007).
    [Crossref]
  41. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A 32(5), 751–767 (1976).
    [Crossref]
  42. M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabauw, “Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter,” Phys. Chem. Chem. Phys. 17(26), 16959–16969 (2015).
    [Crossref]
  43. D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
    [Crossref]
  44. D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
    [Crossref]
  45. L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
    [Crossref]
  46. J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
    [Crossref]
  47. M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
    [Crossref]
  48. J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41(1), 84–89 (2015).
    [Crossref]
  49. J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, and H. Hagemann, “Thermal and concentration dependent energy transfer of Eu2+ in SrAl2O4,” Opt. Mater. Express 6(3), 793–803 (2016).
    [Crossref]
  50. V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
    [Crossref]
  51. D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
    [Crossref]
  52. D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
    [Crossref]
  53. M. Greger, M. Kollar, and D. Volhardt, “Isosbestic points: How a narrow crossing region of curves determines their leading parameter dependence,” Phys. Rev. B 87(19), 195140 (2013).
    [Crossref]
  54. Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
    [Crossref]
  55. K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
    [Crossref]

2019 (1)

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

2018 (2)

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

2017 (1)

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
[Crossref]

2016 (2)

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

J. Bierwagen, S. Yoon, N. Gartmann, B. Walfort, and H. Hagemann, “Thermal and concentration dependent energy transfer of Eu2+ in SrAl2O4,” Opt. Mater. Express 6(3), 793–803 (2016).
[Crossref]

2015 (7)

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41(1), 84–89 (2015).
[Crossref]

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabauw, “Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter,” Phys. Chem. Chem. Phys. 17(26), 16959–16969 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N.S. Suryanarayana, “Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

2014 (3)

D. S. Kshatri and A. Khare, “Characterization and optical properties of Dy3+ doped nanocrystallineSrAl2O4:Eu2+ phosphor,” J. Alloys Compd. 588, 488–495 (2014).
[Crossref]

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

H. Pöllmann and R. Kaden, “X-ray investigations of solid solutions of monocalcium aluminate and monostrontium aluminate important phases in cement and phosphorescence materials,” Powder Diffr. 29(02), 141–146 (2014).
[Crossref]

2013 (2)

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

M. Greger, M. Kollar, and D. Volhardt, “Isosbestic points: How a narrow crossing region of curves determines their leading parameter dependence,” Phys. Rev. B 87(19), 195140 (2013).
[Crossref]

2012 (1)

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

2010 (2)

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+ -doped compounds: A Review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

2009 (4)

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca,Ba,Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general non-aqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref]

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

E. Cordoncillo, B. Julian-Lopez, M. Martinez, M. L. Sanjuán, and P. Escribano, “New insights in the structure–luminescence relationship of Eu:SrAl2O4,” J. Alloys Compd. 484(1-2), 693–697 (2009).
[Crossref]

2008 (1)

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

2007 (2)

M. Avdeev, S. Yakovlev, A.A. Yaremchenko, and V.V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Cryst. B 63(5), 675–682 (2007).
[Crossref]

2005 (1)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

2004 (1)

X. B. Yu, C. L. Zhou, X. H. He, X. F. Peng, and S. P. Yang, “The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method,” Mater. Lett. 58(6), 1087–1091 (2004).
[Crossref]

2003 (1)

Y. Lin, Z. Tang, Z. Zhang, and C. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc. 23(1), 175–178 (2003).
[Crossref]

2002 (2)

T. Aitasalo, J. Hölsa, H. Junger, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci. 20(1), 15–20 (2002).

A. K. Prodjosantoso and B. J. Kennedy, “Synthesis and evolution of the crystalline phases in Ca1-XSrxAl2O4,” J. Solid State Chem. 168(1), 229–236 (2002).
[Crossref]

2000 (1)

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

1999 (2)

D. Wang, M. Wang, and G. Lü, “Synthesis, crystal structure and X-ray powder diffraction data of the phosphor matrix 4SrO.7Al2O3,” J. Mater. Sci. 34(20), 4959–4964 (1999).
[Crossref]

S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
[Crossref]

1996 (1)

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAI2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

1995 (1)

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

1994 (1)

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

1989 (1)

B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk, “2SrO. 3Al2O3:Eu2+ and 1.29(Ba,Ca)O, 6Al2O3:Eu2+ Two new blue-emitting phosphors,” J. Electrochem. Soc. 136(7), 2119–2123 (1989).
[Crossref]

1981 (1)

A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

1979 (1)

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

1976 (2)

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
[Crossref]

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A 32(5), 751–767 (1976).
[Crossref]

1972 (1)

A. J. Lindop and D. W. Goodwin, “The refined structure of SrO.2A1203,” Acta Cryst. B 28(8), 2625–2626 (1972).
[Crossref]

1971 (1)

V. Abbruscato, “Optical and Electrical Properties of SrAl2O4:Eu2+,” J. Electrochem. Soc. 118(6), 930–933 (1971).
[Crossref]

1970 (1)

D. W. Goodwin and A.J. Lindop, “The crystal structure of CaO.2AI2O3,” Acta Cryst. B 26(9), 1230–1235 (1970).
[Crossref]

1968 (3)

G. Blasse and A. Bril, “Fluorescence of Eu2+ -activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

G. Blasse, W. I. Wanmaker, and J. W. Ter Vrugt, “Some new classes of efficient Eu2+ -activated phosphors,” J. Electrochem. Soc. 115(6), 673 (1968).
[Crossref]

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Abakumov, A. M.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Abbruscato, V.

