Abstract

The development of higher-power InGaN-based diode lasers facilitates their application to optical pumping of Ti:sapphire lasers. Recent diode-pumping results highlight some unexpected behavior, specifically with 450-nm-wavelength devices. To better understand this we have measured and characterized, over a wide range of doping levels, the absorption properties of Ti:sapphire crystals. We find significant changes in the spectral shape of the pumping band in Ti:sapphire with increased doping, and explain the results in terms of absorption due to pairs of Ti3+ ions. Our subsequent discussion attempts to explain prior data, and also provides guidance on optimizing designs for InGaN-diode-pumped Ti:sapphire lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

18 April 2019: A typographical correction was made to Ref. 13.


OSA Recommended Articles
Characterization of absorption bands in Ti:sapphire crystals

Peter F. Moulton, Jeffrey G. Cederberg, Kevin T. Stevens, Greg Foundos, Michal Koselja, and Jana Preclikova
Opt. Mater. Express 9(5) 2216-2251 (2019)

Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system

Sterling Backus, Matt Kirchner, Randy Lemons, David Schmidt, Charles Durfee, Margaret Murnane, and Henry Kapteyn
Opt. Express 25(4) 3666-3674 (2017)

Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser

Ryota Sawada, Hiroki Tanaka, Naoto Sugiyama, and Fumihiko Kannari
Appl. Opt. 56(6) 1654-1661 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Solid State Research Report (Lincoln Laboratory, MIT, 1982:3), pp. 15–21.
  2. “Titanium-doped sapphire: A new tunable solid state laser,” in Physics News in 1982, P. F. Schewe, ed. (American Institute of Physics, 1982).
  3. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
    [Crossref]
  4. D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36(10), 2757–2779 (1962).
    [Crossref]
  5. B. F. Gachter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
    [Crossref]
  6. P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
    [Crossref]
  7. P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
    [Crossref]
  8. R. Sawada, H. Tanaka H, N. Sugiyama, and F. Kannari, “Wavelength-multiplexed pumping with 478- and 520-nm indium gallium nitride laser diodes for Ti:sapphire laser,” Appl. Opt. 56(6), 1654–1661 (2017).
    [Crossref]
  9. S. Backus, M. Kirchner, R. Lemons, D. Schmidt, C. G. Durfee, M. Murnane, and H. Kapteyn, “Direct diode pumped Ti:sapphire ultrafast regenerative amplifier system,” Opt. Express 25(4), 3666–3674 (2017).
    [Crossref]
  10. C. G. Durfee, T. Storz, J. Garlick, S. Hill, J. A. Squier, M. Kirchner, G. Taft, K. Shea, H. Kapteyn, M. Murnane, and S. Backus, “Direct diode-pumped Kerr-lens mode-locked Ti:sapphire laser,” Opt. Express 20(13), 13677–13683 (2012).
    [Crossref]
  11. A. Rohrbacher, O. E. Olarte, V. Villamaina, P. Loza-Alvarez, and B. Resan, “Multiphoton imaging with blue-diode-pumped SESAM-modelocked Ti:sapphire oscillator generating 5 nJ 82 fs pulses,” Opt. Express 25(9), 10677–10684 (2017).
    [Crossref]
