Abstract

Passive calcium silicate and fluorosilicate glass optical fibers are fabricated using the molten core method, and their properties investigated. Reductions up to −11.5 dB in Brillouin gain coefficient, −2 dB in Raman gain coefficient, and −2.5 dB in thermo-optic coefficient, relative to silica, are measured. These results support the continued study of alkaline earth oxide silicates as host materials in high energy fiber-based applications since they offer less optical nonlinearity-limited properties for power-scaling than do current analogs. Other properties, such as refractive index and acoustic velocity, are also reported and discussed. Finally, modeling work is performed to study and identify the contributions of CaO and CaF2 glass materials on the fiber properties.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato
Opt. Mater. Express 8(4) 744-760 (2018)

Brillouin spectroscopy of a novel baria-doped silica glass optical fiber

P. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato
Opt. Express 21(9) 10924-10941 (2013)

Brillouin scattering properties of lanthano–aluminosilicate optical fiber

P. D. Dragic, C. Kucera, J. Ballato, D. Litzkendorf, J. Dellith, and K. Schuster
Appl. Opt. 53(25) 5660-5671 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
    [Crossref]
  2. A. V. Smith and J. J. Smith, “Mode instability in high power fiber amplifiers,” Opt. Express 19(11), 10180–10192 (2011).
    [Crossref]
  3. L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
    [Crossref]
  4. L. Dong and B. Samson, Fiber Lasers: Basics, Technology, and Applications (CRC Press, 2017).
  5. J. Ballato, M. Cavillon, and P. Dragic, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. I. Thermodynamics of Optical Scattering,” Int. J. Appl. Glass Sci. 9(2), 263–277 (2018).
    [Crossref]
  6. P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. A. Material Additivity Models and Basic Glass Properties,” Int. J. Appl. Glass Sci. 9(2), 278–287 (2018).
    [Crossref]
  7. P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. B. The Optical Fiber, Material Additivity and the Nonlinear Coefficients,” Int. J. Appl. Glass Sci. 9(3), 307–318 (2018).
    [Crossref]
  8. M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
    [Crossref]
  9. P. D. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
    [Crossref]
  10. M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
    [Crossref]
  11. A. Mangognia, C. Kucera, J. Guerrier, J. Furtick, T. Hawkins, P. D. Dragic, and J. Ballato, “Spinel-derived single mode optical fiber,” Opt. Mater. Express 3(4), 511–518 (2013).
    [Crossref]
  12. M. Cavillon, C. J. Kucera, T. W. Hawkins, A. F. J. Runge, A. C. Peacock, P. D. Dragic, and J. Ballato, “Oxyfluoride Core Silica-Based Optical Fiber with Intrinsically Low Nonlinearities for High Energy Laser Applications,” J. Lightwave Technol. 36(2), 284–291 (2018).
    [Crossref]
  13. M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8(4), 744–760 (2018).
    [Crossref]
  14. J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabrication—A route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
    [Crossref]
  15. M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
    [Crossref]
  16. A. D. Yablon, “Multi-wavelength optical fiber refractive index profiling by spatially resolved fourier transform spectroscopy,” J. Lightwave Technol. 28(4), 360–364 (2010).
    [Crossref]
  17. G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
    [Crossref]
  18. P. Dragic, M. Cavillon, and J. Ballato, “The linear and nonlinear refractive index of amorphous Al2O3 deduced from aluminosilicate optical fibers,” Int. J. Appl. Glass Sci. 9(3), 421–427 (2018).
    [Crossref]
  19. P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
    [Crossref]
  20. P. Law, Y. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1(4), 686–699 (2011).
    [Crossref]
  21. P. D. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
    [Crossref]
  22. P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
    [Crossref]
  23. J. E. Shelby, “Effect of morphology on the properties of alkaline earth silicate glasses,” J. Appl. Phys. 50(12), 8010–8015 (1979).
    [Crossref]
  24. A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).
    [Crossref]
  25. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).
  26. P. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber : the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2(4), 391–404 (2012).
    [Crossref]
  27. L. Hwa, K. Hsieh, and L. Liu, “Elastic moduli of low-silica calcium alumino-silicate glasses,” Mater. Chem. Phys. 78(1), 105–110 (2003).
    [Crossref]
  28. A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
    [Crossref]
  29. K. C. Crouch, R. B. Rayment, and G. W. Marks, “Elastic Properties of Fluorides of Groups IA and IIA,” Final Rep. ZR 011 01 01 (NELC Z1), Nav. Undersea Warf. Center, DTIC Doc. # 848978 (1968).
  30. P. D. Dragic, M. G. Pamato, V. Iordache, J. D. Bass, C. J. Kucera, M. Jones, T. W. Hawkins, and J. Ballato, “Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG,” New J. Phys. 18(1), 015004 (2016).
    [Crossref]
  31. P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26thInternational Conference on Optical Fiber Sensors, OSA Technical Digest, (2018), paper TuE81.
  32. P. F. McMillan, “Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy,” Am. Mineral. 69, 622–644 (1984).
  33. J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials 7(6), 4411–4430 (2014).
    [Crossref]
  34. S. Logunov and S. Kuchinsky, “Experimental and theoretical study of bulk light scattering in CaF2 monocrystals,” J. Appl. Phys. 98(5), 053501 (2005).
    [Crossref]
  35. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” in Proc. SPIE 7197, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VIII, P. E. Powers, ed. (2009), p. 719710.
  36. P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
    [Crossref]
  37. P. Dragic and J. Ballato, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. 30(2), 244–250 (2013).
    [Crossref]
  38. P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2(11), 1641–1654 (2012).
    [Crossref]
  39. H. E. Hite and R. J. Kearney, “Elastic constants of CaO in the temperature range 80°-270°K,” J. Appl. Phys. 38(13), 5424–5425 (1967).
    [Crossref]
  40. C. J. Liu and E. F. Sieckmann, “Refractive index of calcium oxide,” J. Appl. Phys. 37(6), 2450–2452 (1966).
    [Crossref]
  41. K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr. 17(6), 788–789 (1964).
    [Crossref]
  42. C.-S. Zha, H.-k. Mao, and R. J. Hemley, “Elasticity of MgO and a primary pressure scale to 55 GPa,” Proc. Natl. Acad. Sci. 97(25), 13494–13499 (2000).
    [Crossref]
  43. M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
    [Crossref]
  44. Corning Incorporated, “Corning® Calcium Fluoride (CaF2) - Code 9575,”.
  45. W. M. Haynes, D. R. Lide, and T. J. Bruno, eds., CRC Handbook of Chemistry and Physics, 97th ed. (CRC Press, Taylor and Francis Group).
  46. C. A. Hogarth and Y. G. Smirnov, “Velocity of Ultrasonic Waves in Single Crystals of Calcium Fluoride,” Nature 210(5035), 515 (1966).
    [Crossref]
  47. M. Cavillon, P. D. Dragic, and J. Ballato, “Additivity of the coefficient of thermal expansion in silicate optical fibers,” Opt. Lett. 42(18), 3650–3653 (2017).
    [Crossref]