V. Abbruscato, “Optical and Electrical Properties of SrAl2O4:Eu2+,” J. Electrochem. Soc. 118(6), 930–933 (1971).
[Crossref]

Ahmad-Fauzi, M. N.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Aitasalo, T.

T. Aitasalo, J. Hölsa, H. Junger, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci. 20(1), 15–20 (2002).

Amelinkx, S.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Aoki, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAI2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Avdeev, M.

M. Avdeev, S. Yakovlev, A.A. Yaremchenko, and V.V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Aynayas, M.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Batentschuk, M.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Bierwagen, J.

Bite, I.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Blasse, G.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

G. Blasse and A. Bril, “Fluorescence of Eu2+ -activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

G. Blasse, W. I. Wanmaker, and J. W. Ter Vrugt, “Some new classes of efficient Eu2+ -activated phosphors,” J. Electrochem. Soc. 115(6), 673 (1968).
[Crossref]

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994), p. 123.

Blokpoel, W. P.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Botha, J. R.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca,Ba,Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Botterman, J.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Boysen, H.

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Cryst. B 63(5), 675–682 (2007).
[Crossref]

Brgoch, J.

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

Brik, M. G.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Bril, A.

G. Blasse and A. Bril, “Fluorescence of Eu2+ -activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Chen, Y.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
[Crossref]

Choi, J. C.

S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
[Crossref]

Clabau, F.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Cordoncillo, E.

E. Cordoncillo, B. Julian-Lopez, M. Martinez, M. L. Sanjuán, and P. Escribano, “New insights in the structure–luminescence relationship of Eu:SrAl2O4,” J. Alloys Compd. 484(1-2), 693–697 (2009).
[Crossref]

Couzi, M.

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

de Jong, M.

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabauw, “Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter,” Phys. Chem. Chem. Phys. 17(26), 16959–16969 (2015).
[Crossref]

den Engelsen, D.

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

Denault, K. A.

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

Deniard, P.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Dhillon, R.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Dubey, V.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N.S. Suryanarayana, “Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Dutczak, D.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

Escribano, P.

E. Cordoncillo, B. Julian-Lopez, M. Martinez, M. L. Sanjuán, and P. Escribano, “New insights in the structure–luminescence relationship of Eu:SrAl2O4,” J. Alloys Compd. 484(1-2), 693–697 (2009).
[Crossref]

Fern, G.

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

Fern, G. R.

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Friedrich, J.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Garcia, A.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Gartmann, N.

Gaultois, M. W.

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

Goodwin, D. W.

A. J. Lindop and D. W. Goodwin, “The refined structure of SrO.2A1203,” Acta Cryst. B 28(8), 2625–2626 (1972).
[Crossref]

D. W. Goodwin and A.J. Lindop, “The crystal structure of CaO.2AI2O3,” Acta Cryst. B 26(9), 1230–1235 (1970).
[Crossref]

Grabmaier, B. C.

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994), p. 123.

Greger, M.

M. Greger, M. Kollar, and D. Volhardt, “Isosbestic points: How a narrow crossing region of curves determines their leading parameter dependence,” Phys. Rev. B 87(19), 195140 (2013).
[Crossref]

Hagemann, H.

Harris, P. G.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

He, X.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
[Crossref]

He, X. H.

X. B. Yu, C. L. Zhou, X. H. He, X. F. Peng, and S. P. Yang, “The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method,” Mater. Lett. 58(6), 1087–1091 (2004).
[Crossref]

Herntrich, T.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general non-aqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref]

Hobson, P. R.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Hoeks, G.

B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk, “2SrO. 3Al2O3:Eu2+ and 1.29(Ba,Ca)O, 6Al2O3:Eu2+ Two new blue-emitting phosphors,” J. Electrochem. Soc. 136(7), 2119–2123 (1989).
[Crossref]

Hölsa, J.

T. Aitasalo, J. Hölsa, H. Junger, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci. 20(1), 15–20 (2002).

Hörkner, W.

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
[Crossref]

Huang, S. Y.

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Huang, X.

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

Huang, Y.

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

Hyun, S-H.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Ireland, T. G.

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

Jaykumar, B.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N.S. Suryanarayana, “Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Jobic, S.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Joos, J.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Ju, S. H.

S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
[Crossref]

Julian-Lopez, B.

E. Cordoncillo, B. Julian-Lopez, M. Martinez, M. L. Sanjuán, and P. Escribano, “New insights in the structure–luminescence relationship of Eu:SrAl2O4,” J. Alloys Compd. 484(1-2), 693–697 (2009).
[Crossref]

Junger, H.