  12. A. J. Maclean, P. W. Roth, D. Burns, A. J. Kemp, and P. F. Moulton, “Pump Induced Loss in Directly-Diode Laser Pumped Ti:Sapphire Lasers,” in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB16.
  13. P. F. Moulton, J.G. Cederburg, K.T. Stevens, G. Foundos, M. Koselja, and J. Preclikova, “Characterization of absorption bands in Ti:sapphire crystals,” Opt. Mater. Express 9(5), 2216–2251 (2019).
    [Crossref]
  14. R. E. Fahey, A. J. Strauss, A. Sanchez, and R. L. Aggarwal, “Growth of Ti:Al2O3 crystals by a gradient-freeze technique,” in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, and L. G. DeShazer, eds. (Springer, 1987), pp. 82–88.
  15. A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
    [Crossref]
  16. V. S. Konevskii, E. V. Kryvonosov, L. A. Lytvynov, and M. I. Shakhnovich, “Optical absorption of Ticor,” J. Appl. Spectrosc. 50(4), 427–430 (1989). We note the authors use of Ticor for Ti:sapphire could lead to the article not appearing in literature searches.
    [Crossref]
  17. E. V. Kryvonosov and L. A. Lytvynov, “Properties of Ti-sapphire as a laser material,” Crystallogr. Rep. 57(7), 967–973 (2012).
    [Crossref]
  18. S. V. Nizhankovskii, N. S. Sidel’nikova, and V. V. Baranov, “Optical absorption and color centers in large Ti: sapphire crystals grown by horizontally directed crystallization under reducing conditions,” Phys. Solid State 57(4), 781–786 (2015).
    [Crossref]
  19. I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972). The reference is to a paper abstract, with no numerical data. The latter appears in Handbook of Optical Materials, M. J. Weber, ed. (CRC Press, 2003), Chapter 1, p.75.
  20. R. L. Aggarwal, A. Sanchez, R. E. Fahey, and A. J. Strauss, “Magnetic and optical measurements on Ti:A12O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. 48(20), 1345–1347 (1986).
    [Crossref]
  21. http://eksmaoptics.com/out/media/TiSapphire_Laser_Crystals_Brochure.pdf
  22. W.C. Wong, D. S. McClure, S.A. Basun, and M.R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons,” Phys. Rev. 51(9), 5682–5692 (1995).
    [Crossref]
  23. M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. 49(18), 12496–12506 (1994).
    [Crossref]
  24. A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, and M. Kokta, “Absolute nonradiative energy-conversion-efficiency spectra in Ti:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. 48(10), 6808–6821 (1993).
    [Crossref]
  25. J. Harrison, A. Finch, D. M. Rines, G. A. Rines, and P. F. Moulton, “Low-threshold, cw, all-solid-state Ti:Al2O3 laser,” Opt. Lett. 16(8), 581–583 (1991).
    [Crossref]
  26. D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
    [Crossref]
  27. J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
    [Crossref]
  28. B. D. Evans and L. S. Cain, “A cation vacancy center in crystalline Al2O3,” Radiat. Eff. Defects Solids 134(1-4), 329–332 (1995).
    [Crossref]
  29. A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.
  30. M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
    [Crossref]
  31. K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
    [Crossref]