2019 (1)

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

2018 (8)

J. Ballato, M. Cavillon, and P. Dragic, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. I. Thermodynamics of Optical Scattering,” Int. J. Appl. Glass Sci. 9(2), 263–277 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. A. Material Additivity Models and Basic Glass Properties,” Int. J. Appl. Glass Sci. 9(2), 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. B. The Optical Fiber, Material Additivity and the Nonlinear Coefficients,” Int. J. Appl. Glass Sci. 9(3), 307–318 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
[Crossref]

J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabrication—A route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

P. Dragic, M. Cavillon, and J. Ballato, “The linear and nonlinear refractive index of amorphous Al2O3 deduced from aluminosilicate optical fibers,” Int. J. Appl. Glass Sci. 9(3), 421–427 (2018).
[Crossref]

M. Cavillon, C. J. Kucera, T. W. Hawkins, A. F. J. Runge, A. C. Peacock, P. D. Dragic, and J. Ballato, “Oxyfluoride Core Silica-Based Optical Fiber with Intrinsically Low Nonlinearities for High Energy Laser Applications,” J. Lightwave Technol. 36(2), 284–291 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8(4), 744–760 (2018).
[Crossref]

2017 (2)

2016 (2)

P. D. Dragic, M. G. Pamato, V. Iordache, J. D. Bass, C. J. Kucera, M. Jones, T. W. Hawkins, and J. Ballato, “Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG,” New J. Phys. 18(1), 015004 (2016).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

2015 (2)

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref]

A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
[Crossref]

2014 (2)

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials 7(6), 4411–4430 (2014).
[Crossref]

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

2013 (4)

2012 (3)

2011 (2)

2010 (1)

2009 (1)

P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[Crossref]

2008 (1)

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

2006 (1)

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).
[Crossref]

2005 (1)

S. Logunov and S. Kuchinsky, “Experimental and theoretical study of bulk light scattering in CaF2 monocrystals,” J. Appl. Phys. 98(5), 053501 (2005).
[Crossref]

2003 (1)

L. Hwa, K. Hsieh, and L. Liu, “Elastic moduli of low-silica calcium alumino-silicate glasses,” Mater. Chem. Phys. 78(1), 105–110 (2003).
[Crossref]