T. Aitasalo, J. Hölsa, H. Junger, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci. 20(1), 15–20 (2002).

Jüstel, T.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

Kaden, R.

H. Pöllmann and R. Kaden, “X-ray investigations of solid solutions of monocalcium aluminate and monostrontium aluminate important phases in cement and phosphorescence materials,” Powder Diffr. 29(02), 141–146 (2014).
[Crossref]

Karmaoui, M.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general non-aqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref]

Katayama, Y.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Kaur, J.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N.S. Suryanarayana, “Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Kennedy, B. J.

A. K. Prodjosantoso and B. J. Kennedy, “Synthesis and evolution of the crystalline phases in Ca1-XSrxAl2O4,” J. Solid State Chem. 168(1), 229–236 (2002).
[Crossref]

Khare, A.

D. S. Kshatri and A. Khare, “Characterization and optical properties of Dy3+ doped nanocrystallineSrAl2O4:Eu2+ phosphor,” J. Alloys Compd. 588, 488–495 (2014).
[Crossref]

Kharton, V.V.

M. Avdeev, S. Yakovlev, A.A. Yaremchenko, and V.V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Kim, S.G.

S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
[Crossref]

Kim, T. W.

S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
[Crossref]

Kloß, S. D.

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

Kollar, M.

M. Greger, M. Kollar, and D. Volhardt, “Isosbestic points: How a narrow crossing region of curves determines their leading parameter dependence,” Phys. Rev. B 87(19), 195140 (2013).
[Crossref]

Kshatri, D. S.

D. S. Kshatri and A. Khare, “Characterization and optical properties of Dy3+ doped nanocrystallineSrAl2O4:Eu2+ phosphor,” J. Alloys Compd. 588, 488–495 (2014).
[Crossref]

Lastusaari, M.

T. Aitasalo, J. Hölsa, H. Junger, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci. 20(1), 15–20 (2002).

Le Mercier, T.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Lebedev, O. I.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Lerch, M.

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Cryst. B 63(5), 675–682 (2007).
[Crossref]

Levine, A. K.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Li, B.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
[Crossref]

Lin, Y.

Y. Lin, Z. Tang, Z. Zhang, and C. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc. 23(1), 175–178 (2003).
[Crossref]

Lindop, A. J.

A. J. Lindop and D. W. Goodwin, “The refined structure of SrO.2A1203,” Acta Cryst. B 28(8), 2625–2626 (1972).
[Crossref]

Lindop, A.J.

D. W. Goodwin and A.J. Lindop, “The crystal structure of CaO.2AI2O3,” Acta Cryst. B 26(9), 1230–1235 (1970).
[Crossref]

Lipman, A.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Lü, G.

D. Wang, M. Wang, and G. Lü, “Synthesis, crystal structure and X-ray powder diffraction data of the phosphor matrix 4SrO.7Al2O3,” J. Mater. Sci. 34(20), 4959–4964 (1999).
[Crossref]

Mafra, L.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general non-aqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref]

Mandowski, A.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Marsh, P. J.

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

Martinez, M.

E. Cordoncillo, B. Julian-Lopez, M. Martinez, M. L. Sanjuán, and P. Escribano, “New insights in the structure–luminescence relationship of Eu:SrAl2O4,” J. Alloys Compd. 484(1-2), 693–697 (2009).
[Crossref]

Matsuzawa, T.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAI2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Meijerink, A.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabauw, “Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter,” Phys. Chem. Chem. Phys. 17(26), 16959–16969 (2015).
[Crossref]

Mho, S.-I.

S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
[Crossref]

Millers, D.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Mohapatra, M.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Mothudi, B. M.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca,Ba,Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Müller-Buschbaum, H.

A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
[Crossref]

Murayama, Y.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAI2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Nakanishi, T.

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Nan, C.

Y. Lin, Z. Tang, Z. Zhang, and C. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc. 23(1), 175–178 (2003).
[Crossref]

Narayanan, R.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Natarajan, V.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Nazarov, M.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Ngaruiya, J. M.

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Nieuwoudt, S.

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Niittykoski, J.

T. Aitasalo, J. Hölsa, H. Junger, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci. 20(1), 15–20 (2002).

Ning, L.

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

Nistor, L.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Nor Nazida, A.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Ntwaeaborwa, O. M.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca,Ba,Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Page, K.

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

Palilla, F. C.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Park, H. L.

S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
[Crossref]

Peng, X. F.

X. B. Yu, C. L. Zhou, X. H. He, X. F. Peng, and S. P. Yang, “The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method,” Mater. Lett. 58(6), 1087–1091 (2004).
[Crossref]

Pinna, N.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general non-aqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref]

Poelman, D.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+ -doped compounds: A Review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Pöllmann, H.

H. Pöllmann and R. Kaden, “X-ray investigations of solid solutions of monocalcium aluminate and monostrontium aluminate important phases in cement and phosphorescence materials,” Powder Diffr. 29(02), 141–146 (2014).
[Crossref]

Poort, S. H. M.

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

Prodjosantoso, A. K.