2019 (1)

2018 (1)

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

2017 (3)

2015 (2)

K. Gürel, V. J. Wittwer, M. Hoffmann, C. J. Saraceno, S. Hakobyan, B. Resan, A. Rohrbacher, K. Weingarten, S. Schilt, and T. Südmeyer, “Green-diode-pumped femtosecond Ti:Sapphire laser with up to 450 mW average power,” Opt. Express 23(23), 30043–30048 (2015).
[Crossref]

S. V. Nizhankovskii, N. S. Sidel’nikova, and V. V. Baranov, “Optical absorption and color centers in large Ti: sapphire crystals grown by horizontally directed crystallization under reducing conditions,” Phys. Solid State 57(4), 781–786 (2015).
[Crossref]

2012 (3)

2011 (1)

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

2009 (1)

1995 (2)

B. D. Evans and L. S. Cain, “A cation vacancy center in crystalline Al2O3,” Radiat. Eff. Defects Solids 134(1-4), 329–332 (1995).
[Crossref]

W.C. Wong, D. S. McClure, S.A. Basun, and M.R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons,” Phys. Rev. 51(9), 5682–5692 (1995).
[Crossref]

1994 (1)

M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. 49(18), 12496–12506 (1994).
[Crossref]

1993 (1)

A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, and M. Kokta, “Absolute nonradiative energy-conversion-efficiency spectra in Ti:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. 48(10), 6808–6821 (1993).
[Crossref]

1991 (1)

1989 (1)

V. S. Konevskii, E. V. Kryvonosov, L. A. Lytvynov, and M. I. Shakhnovich, “Optical absorption of Ticor,” J. Appl. Spectrosc. 50(4), 427–430 (1989). We note the authors use of Ticor for Ti:sapphire could lead to the article not appearing in literature searches.
[Crossref]

1988 (1)

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

1986 (2)

P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3(1), 125–133 (1986).
[Crossref]

R. L. Aggarwal, A. Sanchez, R. E. Fahey, and A. J. Strauss, “Magnetic and optical measurements on Ti:A12O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. 48(20), 1345–1347 (1986).
[Crossref]

1974 (1)

B. F. Gachter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
[Crossref]

1972 (1)

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972). The reference is to a paper abstract, with no numerical data. The latter appears in Handbook of Optical Materials, M. J. Weber, ed. (CRC Press, 2003), Chapter 1, p.75.

1966 (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

1962 (1)

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36(10), 2757–2779 (1962).
[Crossref]

Aggarwal, R. L.

R. L. Aggarwal, A. Sanchez, R. E. Fahey, and A. J. Strauss, “Magnetic and optical measurements on Ti:A12O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. 48(20), 1345–1347 (1986).
[Crossref]

R. E. Fahey, A. J. Strauss, A. Sanchez, and R. L. Aggarwal, “Growth of Ti:Al2O3 crystals by a gradient-freeze technique,” in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, and L. G. DeShazer, eds. (Springer, 1987), pp. 82–88.

Avramescu, A.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Backus, S.

Baranov, V. V.

S. V. Nizhankovskii, N. S. Sidel’nikova, and V. V. Baranov, “Optical absorption and color centers in large Ti: sapphire crystals grown by horizontally directed crystallization under reducing conditions,” Phys. Solid State 57(4), 781–786 (2015).
[Crossref]

Basun, S.A.

W.C. Wong, D. S. McClure, S.A. Basun, and M.R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons,” Phys. Rev. 51(9), 5682–5692 (1995).
[Crossref]

Bernhard, S.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Brenier, A.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Brüderl, G.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Budhudu, S.

A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, and M. Kokta, “Absolute nonradiative energy-conversion-efficiency spectra in Ti:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. 48(10), 6808–6821 (1993).
[Crossref]

Burns, D.

P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
[Crossref]

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
[Crossref]

A. J. Maclean, P. W. Roth, D. Burns, A. J. Kemp, and P. F. Moulton, “Pump Induced Loss in Directly-Diode Laser Pumped Ti:Sapphire Lasers,” in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB16.

Cain, L. S.

B. D. Evans and L. S. Cain, “A cation vacancy center in crystalline Al2O3,” Radiat. Eff. Defects Solids 134(1-4), 329–332 (1995).
[Crossref]

Caird, J. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Cederburg, J.G.

Chambaret, J. P.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Chase, L. L.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Chériaux, G.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Clay, R. A.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Dodge, M. J.

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972). The reference is to a paper abstract, with no numerical data. The latter appears in Handbook of Optical Materials, M. J. Weber, ed. (CRC Press, 2003), Chapter 1, p.75.

Duffar, T.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Durfee, C. G.

Eichler, C.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Evans, B. D.

B. D. Evans and L. S. Cain, “A cation vacancy center in crystalline Al2O3,” Radiat. Eff. Defects Solids 134(1-4), 329–332 (1995).
[Crossref]

Fahey, R. E.

R. L. Aggarwal, A. Sanchez, R. E. Fahey, and A. J. Strauss, “Magnetic and optical measurements on Ti:A12O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. 48(20), 1345–1347 (1986).
[Crossref]

R. E. Fahey, A. J. Strauss, A. Sanchez, and R. L. Aggarwal, “Growth of Ti:Al2O3 crystals by a gradient-freeze technique,” in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, and L. G. DeShazer, eds. (Springer, 1987), pp. 82–88.