2000 (1)

C.-S. Zha, H.-k. Mao, and R. J. Hemley, “Elasticity of MgO and a primary pressure scale to 55 GPa,” Proc. Natl. Acad. Sci. 97(25), 13494–13499 (2000).
[Crossref]

1994 (1)

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

1984 (1)

P. F. McMillan, “Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy,” Am. Mineral. 69, 622–644 (1984).

1979 (1)

J. E. Shelby, “Effect of morphology on the properties of alkaline earth silicate glasses,” J. Appl. Phys. 50(12), 8010–8015 (1979).
[Crossref]

1967 (1)

H. E. Hite and R. J. Kearney, “Elastic constants of CaO in the temperature range 80°-270°K,” J. Appl. Phys. 38(13), 5424–5425 (1967).
[Crossref]

1966 (2)

C. J. Liu and E. F. Sieckmann, “Refractive index of calcium oxide,” J. Appl. Phys. 37(6), 2450–2452 (1966).
[Crossref]

C. A. Hogarth and Y. G. Smirnov, “Velocity of Ultrasonic Waves in Single Crystals of Calcium Fluoride,” Nature 210(5035), 515 (1966).
[Crossref]

1964 (1)

K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr. 17(6), 788–789 (1964).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).

Ballato, A.

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. A. Material Additivity Models and Basic Glass Properties,” Int. J. Appl. Glass Sci. 9(2), 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. B. The Optical Fiber, Material Additivity and the Nonlinear Coefficients,” Int. J. Appl. Glass Sci. 9(3), 307–318 (2018).
[Crossref]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2(11), 1641–1654 (2012).
[Crossref]

Ballato, J.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. B. The Optical Fiber, Material Additivity and the Nonlinear Coefficients,” Int. J. Appl. Glass Sci. 9(3), 307–318 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. A. Material Additivity Models and Basic Glass Properties,” Int. J. Appl. Glass Sci. 9(2), 278–287 (2018).
[Crossref]

J. Ballato, M. Cavillon, and P. Dragic, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. I. Thermodynamics of Optical Scattering,” Int. J. Appl. Glass Sci. 9(2), 263–277 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
[Crossref]

P. Dragic, M. Cavillon, and J. Ballato, “The linear and nonlinear refractive index of amorphous Al2O3 deduced from aluminosilicate optical fibers,” Int. J. Appl. Glass Sci. 9(3), 421–427 (2018).
[Crossref]

J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabrication—A route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

M. Cavillon, C. J. Kucera, T. W. Hawkins, A. F. J. Runge, A. C. Peacock, P. D. Dragic, and J. Ballato, “Oxyfluoride Core Silica-Based Optical Fiber with Intrinsically Low Nonlinearities for High Energy Laser Applications,” J. Lightwave Technol. 36(2), 284–291 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8(4), 744–760 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
[Crossref]

M. Cavillon, P. D. Dragic, and J. Ballato, “Additivity of the coefficient of thermal expansion in silicate optical fibers,” Opt. Lett. 42(18), 3650–3653 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

P. D. Dragic, M. G. Pamato, V. Iordache, J. D. Bass, C. J. Kucera, M. Jones, T. W. Hawkins, and J. Ballato, “Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG,” New J. Phys. 18(1), 015004 (2016).
[Crossref]

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref]

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials 7(6), 4411–4430 (2014).
[Crossref]

P. Dragic and J. Ballato, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. 30(2), 244–250 (2013).
[Crossref]

A. Mangognia, C. Kucera, J. Guerrier, J. Furtick, T. Hawkins, P. D. Dragic, and J. Ballato, “Spinel-derived single mode optical fiber,” Opt. Mater. Express 3(4), 511–518 (2013).
[Crossref]

P. D. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2(11), 1641–1654 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26thInternational Conference on Optical Fiber Sensors, OSA Technical Digest, (2018), paper TuE81.

Bass, J. D.