A. K. Prodjosantoso and B. J. Kennedy, “Synthesis and evolution of the crystalline phases in Ca1-XSrxAl2O4,” J. Solid State Chem. 168(1), 229–236 (2002).
[Crossref]

Ptácek, P.

P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application (InTech, 2014), Chap. 1.

Rabauw, F. T.

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabauw, “Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter,” Phys. Chem. Chem. Phys. 17(26), 16959–16969 (2015).
[Crossref]

Ravez, J.

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Rocquefelte, X.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Ronda, C.

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

Ropp, R. C.

R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chap. 6.

Rutten, J.

B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk, “2SrO. 3Al2O3:Eu2+ and 1.29(Ba,Ca)O, 6Al2O3:Eu2+ Two new blue-emitting phosphors,” J. Electrochem. Soc. 136(7), 2119–2123 (1989).
[Crossref]

Sanjuán, M. L.

E. Cordoncillo, B. Julian-Lopez, M. Martinez, M. L. Sanjuán, and P. Escribano, “New insights in the structure–luminescence relationship of Eu:SrAl2O4,” J. Alloys Compd. 484(1-2), 693–697 (2009).
[Crossref]

Schulze, A.-R.

A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

Seijo, L.

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabauw, “Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter,” Phys. Chem. Chem. Phys. 17(26), 16959–16969 (2015).
[Crossref]

Senyshyn, A.

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Cryst. B 63(5), 675–682 (2007).
[Crossref]

Seshadri, R.

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

Shannon, R. D.

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A 32(5), 751–767 (1976).
[Crossref]

Shinoda, T.

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41(1), 84–89 (2015).
[Crossref]

Shrivastava, R.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N.S. Suryanarayana, “Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Shukla, A.

A. Shukla, “Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides,” Thesis, University of Montreal, (2012).

Siewenie, J.

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

Silver, J.

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

Singh, V.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Smet, P. F.

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+ -doped compounds: A Review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Smets, B.

B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk, “2SrO. 3Al2O3:Eu2+ and 1.29(Ba,Ca)O, 6Al2O3:Eu2+ Two new blue-emitting phosphors,” J. Electrochem. Soc. 136(7), 2119–2123 (1989).
[Crossref]

Smits, K.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Soni, M.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Spassky, D.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Stys, A.

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Cryst. B 63(5), 675–682 (2007).
[Crossref]

Suryanarayana, N.S.

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N.S. Suryanarayana, “Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

Swart, H. C.

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca,Ba,Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Takeuchi, N.

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAI2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

Tanabe, S.

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41(1), 84–89 (2015).
[Crossref]

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Tang, Z.

Y. Lin, Z. Tang, Z. Zhang, and C. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc. 23(1), 175–178 (2003).
[Crossref]

Tanner, P. A.

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

Ter Vrugt, J. W.

G. Blasse, W. I. Wanmaker, and J. W. Ter Vrugt, “Some new classes of efficient Eu2+ -activated phosphors,” J. Electrochem. Soc. 115(6), 673 (1968).
[Crossref]

Terblans, J. J.

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

Tiwari, M.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Tomkus, M. R.

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

Tsukerblat, B.

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

Ueda, J.

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41(1), 84–89 (2015).
[Crossref]

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Van den Eeckhout, K.

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+ -doped compounds: A Review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Van Tendeloo, G.

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Verlijsdonk, J.

B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk, “2SrO. 3Al2O3:Eu2+ and 1.29(Ba,Ca)O, 6Al2O3:Eu2+ Two new blue-emitting phosphors,” J. Electrochem. Soc. 136(7), 2119–2123 (1989).
[Crossref]

Vitola, V.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Volhardt, D.

M. Greger, M. Kollar, and D. Volhardt, “Isosbestic points: How a narrow crossing region of curves determines their leading parameter dependence,” Phys. Rev. B 87(19), 195140 (2013).
[Crossref]

Von Der Muehll, R.

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

Voznyak, T.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Walfort, B.

Wang, D.

D. Wang, M. Wang, and G. Lü, “Synthesis, crystal structure and X-ray powder diffraction data of the phosphor matrix 4SrO.7Al2O3,” J. Mater. Sci. 34(20), 4959–4964 (1999).
[Crossref]

Wang, M.

D. Wang, M. Wang, and G. Lü, “Synthesis, crystal structure and X-ray powder diffraction data of the phosphor matrix 4SrO.7Al2O3,” J. Mater. Sci. 34(20), 4959–4964 (1999).
[Crossref]

Wanmaker, W. I.

G. Blasse, W. I. Wanmaker, and J. W. Ter Vrugt, “Some new classes of efficient Eu2+ -activated phosphors,” J. Electrochem. Soc. 115(6), 673 (1968).
[Crossref]

Weber, M. J.

W. M. Yen and M. J. Weber, Inorganic Phosphors (CRC Press, 2004).

Whangbo, M.-H.

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

Willinger, M.-G.

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general non-aqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref]

Xia, Q.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Xie, Q.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
[Crossref]

Yakovlev, S.