Finch, A.

Findlay, D.

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Foundos, G.

Fuutagawa, N.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Gachter, B. F.

B. F. Gachter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
[Crossref]

Garlick, J.

Godfroy, J.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Grinberg, M.

M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. 49(18), 12496–12506 (1994).
[Crossref]

Gürel, K.

Hager, T.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Hakobyan, S.

Harrison, J.

Hill, S.

Hoffmann, M.

Hoshina, Y.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Kannari, F.

Kapteyn, H.

Kawanishi, H.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Kemp, A. J.

P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
[Crossref]

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
[Crossref]

A. J. Maclean, P. W. Roth, D. Burns, A. J. Kemp, and P. F. Moulton, “Pump Induced Loss in Directly-Diode Laser Pumped Ti:Sapphire Lasers,” in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB16.

Kirchner, M.

Kokta, M.

A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, and M. Kokta, “Absolute nonradiative energy-conversion-efficiency spectra in Ti:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. 48(10), 6808–6821 (1993).
[Crossref]

Kokta, M.R.

W.C. Wong, D. S. McClure, S.A. Basun, and M.R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons,” Phys. Rev. 51(9), 5682–5692 (1995).
[Crossref]

Konevskii, V. S.

V. S. Konevskii, E. V. Kryvonosov, L. A. Lytvynov, and M. I. Shakhnovich, “Optical absorption of Ticor,” J. Appl. Spectrosc. 50(4), 427–430 (1989). We note the authors use of Ticor for Ti:sapphire could lead to the article not appearing in literature searches.
[Crossref]

König, H.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Koningstein, J. A.

B. F. Gachter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
[Crossref]

Koselja, M.

Krupke, W. F.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Kryvonosov, E. V.

E. V. Kryvonosov and L. A. Lytvynov, “Properties of Ti-sapphire as a laser material,” Crystallogr. Rep. 57(7), 967–973 (2012).
[Crossref]

V. S. Konevskii, E. V. Kryvonosov, L. A. Lytvynov, and M. I. Shakhnovich, “Optical absorption of Ticor,” J. Appl. Spectrosc. 50(4), 427–430 (1989). We note the authors use of Ticor for Ti:sapphire could lead to the article not appearing in literature searches.
[Crossref]

Labor, S.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Lebbou, K.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Legal, H.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Lemons, R.

Löffler, A.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Loza-Alvarez, P.

Lytvynov, L. A.

E. V. Kryvonosov and L. A. Lytvynov, “Properties of Ti-sapphire as a laser material,” Crystallogr. Rep. 57(7), 967–973 (2012).
[Crossref]

V. S. Konevskii, E. V. Kryvonosov, L. A. Lytvynov, and M. I. Shakhnovich, “Optical absorption of Ticor,” J. Appl. Spectrosc. 50(4), 427–430 (1989). We note the authors use of Ticor for Ti:sapphire could lead to the article not appearing in literature searches.
[Crossref]

Maclean, A. J.

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
[Crossref]

A. J. Maclean, P. W. Roth, D. Burns, A. J. Kemp, and P. F. Moulton, “Pump Induced Loss in Directly-Diode Laser Pumped Ti:Sapphire Lasers,” in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB16.

Malitson, I. H.

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972). The reference is to a paper abstract, with no numerical data. The latter appears in Handbook of Optical Materials, M. J. Weber, ed. (CRC Press, 2003), Chapter 1, p.75.

Mandelis, A.

M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. 49(18), 12496–12506 (1994).
[Crossref]

A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, and M. Kokta, “Absolute nonradiative energy-conversion-efficiency spectra in Ti:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. 48(10), 6808–6821 (1993).
[Crossref]

McClure, D. S.