P. D. Dragic, M. G. Pamato, V. Iordache, J. D. Bass, C. J. Kucera, M. Jones, T. W. Hawkins, and J. Ballato, “Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG,” New J. Phys. 18(1), 015004 (2016).
[Crossref]

Cardinal, T.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Cavillon, M.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

P. Dragic, M. Cavillon, and J. Ballato, “The linear and nonlinear refractive index of amorphous Al2O3 deduced from aluminosilicate optical fibers,” Int. J. Appl. Glass Sci. 9(3), 421–427 (2018).
[Crossref]

J. Ballato, M. Cavillon, and P. Dragic, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. I. Thermodynamics of Optical Scattering,” Int. J. Appl. Glass Sci. 9(2), 263–277 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. A. Material Additivity Models and Basic Glass Properties,” Int. J. Appl. Glass Sci. 9(2), 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. B. The Optical Fiber, Material Additivity and the Nonlinear Coefficients,” Int. J. Appl. Glass Sci. 9(3), 307–318 (2018).
[Crossref]

M. Cavillon, C. J. Kucera, T. W. Hawkins, A. F. J. Runge, A. C. Peacock, P. D. Dragic, and J. Ballato, “Oxyfluoride Core Silica-Based Optical Fiber with Intrinsically Low Nonlinearities for High Energy Laser Applications,” J. Lightwave Technol. 36(2), 284–291 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8(4), 744–760 (2018).
[Crossref]

M. Cavillon, P. D. Dragic, and J. Ballato, “Additivity of the coefficient of thermal expansion in silicate optical fibers,” Opt. Lett. 42(18), 3650–3653 (2017).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref]

P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26thInternational Conference on Optical Fiber Sensors, OSA Technical Digest, (2018), paper TuE81.

Codemard, C. A.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Couzi, M.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Croteau, A.

Crouch, K. C.

K. C. Crouch, R. B. Rayment, and G. W. Marks, “Elastic Properties of Fluorides of Groups IA and IIA,” Final Rep. ZR 011 01 01 (NELC Z1), Nav. Undersea Warf. Center, DTIC Doc. # 848978 (1968).

Dawson, J.

M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
[Crossref]

Dong, L.

L. Dong, “Stimulated thermal Rayleigh scattering in optical fibers,” Opt. Express 21(3), 2642–2656 (2013).
[Crossref]

L. Dong and B. Samson, Fiber Lasers: Basics, Technology, and Applications (CRC Press, 2017).

Dragic, P.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

J. Ballato, M. Cavillon, and P. Dragic, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. I. Thermodynamics of Optical Scattering,” Int. J. Appl. Glass Sci. 9(2), 263–277 (2018).
[Crossref]

P. Dragic, M. Cavillon, and J. Ballato, “The linear and nonlinear refractive index of amorphous Al2O3 deduced from aluminosilicate optical fibers,” Int. J. Appl. Glass Sci. 9(3), 421–427 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8(4), 744–760 (2018).
[Crossref]

M. Cavillon, J. Furtick, C. J. Kucera, C. Ryan, M. Tuggle, M. Jones, T. W. Hawkins, P. Dragic, and J. Ballato, “Brillouin Properties of a Novel Strontium Aluminosilicate Glass Optical Fiber,” J. Lightwave Technol. 34(6), 1435–1441 (2016).
[Crossref]

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials 7(6), 4411–4430 (2014).
[Crossref]

P. Dragic and J. Ballato, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. 30(2), 244–250 (2013).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2(11), 1641–1654 (2012).
[Crossref]

P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26thInternational Conference on Optical Fiber Sensors, OSA Technical Digest, (2018), paper TuE81.

Dragic, P. D.

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. A. Material Additivity Models and Basic Glass Properties,” Int. J. Appl. Glass Sci. 9(2), 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. B. The Optical Fiber, Material Additivity and the Nonlinear Coefficients,” Int. J. Appl. Glass Sci. 9(3), 307–318 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
[Crossref]

M. Cavillon, C. J. Kucera, T. W. Hawkins, A. F. J. Runge, A. C. Peacock, P. D. Dragic, and J. Ballato, “Oxyfluoride Core Silica-Based Optical Fiber with Intrinsically Low Nonlinearities for High Energy Laser Applications,” J. Lightwave Technol. 36(2), 284–291 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, and J. Ballato, “On the thermo-optic coefficient of P2O5 in SiO2,” Opt. Mater. Express 7(10), 3654–3661 (2017).
[Crossref]

M. Cavillon, P. D. Dragic, and J. Ballato, “Additivity of the coefficient of thermal expansion in silicate optical fibers,” Opt. Lett. 42(18), 3650–3653 (2017).
[Crossref]

P. D. Dragic, M. G. Pamato, V. Iordache, J. D. Bass, C. J. Kucera, M. Jones, T. W. Hawkins, and J. Ballato, “Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG,” New J. Phys. 18(1), 015004 (2016).
[Crossref]

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref]

A. Mangognia, C. Kucera, J. Guerrier, J. Furtick, T. Hawkins, P. D. Dragic, and J. Ballato, “Spinel-derived single mode optical fiber,” Opt. Mater. Express 3(4), 511–518 (2013).
[Crossref]

P. D. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref]

P. Law, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber : the strain-optic and strain-acoustic coefficients,” Opt. Mater. Express 2(4), 391–404 (2012).
[Crossref]

P. Law, Y. Liu, A. Croteau, and P. D. Dragic, “Acoustic coefficients of P2O5-doped silica fiber: acoustic velocity, acoustic attenuation, and thermo-acoustic coefficient,” Opt. Mater. Express 1(4), 686–699 (2011).
[Crossref]

P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[Crossref]

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” in Proc. SPIE 7197, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VIII, P. E. Powers, ed. (2009), p. 719710.