M. Avdeev, S. Yakovlev, A.A. Yaremchenko, and V.V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Yang, S. P.

X. B. Yu, C. L. Zhou, X. H. He, X. F. Peng, and S. P. Yang, “The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method,” Mater. Lett. 58(6), 1087–1091 (2004).
[Crossref]

Yaremchenko, A.A.

M. Avdeev, S. Yakovlev, A.A. Yaremchenko, and V.V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Yen, W. M.

W. M. Yen and M. J. Weber, Inorganic Phosphors (CRC Press, 2004).

Yoon, S.

Yu, X. B.

X. B. Yu, C. L. Zhou, X. H. He, X. F. Peng, and S. P. Yang, “The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method,” Mater. Lett. 58(6), 1087–1091 (2004).
[Crossref]

Zeng, Q.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
[Crossref]

Zhang, M.

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
[Crossref]

Zhang, Z.

Y. Lin, Z. Tang, Z. Zhang, and C. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc. 23(1), 175–178 (2003).
[Crossref]

Zhou, C. L.

X. B. Yu, C. L. Zhou, X. H. He, X. F. Peng, and S. P. Yang, “The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method,” Mater. Lett. 58(6), 1087–1091 (2004).
[Crossref]

Zhu, J-J.

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

Zolotarjovs, A.

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Zorenko, T.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

Zorenko, Y.

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

ACS Appl. Mater. Interfaces (1)

K. A. Denault, J. Brgoch, S. D. Kloß, M. W. Gaultois, J. Siewenie, K. Page, and R. Seshadri, “Average and Local Structure, Debye Temperature, and Structural Rigidity in Some Oxide Compounds Related to Phosphor Hosts,” ACS Appl. Mater. Interfaces 7(13), 7264–7272 (2015).
[Crossref]

Acta Cryst. A (1)

R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Cryst. A 32(5), 751–767 (1976).
[Crossref]

Acta Cryst. B (3)

A. J. Lindop and D. W. Goodwin, “The refined structure of SrO.2A1203,” Acta Cryst. B 28(8), 2625–2626 (1972).
[Crossref]

H. Boysen, M. Lerch, A. Stys, and A. Senyshyn, “Structure and oxygen mobility in mayenite (Ca12Al14O33): a high-temperature neutron powder diffraction study,” Acta Cryst. B 63(5), 675–682 (2007).
[Crossref]

D. W. Goodwin and A.J. Lindop, “The crystal structure of CaO.2AI2O3,” Acta Cryst. B 26(9), 1230–1235 (1970).
[Crossref]

Chem. Mater. (2)

F. Clabau, X. Rocquefelte, S. Jobic, P. Deniard, M.-H. Whangbo, A. Garcia, and T. Le Mercier, “Mechanism of phosphorescence appropriate for the long-lasting phosphors Eu2+-doped SrAl2O4 with codopants Dy3+ and B3+,” Chem. Mater. 17(15), 3904–3912 (2005).
[Crossref]

S. H. M. Poort, W. P. Blokpoel, and G. Blasse, “Luminescence of Eu2+ in barium and strontium aluminate and gallate,” Chem. Mater. 7(8), 1547–1551 (1995).
[Crossref]

ECS J. Solid State Sci. Technol. (2)

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-related transitions in the photoluminescence and cathodoluminescence spectra of nanosized cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(12), R145–R152 (2015).
[Crossref]

D. den Engelsen, P. G. Harris, T. G. Ireland, G. Fern, and J. Silver, “Symmetry-Related Transitions in the Spectrum of Nanosized Cubic Y2O3:Tb3+,” ECS J. Solid State Sci. Technol. 4(7), R105–R113 (2015).
[Crossref]

Ferroelectrics (1)

S. Y. Huang, R. Von Der Muehll, J. Ravez, and M. Couzi, “Phase transition and symmetry in BaAl2O4,” Ferroelectrics 159(1), 127–132 (1994).
[Crossref]

IOP Conf. Ser.: Mater. Sci. Eng. (1)

Y. Zorenko, T. Zorenko, T. Voznyak, A. Mandowski, Q. Xia, M. Batentschuk, and J. Friedrich, “Luminescence of F+ and F centers in Al2O3-Y2O3 oxide compounds,” IOP Conf. Ser.: Mater. Sci. Eng. 15, 012060 (2010).
[Crossref]

J. Alloys Compd. (3)

M. Nazarov, M. G. Brik, D. Spassky, B. Tsukerblat, A. Nor Nazida, and M. N. Ahmad-Fauzi, “Structural and electronic properties of SrAl2O4:Eu2+ from density functional theory calculations,” J. Alloys Compd. 573(1), 6–10 (2013).
[Crossref]

D. S. Kshatri and A. Khare, “Characterization and optical properties of Dy3+ doped nanocrystallineSrAl2O4:Eu2+ phosphor,” J. Alloys Compd. 588, 488–495 (2014).
[Crossref]

E. Cordoncillo, B. Julian-Lopez, M. Martinez, M. L. Sanjuán, and P. Escribano, “New insights in the structure–luminescence relationship of Eu:SrAl2O4,” J. Alloys Compd. 484(1-2), 693–697 (2009).
[Crossref]