W.C. Wong, D. S. McClure, S.A. Basun, and M.R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons,” Phys. Rev. 51(9), 5682–5692 (1995).
[Crossref]

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36(10), 2757–2779 (1962).
[Crossref]

Moncorgé, R.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Moulton, P. F.

Müller, J.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Murayama, M.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Murnane, M.

Nakayama, Y.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Narui, H.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Nehari, A.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Nizhankovskii, S. V.

S. V. Nizhankovskii, N. S. Sidel’nikova, and V. V. Baranov, “Optical absorption and color centers in large Ti: sapphire crystals grown by horizontally directed crystallization under reducing conditions,” Phys. Solid State 57(4), 781–786 (2015).
[Crossref]

Olarte, O. E.

Othonos, A.

A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, and M. Kokta, “Absolute nonradiative energy-conversion-efficiency spectra in Ti:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. 48(10), 6808–6821 (1993).
[Crossref]

Panzer, G.

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Payne, S. A.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Preclikova, J.

Ramponi, A. J.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Resan, B.

Rines, D. M.

Rines, G. A.

Ristic, J.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Rohrbacher, A.

Roth, P. W.

P. W. Roth, D. Burns, and A. J. Kemp, “Power scaling of a directly diode-laser-pumped Ti:sapphire laser,” Opt. Express 20(18), 20629–20634 (2012).
[Crossref]

P. W. Roth, A. J. Maclean, D. Burns, and A. J. Kemp, “Directly diode-laser-pumped Ti:sapphire laser,” Opt. Lett. 34(21), 3334–3336 (2009).
[Crossref]

A. J. Maclean, P. W. Roth, D. Burns, A. J. Kemp, and P. F. Moulton, “Pump Induced Loss in Directly-Diode Laser Pumped Ti:Sapphire Lasers,” in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB16.

Sanchez, A.

R. L. Aggarwal, A. Sanchez, R. E. Fahey, and A. J. Strauss, “Magnetic and optical measurements on Ti:A12O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. 48(20), 1345–1347 (1986).
[Crossref]

R. E. Fahey, A. J. Strauss, A. Sanchez, and R. L. Aggarwal, “Growth of Ti:Al2O3 crystals by a gradient-freeze technique,” in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, and L. G. DeShazer, eds. (Springer, 1987), pp. 82–88.

Saraceno, C. J.

Sawada, R.

Schilt, S.

Schmidt, D.

Shakhnovich, M. I.

V. S. Konevskii, E. V. Kryvonosov, L. A. Lytvynov, and M. I. Shakhnovich, “Optical absorption of Ticor,” J. Appl. Spectrosc. 50(4), 427–430 (1989). We note the authors use of Ticor for Ti:sapphire could lead to the article not appearing in literature searches.
[Crossref]

Shea, K.

Sidel’nikova, N. S.

S. V. Nizhankovskii, N. S. Sidel’nikova, and V. V. Baranov, “Optical absorption and color centers in large Ti: sapphire crystals grown by horizontally directed crystallization under reducing conditions,” Phys. Solid State 57(4), 781–786 (2015).
[Crossref]

Somers, A.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Sönke, T.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Squier, J. A.

Staver, P. R.

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

Stevens, K.T.

Storz, T.

Strauss, A. J.

R. L. Aggarwal, A. Sanchez, R. E. Fahey, and A. J. Strauss, “Magnetic and optical measurements on Ti:A12O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. 48(20), 1345–1347 (1986).
[Crossref]

R. E. Fahey, A. J. Strauss, A. Sanchez, and R. L. Aggarwal, “Growth of Ti:Al2O3 crystals by a gradient-freeze technique,” in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, and L. G. DeShazer, eds. (Springer, 1987), pp. 82–88.

Strauß, U.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Südmeyer, T.

Sugiyama, N.

Taft, G.