Du, J.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

Endo, M.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Faugas, B.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

Foy, P.

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

Furniss, D.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Furtick, J.

Ghosh, G.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Ghosh, S.

Guerrier, J.

Hawkins, T.

M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
[Crossref]

A. Mangognia, C. Kucera, J. Guerrier, J. Furtick, T. Hawkins, P. D. Dragic, and J. Ballato, “Spinel-derived single mode optical fiber,” Opt. Mater. Express 3(4), 511–518 (2013).
[Crossref]

P. D. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref]

P. Dragic, J. Ballato, A. Ballato, S. Morris, T. Hawkins, P.-C. Law, S. Ghosh, and M. C. Paul, “Mass density and the Brillouin spectroscopy of aluminosilicate optical fibers,” Opt. Mater. Express 2(11), 1641–1654 (2012).
[Crossref]

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26thInternational Conference on Optical Fiber Sensors, OSA Technical Digest, (2018), paper TuE81.

Hawkins, T. W.

Hemley, R. J.

C.-S. Zha, H.-k. Mao, and R. J. Hemley, “Elasticity of MgO and a primary pressure scale to 55 GPa,” Proc. Natl. Acad. Sci. 97(25), 13494–13499 (2000).
[Crossref]

Hirao, M.

A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
[Crossref]

Hite, H. E.

H. E. Hite and R. J. Kearney, “Elastic constants of CaO in the temperature range 80°-270°K,” J. Appl. Phys. 38(13), 5424–5425 (1967).
[Crossref]

Hogarth, C. A.

C. A. Hogarth and Y. G. Smirnov, “Velocity of Ultrasonic Waves in Single Crystals of Calcium Fluoride,” Nature 210(5035), 515 (1966).
[Crossref]

Hsieh, K.

L. Hwa, K. Hsieh, and L. Liu, “Elastic moduli of low-silica calcium alumino-silicate glasses,” Mater. Chem. Phys. 78(1), 105–110 (2003).
[Crossref]

Hwa, L.

L. Hwa, K. Hsieh, and L. Liu, “Elastic moduli of low-silica calcium alumino-silicate glasses,” Mater. Chem. Phys. 78(1), 105–110 (2003).
[Crossref]

Incorporated, Corning

Corning Incorporated, “Corning® Calcium Fluoride (CaF2) - Code 9575,”.

Iordache, V.

P. D. Dragic, M. G. Pamato, V. Iordache, J. D. Bass, C. J. Kucera, M. Jones, T. W. Hawkins, and J. Ballato, “Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG,” New J. Phys. 18(1), 015004 (2016).
[Crossref]

Ishida, H.

A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
[Crossref]

Iwasaki, T.

G. Ghosh, M. Endo, and T. Iwasaki, “Temperature-Dependent sellmeier Coefficients and Chromatic Dispersions for Some Optical fiber glasses,” J. Lightwave Technol. 12(8), 1338–1342 (1994).
[Crossref]

Jones, M.

Kearney, R. J.

H. E. Hite and R. J. Kearney, “Elastic constants of CaO in the temperature range 80°-270°K,” J. Appl. Phys. 38(13), 5424–5425 (1967).
[Crossref]

Koike, A.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).
[Crossref]

Kucera, C.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. W. Hawkins, N. Yu, P. Dragic, and J. Ballato, “Ytterbium-doped multicomponent fluorosilicate optical fibers with intrinsically low optical nonlinearities,” Opt. Mater. Express 8(4), 744–760 (2018).
[Crossref]

P. D. Dragic, C. Kucera, J. Furtick, J. Guerrier, T. Hawkins, and J. Ballato, “Brillouin spectroscopy of a novel baria-doped silica glass optical fiber,” Opt. Express 21(9), 10924–10941 (2013).
[Crossref]

A. Mangognia, C. Kucera, J. Guerrier, J. Furtick, T. Hawkins, P. D. Dragic, and J. Ballato, “Spinel-derived single mode optical fiber,” Opt. Mater. Express 3(4), 511–518 (2013).
[Crossref]

P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26thInternational Conference on Optical Fiber Sensors, OSA Technical Digest, (2018), paper TuE81.