J. Electrochem. Soc. (5)

B. Smets, J. Rutten, G. Hoeks, and J. Verlijsdonk, “2SrO. 3Al2O3:Eu2+ and 1.29(Ba,Ca)O, 6Al2O3:Eu2+ Two new blue-emitting phosphors,” J. Electrochem. Soc. 136(7), 2119–2123 (1989).
[Crossref]

T. Matsuzawa, Y. Aoki, N. Takeuchi, and Y. Murayama, “A new long phosphorescent phosphor with high brightness, SrAI2O4:Eu2+,Dy3+,” J. Electrochem. Soc. 143(8), 2670–2673 (1996).
[Crossref]

G. Blasse, W. I. Wanmaker, and J. W. Ter Vrugt, “Some new classes of efficient Eu2+ -activated phosphors,” J. Electrochem. Soc. 115(6), 673 (1968).
[Crossref]

F. C. Palilla, A. K. Levine, and M. R. Tomkus, “Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium,” J. Electrochem. Soc. 115(6), 642–644 (1968).
[Crossref]

V. Abbruscato, “Optical and Electrical Properties of SrAl2O4:Eu2+,” J. Electrochem. Soc. 118(6), 930–933 (1971).
[Crossref]

J. Eur. Ceram. Soc. (1)

Y. Lin, Z. Tang, Z. Zhang, and C. Nan, “Influence of co-doping different rare earth ions on the luminescence of CaAl2O4-based phosphors,” J. Eur. Ceram. Soc. 23(1), 175–178 (2003).
[Crossref]

J. Inorg. Nucl. Chem. (1)

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of CaAl2O4,” J. Inorg. Nucl. Chem. 38(5), 983–984 (1976).
[Crossref]

J. Mater. Chem. C (2)

D. den Engelsen, G. R. Fern, T. G. Ireland, P. G. Harris, P. R. Hobson, A. Lipman, R. Dhillon, P. J. Marsh, and J. Silver, “Ultraviolet and blue cathodoluminescence from cubic Y2O3 and Y2O3:Eu3+ generated in a transmission electron microscope,” J. Mater. Chem. C 4(29), 7026–7034 (2016).
[Crossref]

L. Ning, X. Huang, Y. Huang, and P. A. Tanner, “Origin of Green Persistent Luminescence of Eu-Doped SrAl2O4 from Multiconfigurational Ab Initio Study of 4f7 → 4f65d1 Transitions,” J. Mater. Chem. C 6(25), 6637–6640 (2018).
[Crossref]

J. Mater. Sci. (1)

D. Wang, M. Wang, and G. Lü, “Synthesis, crystal structure and X-ray powder diffraction data of the phosphor matrix 4SrO.7Al2O3,” J. Mater. Sci. 34(20), 4959–4964 (1999).
[Crossref]

J. Non-Cryst. Solids (1)

V. Singh, J-J. Zhu, M. Tiwari, M. Soni, M. Aynayas, S-H. Hyun, R. Narayanan, M. Mohapatra, and V. Natarajan, “Characterization, luminescence and EPR investigations of Eu2+ activated strontium aluminate phosphor,” J. Non-Cryst. Solids 355(50-51), 2491–2495 (2009).
[Crossref]

J. Solid State Chem. (2)

A. K. Prodjosantoso and B. J. Kennedy, “Synthesis and evolution of the crystalline phases in Ca1-XSrxAl2O4,” J. Solid State Chem. 168(1), 229–236 (2002).
[Crossref]

M. Avdeev, S. Yakovlev, A.A. Yaremchenko, and V.V. Kharton, “Transitions between P21, P63($\sqrt 3 A$3A), and P632 modifications of SrAl2O4 by in situ high-temperature X-ray and neutron diffraction,” J. Solid State Chem. 180(12), 3535–3544 (2007).
[Crossref]

Mater. Lett. (2)

J. M. Ngaruiya, S. Nieuwoudt, O. M. Ntwaeaborwa, J. J. Terblans, and H. C. Swart, “Resolution of Eu2+ asymmetrical emission peak of SrAl2O4:Eu2+, Dy3+ phosphor by cathodoluminescence measurements,” Mater. Lett. 62(17-18), 3192–3194 (2008).
[Crossref]

X. B. Yu, C. L. Zhou, X. H. He, X. F. Peng, and S. P. Yang, “The influence of some processing conditions on luminescence of SrAl2O4:Eu2+ nanoparticles produced by combustion method,” Mater. Lett. 58(6), 1087–1091 (2004).
[Crossref]

Mater. Res. Bull. (1)

S. H. Ju, S.G. Kim, J. C. Choi, H. L. Park, S.-I. Mho, and T. W. Kim, “Synthesis and characterization of white light emitting CaxSr1-xAl2O4:Tb3+,Eu3+ phosphor for solid state lighting,” Mater. Res. Bull. 34(12-13), 1905–1909 (1999).
[Crossref]

Mater. Sci. (1)

T. Aitasalo, J. Hölsa, H. Junger, M. Lastusaari, and J. Niittykoski, “Comparison of sol-gel and solid-state prepared Eu2+ doped calcium aluminates,” Mater. Sci. 20(1), 15–20 (2002).