Tanaka H, H.

Uemura, T.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Vanniasinkam, J.

A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, and M. Kokta, “Absolute nonradiative energy-conversion-efficiency spectra in Ti:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. 48(10), 6808–6821 (1993).
[Crossref]

Vierheilig, C.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Villamaina, V.

Watanabe, H.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Weingarten, K.

Wittwer, V. J.

Wong, W.C.

W.C. Wong, D. S. McClure, S.A. Basun, and M.R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons,” Phys. Rev. 51(9), 5682–5692 (1995).
[Crossref]

Wurm, T.

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

Yamazaki, K.

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. L. Aggarwal, A. Sanchez, R. E. Fahey, and A. J. Strauss, “Magnetic and optical measurements on Ti:A12O3 crystals for laser applications: concentration and absorption cross section of Ti3+ ions,” Appl. Phys. Lett. 48(20), 1345–1347 (1986).
[Crossref]

Cryst. Growth Des. (1)

A. Nehari, A. Brenier, G. Panzer, K. Lebbou, J. Godfroy, S. Labor, H. Legal, G. Chériaux, J. P. Chambaret, T. Duffar, and R. Moncorgé, “Ti-Doped Sapphire (Al2O3) Single crystals grown by the Kyropoulos technique and optical characterizations,” Cryst. Growth Des. 11(2), 445–448 (2011).
[Crossref]

Crystallogr. Rep. (1)

E. V. Kryvonosov and L. A. Lytvynov, “Properties of Ti-sapphire as a laser material,” Crystallogr. Rep. 57(7), 967–973 (2012).
[Crossref]

IEEE J. Quantum Electron. (1)

J. A. Caird, S. A. Payne, P. R. Staver, A. J. Ramponi, L. L. Chase, and W. F. Krupke, “Quantum electronic properties of the Na3Ga2Li3F12:Cr3+ laser,” IEEE J. Quantum Electron. 24(6), 1077–1099 (1988).
[Crossref]

J. Appl. Spectrosc. (1)

V. S. Konevskii, E. V. Kryvonosov, L. A. Lytvynov, and M. I. Shakhnovich, “Optical absorption of Ticor,” J. Appl. Spectrosc. 50(4), 427–430 (1989). We note the authors use of Ticor for Ti:sapphire could lead to the article not appearing in literature searches.
[Crossref]

J. Chem. Phys. (2)

D. S. McClure, “Optical spectra of transition-metal ions in corundum,” J. Chem. Phys. 36(10), 2757–2779 (1962).
[Crossref]

B. F. Gachter and J. A. Koningstein, “Zero phonon transitions and interacting Jahn-Teller phonon energies from the fluorescence spectrum of α-Al2O3:Ti3+,” J. Chem. Phys. 60(5), 2003–2006 (1974).
[Crossref]

J. Opt. Soc. Am. (1)

I. H. Malitson and M. J. Dodge, “Refractive index and birefringence of synthetic sapphire,” J. Opt. Soc. Am. 62, 1405 (1972). The reference is to a paper abstract, with no numerical data. The latter appears in Handbook of Optical Materials, M. J. Weber, ed. (CRC Press, 2003), Chapter 1, p.75.

J. Opt. Soc. Am. B (1)

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Lett. (1)

D. Findlay and R. A. Clay, “The measurement of internal losses in 4-level lasers,” Phys. Lett. 20(3), 277–278 (1966).
[Crossref]

Phys. Rev. (3)

W.C. Wong, D. S. McClure, S.A. Basun, and M.R. Kokta, “Charge-exchange processes in titanium-doped sapphire crystals. I. Charge-exchange energies and titanium-bound excitons,” Phys. Rev. 51(9), 5682–5692 (1995).
[Crossref]

M. Grinberg and A. Mandelis, “Photopyroelectric-quantum-yield spectroscopy and quantum-mechanical photoexcitation-decay kinetics of the Ti3+ ion in Al2O3,” Phys. Rev. 49(18), 12496–12506 (1994).
[Crossref]