Kucera, C. J.

Kuchinsky, S.

S. Logunov and S. Kuchinsky, “Experimental and theoretical study of bulk light scattering in CaF2 monocrystals,” J. Appl. Phys. 98(5), 053501 (2005).
[Crossref]

Kukuoz, B.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

Law, P.

Law, P.-C.

Liu, C. J.

C. J. Liu and E. F. Sieckmann, “Refractive index of calcium oxide,” J. Appl. Phys. 37(6), 2450–2452 (1966).
[Crossref]

Liu, L.

L. Hwa, K. Hsieh, and L. Liu, “Elastic moduli of low-silica calcium alumino-silicate glasses,” Mater. Chem. Phys. 78(1), 105–110 (2003).
[Crossref]

Liu, Y.

Logunov, S.

S. Logunov and S. Kuchinsky, “Experimental and theoretical study of bulk light scattering in CaF2 monocrystals,” J. Appl. Phys. 98(5), 053501 (2005).
[Crossref]

Mangognia, A.

Mao, H.-k.

C.-S. Zha, H.-k. Mao, and R. J. Hemley, “Elasticity of MgO and a primary pressure scale to 55 GPa,” Proc. Natl. Acad. Sci. 97(25), 13494–13499 (2000).
[Crossref]

Marks, G. W.

K. C. Crouch, R. B. Rayment, and G. W. Marks, “Elastic Properties of Fluorides of Groups IA and IIA,” Final Rep. ZR 011 01 01 (NELC Z1), Nav. Undersea Warf. Center, DTIC Doc. # 848978 (1968).

McMillan, P. F.

P. F. McMillan, “Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy,” Am. Mineral. 69, 622–644 (1984).

Morris, S.

Murty, V. G. K.

K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr. 17(6), 788–789 (1964).
[Crossref]

Nagakubo, A.

A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
[Crossref]

Nishihara, T.

A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
[Crossref]

O’Donnell, M. D.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Ogi, H.

A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
[Crossref]

Pamato, M. G.

P. D. Dragic, M. G. Pamato, V. Iordache, J. D. Bass, C. J. Kucera, M. Jones, T. W. Hawkins, and J. Ballato, “Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG,” New J. Phys. 18(1), 015004 (2016).
[Crossref]

Parsons, J.

P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26thInternational Conference on Optical Fiber Sensors, OSA Technical Digest, (2018), paper TuE81.

Paul, M. C.

Peacock, A. C.

Qiao, X.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

Rao, K. V. K.

K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr. 17(6), 788–789 (1964).
[Crossref]

Rayment, R. B.

K. C. Crouch, R. B. Rayment, and G. W. Marks, “Elastic Properties of Fluorides of Groups IA and IIA,” Final Rep. ZR 011 01 01 (NELC Z1), Nav. Undersea Warf. Center, DTIC Doc. # 848978 (1968).

Richardson, K.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Rivero, C.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Runge, A. F. J.

Ryan, C.

Samson, B.

L. Dong and B. Samson, Fiber Lasers: Basics, Technology, and Applications (CRC Press, 2017).

Seddon, A. B.

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Shelby, J. E.

J. E. Shelby, “Effect of morphology on the properties of alkaline earth silicate glasses,” J. Appl. Phys. 50(12), 8010–8015 (1979).
[Crossref]

Sieckmann, E. F.

C. J. Liu and E. F. Sieckmann, “Refractive index of calcium oxide,” J. Appl. Phys. 37(6), 2450–2452 (1966).
[Crossref]

Smirnov, Y. G.

C. A. Hogarth and Y. G. Smirnov, “Velocity of Ultrasonic Waves in Single Crystals of Calcium Fluoride,” Nature 210(5035), 515 (1966).
[Crossref]

Smith, A. V.

Smith, J. J.

Stolen, R.

P. D. Dragic, C. Ryan, C. J. Kucera, M. Cavillon, M. Tuggle, M. Jones, T. W. Hawkins, A. D. Yablon, R. Stolen, and J. Ballato, “Single- and few-moded lithium aluminosilicate optical fiber for athermal Brillouin strain sensing,” Opt. Lett. 40(21), 5030–5033 (2015).
[Crossref]

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Sugimoto, N.

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).
[Crossref]

Tuggle, M.

Yablon, A. D.

Yokoyama, T.

A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
[Crossref]

Yu, N.

Zervas, M. N.

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Zha, C.-S.

C.-S. Zha, H.-k. Mao, and R. J. Hemley, “Elasticity of MgO and a primary pressure scale to 55 GPa,” Proc. Natl. Acad. Sci. 97(25), 13494–13499 (2000).
[Crossref]

Zhao, J.