Materials (2)

Q. Xie, B. Li, X. He, M. Zhang, Y. Chen, and Q. Zeng, “Correlation of structure, tunable colors, and lifetimes of (Sr, Ca, Ba)Al2O4:Eu2+, Dy3+ phosphors,” Materials 10(10), 1198 (2017).
[Crossref]

K. Van den Eeckhout, P. F. Smet, and D. Poelman, “Persistent luminescence in Eu2+ -doped compounds: A Review,” Materials 3(4), 2536–2566 (2010).
[Crossref]

Nanoscale (1)

M. Karmaoui, M.-G. Willinger, L. Mafra, T. Herntrich, and N. Pinna, “A general non-aqueous route to crystalline alkaline earth aluminate nanostructures,” Nanoscale 1(3), 360–365 (2009).
[Crossref]

Opt. Mater. (2)

J. Ueda, T. Shinoda, and S. Tanabe, “Evidence of three different Eu2+ sites and their luminescence quenching processes in CaAl2O4:Eu2+,” Opt. Mater. 41(1), 84–89 (2015).
[Crossref]

V. Vitola, D. Millers, K. Smits, I. Bite, and A. Zolotarjovs, “The search for defects in undoped SrAl2O4 material,” Opt. Mater. 87, 48–52 (2019).
[Crossref]

Opt. Mater. Express (1)

Phase Transitions (1)

A. M. Abakumov, O. I. Lebedev, L. Nistor, G. Van Tendeloo, and S. Amelinkx, “The ferroelectric phase transition in tridymite type BaAL2O4 studied by electron microscopy,” Phase Transitions 71(2), 143–160 (2000).
[Crossref]

Philips Res. Rep. (1)

G. Blasse and A. Bril, “Fluorescence of Eu2+ -activated alkaline-earth aluminates,” Philips Res. Rep. 23, 201–206 (1968).

Phys. B (1)

B. M. Mothudi, O. M. Ntwaeaborwa, J. R. Botha, and H. C. Swart, “Photoluminescence and phosphorescence properties of MAl2O4:Eu2+, Dy3+ (M = Ca,Ba,Sr) phosphors prepared at an initiating combustion temperature of 500°C,” Phys. B 404(22), 4440–4444 (2009).
[Crossref]

Phys. Chem. Chem. Phys. (2)

D. Dutczak, T. Jüstel, C. Ronda, and A. Meijerink, “Eu2+ luminescence in strontium aluminates,” Phys. Chem. Chem. Phys. 17(23), 15236–15249 (2015).
[Crossref]

M. de Jong, L. Seijo, A. Meijerink, and F. T. Rabauw, “Resolving the ambiguity in the relation between Stokes shift and Huang–Rhys parameter,” Phys. Chem. Chem. Phys. 17(26), 16959–16969 (2015).
[Crossref]

Phys. Rev. B (1)

M. Greger, M. Kollar, and D. Volhardt, “Isosbestic points: How a narrow crossing region of curves determines their leading parameter dependence,” Phys. Rev. B 87(19), 195140 (2013).
[Crossref]

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

J. Botterman, J. Joos, and P. F. Smet, “Trapping and detrapping in SrAl2O4:Eu,Dy persistent phosphors: Influence of excitation wavelength and temperature,” Phys. Rev. B: Condens. Matter Mater. Phys. 90(8), 085147 (2014).
[Crossref]

Phys. Status Solidi C (1)

J. Ueda, T. Nakanishi, Y. Katayama, and S. Tanabe, “Optical and optoelectronic analysis of persistent luminescence in Eu2+-Dy3+ codoped SrAl2O4 ceramic phosphor,” Phys. Status Solidi C 9(12), 2322–2325 (2012).
[Crossref]

Powder Diffr. (1)

H. Pöllmann and R. Kaden, “X-ray investigations of solid solutions of monocalcium aluminate and monostrontium aluminate important phases in cement and phosphorescence materials,” Powder Diffr. 29(02), 141–146 (2014).
[Crossref]

Res. Chem. Intermed. (1)

J. Kaur, B. Jaykumar, V. Dubey, R. Shrivastava, and N.S. Suryanarayana, “Optical properties of rare earth-doped barium aluminate synthesized by different methods-A Review,” Res. Chem. Intermed. 41(4), 2317–2343 (2015).
[Crossref]

RSC Adv. (1)

D. den Engelsen, G. R. Fern, T. G. Ireland, and J. Silver, “Cathodoluminescence of Y2O3:Ln3+ (Ln = Tb, Er and Tm) and Y2O3:Bi3+ nanocrystalline particles at 200 keV,” RSC Adv. 8(1), 396–405 (2018).
[Crossref]

Z. Anorg. Allg. Chem. (2)

W. Hörkner and H. Müller-Buschbaum, “About the crystal structure of BaAl2O4,” Z. Anorg. Allg. Chem. 451(1), 40–44 (1979).
[Crossref]

A.-R. Schulze and H. Müller-Buschbaum, “Compound Formation MeO:M2O3. IV. Structure of Monoclinic SrAl2O4,” Z. Anorg. Allg. Chem. 475(4), 205–210 (1981).
[Crossref]

Other (5)

P. Ptáček, Strontium Aluminate - Cement Fundamentals, Manufacturing, Hydration, Setting Behaviour and Application (InTech, 2014), Chap. 1.