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

Acta Crystallogr. (1)

K. V. K. Rao and V. G. K. Murty, “Photoelastic constants of magnesium oxide,” Acta Crystallogr. 17(6), 788–789 (1964).
[Crossref]

Am. Mineral. (1)

P. F. McMillan, “Structural Studies of Silicate Glasses and Melts-Applications and Limitations of Raman Spectroscopy,” Am. Mineral. 69, 622–644 (1984).

APL Photonics (1)

J. Ballato and A. C. Peacock, “Perspective: Molten core optical fiber fabrication—A route to new materials and applications,” APL Photonics 3(12), 120903 (2018).
[Crossref]

Electron. Lett. (1)

P. D. Dragic, “Simplified model for effect of Ge doping on silica fibre acoustic properties,” Electron. Lett. 45(5), 256–257 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. N. Zervas and C. A. Codemard, “High Power Fiber Lasers: A Review,” IEEE J. Sel. Top. Quantum Electron. 20(5), 219–241 (2014).
[Crossref]

Int. J. Appl. Glass Sci. (5)

J. Ballato, M. Cavillon, and P. Dragic, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. I. Thermodynamics of Optical Scattering,” Int. J. Appl. Glass Sci. 9(2), 263–277 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. A. Material Additivity Models and Basic Glass Properties,” Int. J. Appl. Glass Sci. 9(2), 278–287 (2018).
[Crossref]

P. D. Dragic, M. Cavillon, A. Ballato, and J. Ballato, “A Unified Materials Approach to Mitigating Optical Nonlinearities in Optical Fiber. II. B. The Optical Fiber, Material Additivity and the Nonlinear Coefficients,” Int. J. Appl. Glass Sci. 9(3), 307–318 (2018).
[Crossref]

M. Cavillon, C. Kucera, T. Hawkins, J. Dawson, P. D. Dragic, and J. Ballato, “A unified materials approach to mitigating optical nonlinearities in optical fiber. III. Canonical examples and materials road map,” Int. J. Appl. Glass Sci. 9(4), 447–470 (2018).
[Crossref]

P. Dragic, M. Cavillon, and J. Ballato, “The linear and nonlinear refractive index of amorphous Al2O3 deduced from aluminosilicate optical fibers,” Int. J. Appl. Glass Sci. 9(3), 421–427 (2018).
[Crossref]

J. Appl. Phys. (5)

J. E. Shelby, “Effect of morphology on the properties of alkaline earth silicate glasses,” J. Appl. Phys. 50(12), 8010–8015 (1979).
[Crossref]

A. Nagakubo, H. Ogi, H. Ishida, M. Hirao, T. Yokoyama, and T. Nishihara, “Temperature behavior of sound velocity of fluorine-doped vitreous silica thin films studied by picosecond ultrasonics,” J. Appl. Phys. 118(1), 014307 (2015).
[Crossref]

S. Logunov and S. Kuchinsky, “Experimental and theoretical study of bulk light scattering in CaF2 monocrystals,” J. Appl. Phys. 98(5), 053501 (2005).
[Crossref]

H. E. Hite and R. J. Kearney, “Elastic constants of CaO in the temperature range 80°-270°K,” J. Appl. Phys. 38(13), 5424–5425 (1967).
[Crossref]

C. J. Liu and E. F. Sieckmann, “Refractive index of calcium oxide,” J. Appl. Phys. 37(6), 2450–2452 (1966).
[Crossref]

J. Chem. Thermodyn. (1)

M. Cavillon, B. Faugas, J. Zhao, C. Kucera, B. Kukuoz, P. Dragic, X. Qiao, J. Du, and J. Ballato, “Investigation of the structural environment and chemical bonding of fluorine in Yb-doped fluorosilicate glass optical fibres,” J. Chem. Thermodyn. 128, 119–126 (2019).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. (1)

P. Dragic and J. Ballato, “Pockels’ coefficients of alumina in aluminosilicate optical fiber,” J. Opt. Soc. Am. 30(2), 244–250 (2013).
[Crossref]

Mater. Chem. Phys. (1)

L. Hwa, K. Hsieh, and L. Liu, “Elastic moduli of low-silica calcium alumino-silicate glasses,” Mater. Chem. Phys. 78(1), 105–110 (2003).
[Crossref]

Materials (1)

J. Ballato and P. Dragic, “Materials development for next generation optical fiber,” Materials 7(6), 4411–4430 (2014).
[Crossref]

Nat. Photonics (1)