R. C. Ropp, Encyclopedia of the Alkaline Earth Compounds (Elsevier, 2013), Chap. 6.

W. M. Yen and M. J. Weber, Inorganic Phosphors (CRC Press, 2004).

G. Blasse and B. C. Grabmaier, Luminescent Materials (Springer-Verlag, 1994), p. 123.

A. Shukla, “Development of a critically evaluated thermodynamic database for the systems containing alkaline-earth oxides,” Thesis, University of Montreal, (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Composition diagram of CaO-SrO-Al2O3. The cement chemistry notation has been adopted to denote the compounds in this ternary system. The red line indicates the compositions that were studied.
Fig. 2.
Fig. 2. (a) TEM image at 200 keV of SrAl2O4:1%Eu2+ annealed at 1400°C. (b) TEM image at 200 keV of CaAl2O4:1%Eu2+. (c) STEM image (high-angle annular dark-field) of CaAl2O4:1%Eu2+, same particle as in (b), slightly rotated. (d) Panchromatic image of the same particle (STEM).
Fig. 3.
Fig. 3. Powder XRD-patterns of Sr0.99-xCaxEu0.01Al2O4 for 0 ≤ xCa ≤ 0.99. (a) 10° ≤ 2θ ≤ 80°. (b) Enlarged pattern for the range 28° ≤ 2θ ≤ 32°. The diagrams for 0.02 ≤ xCa<0.1 have not been indicated.
Fig. 4.
Fig. 4. Composition diagram of the phases in Sr0.99-xCaxEu0.01Al2O4 as determined from the XRD-measurements at room temperature. (a) This work. (b) Diagram based on the data published by Prodjosantoso and Kennedy [34].
Fig. 5.
Fig. 5. Photoluminescence spectra of Sr0.99-xCaxAl2O4:1%Eu2+ at various values of xCa. (a) Emission spectra. (b) Excitation spectra. For clarity reasons only a limited number of spectra are shown.
Fig. 6.
Fig. 6. Deconvolution of PL spectra of Sr0.99Eu0.01Al2O4 (a) and Sr0.89Ca0.1Eu0.01Al2O4 (b) with 2 or 3 Gaussian profiles respectively. The inserts show the wavenumber and wavelength at the maximum spectral radiance of the profiles.
Fig. 7.
Fig. 7. (a) Deconvolution of CL spectrum of Sr0.99Eu0.01Al2O4 recorded at 200 keV and -169.5°C. The labelling of the profiles is equal to that in Fig. 6. (b) Normalized radiance of p3 versus temperature.
Fig. 8.
Fig. 8. Percentage of MCCa and normalised radiance of p3 versus xCa. The straight line and the curves have been fitted to the data points to guide the eye.
Fig. 9.
Fig. 9. Deconvolutions of PL and CL spectra of CaAl2O4:Eu2+ and CSA with three (or two) Gaussian profiles. The inserts show the profiles q0 and q1 at an enlarged scale. (a) PL spectrum of Ca0.97Al2O4:Eu0.03, exc. 340 nm. (b) CL spectrum Ca0.97Al2O4:Eu0.03, recorded at -169°C and 200 keV. (c) PL spectrum of Sr0.49Ca0.5Al2O4:Eu0.01, exc. 365 nm. (d) PL spectrum of Sr0.19Ca0.8 Al2O4:Eu0.01, exc. 365 nm.
Fig. 10.
Fig. 10. Deconvolution of excitation spectra of Sr0.99-xCaxAl2O4:1%Eu2+ with three or four Gaussian profiles. (a) Sr0.99Eu0.01Al2O4. (b) Sr0.79Ca0.2Eu0.01Al2O4. (c) Sr0.59Ca0.4Eu0.01Al2O4. (d) Ca0.99Eu0.01Al2O4. Note the difference of the abscissae between (a) and (b) on the one hand, and (c) and (d) on the other hand.
Fig. 11.
Fig. 11. Topas V5 refinements for CaAl2O4:Eu 1%. The blue line is the experimental data, red is the calculated profile and the grey the difference profile.

Tables (5)

Tables Icon

Table 1. Observed phases in Sr0.99-xCaxEu0.01Al2O4 phosphor series

Tables Icon

Table 2. Monoclinic SA in Sr0.99-xCaxEu0.01Al2O4

Tables Icon

Table 3. Monoclinic CA in Sr0.99-xCaxEu0.01Al2O4

Tables Icon

Table 4. Monoclinic CA2 (Grossite) in Sr0.99-xCaxEu0.01Al2O4

Tables Icon

Table 5. Hexagonal (P63) CSA in Sr0.99-xCaxEu0.01Al2O4

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ρpi=RpiRp1+Rp2+Rp3

Metrics