P. Dragic, T. Hawkins, P. Foy, S. Morris, and J. Ballato, “Sapphire-derived all-glass optical fibres,” Nat. Photonics 6(9), 627–633 (2012).
[Crossref]

Nature (1)

C. A. Hogarth and Y. G. Smirnov, “Velocity of Ultrasonic Waves in Single Crystals of Calcium Fluoride,” Nature 210(5035), 515 (1966).
[Crossref]

New J. Phys. (1)

P. D. Dragic, M. G. Pamato, V. Iordache, J. D. Bass, C. J. Kucera, M. Jones, T. W. Hawkins, and J. Ballato, “Athermal distributed Brillouin sensors utilizing all-glass optical fibers fabricated from rare earth garnets: LuAG,” New J. Phys. 18(1), 015004 (2016).
[Crossref]

Opt. Express (3)

Opt. Lett. (2)

Opt. Mater. (1)

M. D. O’Donnell, K. Richardson, R. Stolen, C. Rivero, T. Cardinal, M. Couzi, D. Furniss, and A. B. Seddon, “Raman gain of selected tellurite glasses for IR fibre lasers calculated from spontaneous scattering spectra,” Opt. Mater. 30(6), 946–951 (2008).
[Crossref]

Opt. Mater. Express (6)

Proc. Natl. Acad. Sci. (1)

C.-S. Zha, H.-k. Mao, and R. J. Hemley, “Elasticity of MgO and a primary pressure scale to 55 GPa,” Proc. Natl. Acad. Sci. 97(25), 13494–13499 (2000).
[Crossref]

Proc. SPIE (1)

A. Koike and N. Sugimoto, “Temperature dependences of optical path length in fluorine-doped silica glass and bismuthate glass,” Proc. SPIE 6116, 61160Y (2006).
[Crossref]

Other (7)

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic Press, 1995).

K. C. Crouch, R. B. Rayment, and G. W. Marks, “Elastic Properties of Fluorides of Groups IA and IIA,” Final Rep. ZR 011 01 01 (NELC Z1), Nav. Undersea Warf. Center, DTIC Doc. # 848978 (1968).

L. Dong and B. Samson, Fiber Lasers: Basics, Technology, and Applications (CRC Press, 2017).

P. Dragic, M. Cavillon, C. Kucera, J. Parsons, T. Hawkins, and J. Ballato, “Tailoring the Thermo-Optic Coefficient in Silica Optical Fibers,” in 26thInternational Conference on Optical Fiber Sensors, OSA Technical Digest, (2018), paper TuE81.

P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” in Proc. SPIE 7197, Nonlinear Frequency Generation and Conversion: Materials, Devices, and Applications VIII, P. E. Powers, ed. (2009), p. 719710.

Corning Incorporated, “Corning® Calcium Fluoride (CaF2) - Code 9575,”.

W. M. Haynes, D. R. Lide, and T. J. Bruno, eds., CRC Handbook of Chemistry and Physics, 97th ed. (CRC Press, Taylor and Francis Group).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1.
Fig. 1. a) Refractive index profile (RIP) for CaAlSi, CaAlSiF-A and CaAlSiF-B fibers. The RIPs are relative to the silica cladding, for which Δn = 0. For completeness, the refractive index dip visible for each fiber at the core/cladding interface is an artifact of the apparatus measurement. b) Elemental concentration profile measured by WDX spectroscopy for one of the fibers investigated herein (CaAlSiF-A): not represented here for clarity is the At. % of oxygen [O], however [O] = 100 – ([Si] + [Al] + [Ca] + [F]). c) Core diameter (µm) as a function of Si content (At.%).
Fig. 2.
Fig. 2. a) Normalized and corrected Raman spectra of CaAlSi, CaAlSiF-A and CaAlSiF-B fiber segments, relative to fused SiO2 (taken in CaAlSi cladding) and b) Raman gain coefficient (RGC) as a function of Si concentration (At. %); the linear fit serves as a guide-to-the-eye.

Tables (6)

Tables Icon

Table 1. Fiber drawing parameters and conditions

Tables Icon

Table 2. Fiber compositions (At. % at the core center), as well as typical fiber properties

Tables Icon

Table 3. Acousto-optic properties of the fibers considered and fused SiO2 for comparison

Tables Icon

Table 4. Properties CaO glass constituent calculated from CaAlSi fiber. Values of SiO2 and Al2O3 glass constituents, needed to compute the effect of CaO, are also reported

Tables Icon

Table 5. Comparison between alkaline earth oxide properties

Tables Icon

Table 6. Properties of CaF2 glass compound calculated from both CaAlSi-A and CaAlSi-B fiber segments. Values of CaF2 crystal are reported and taken from Refs. [4446]

Metrics