A. Mandelis, J. Vanniasinkam, S. Budhudu, A. Othonos, and M. Kokta, “Absolute nonradiative energy-conversion-efficiency spectra in Ti:Al2O3 crystals measured by noncontact quadrature photopyroelectric spectroscopy,” Phys. Rev. 48(10), 6808–6821 (1993).
[Crossref]

Phys. Solid State (1)

S. V. Nizhankovskii, N. S. Sidel’nikova, and V. V. Baranov, “Optical absorption and color centers in large Ti: sapphire crystals grown by horizontally directed crystallization under reducing conditions,” Phys. Solid State 57(4), 781–786 (2015).
[Crossref]

Phys. Status Solidi A (1)

M. Murayama, Y. Nakayama, K. Yamazaki, Y. Hoshina, H. Watanabe, N. Fuutagawa, H. Kawanishi, T. Uemura, and H. Narui, “Watt-class green (530 nm) and blue (465 nm) laser diodes,” Phys. Status Solidi A 215(10), 1700513 (2018).
[Crossref]

Radiat. Eff. Defects Solids (1)

B. D. Evans and L. S. Cain, “A cation vacancy center in crystalline Al2O3,” Radiat. Eff. Defects Solids 134(1-4), 329–332 (1995).
[Crossref]

Other (6)

A. Avramescu, T. Hager, S. Bernhard, G. Brüderl, T. Wurm, A. Somers, C. Eichler, C. Vierheilig, A. Löffler, J. Ristic, J. Müller, T. Sönke, H. König, and U. Strauß, “High power blue and green laser diodes and their applications,” 2014 IEEE Photonics Conference, San Diego, CA, 2014, pp. 457–458.

http://eksmaoptics.com/out/media/TiSapphire_Laser_Crystals_Brochure.pdf

Solid State Research Report (Lincoln Laboratory, MIT, 1982:3), pp. 15–21.

“Titanium-doped sapphire: A new tunable solid state laser,” in Physics News in 1982, P. F. Schewe, ed. (American Institute of Physics, 1982).

R. E. Fahey, A. J. Strauss, A. Sanchez, and R. L. Aggarwal, “Growth of Ti:Al2O3 crystals by a gradient-freeze technique,” in Tunable Solid State Lasers II, A. B. Budgor, L. Esterowitz, and L. G. DeShazer, eds. (Springer, 1987), pp. 82–88.

A. J. Maclean, P. W. Roth, D. Burns, A. J. Kemp, and P. F. Moulton, “Pump Induced Loss in Directly-Diode Laser Pumped Ti:Sapphire Lasers,” in Lasers, Sources and Related Photonic Devices, OSA Technical Digest Series (CD) (Optical Society of America, 2010), paper AWB16.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. (a) Pi-polarized absorption spectra vs. wavelength from eight samples. (b) Same data as for (a) but normalized to absorption at 490 nm.
Fig. 2.
Fig. 2. (a) Sigma-polarized absorption spectra vs. wavelength from five samples. (b) Same data as for (a) but normalized to absorption at 490 nm.
Fig. 3.
Fig. 3. (a) Pi-polarized residual absorption vs. wavelength from ten samples. (b) Same data as for (a) but plotted on logarithmic scale.
Fig. 4.
Fig. 4. (a) Sigma-polarized residual absorption vs. wavelength from seven samples. (b) Same data as for (a) but plotted on logarithmic scale.
Fig. 5.
Fig. 5. Plot of the ratio of pi-polarized absorption for the residual absorption at 400 nm as a function of the high-band peak absorption coefficient. Data is for 17 samples, sorted and color coded for high-FOM samples from Synoptics (SY) and for all other samples, with the latter further sorted into low and high FOMs. We include linear fits (forced zero origin) to the high-FOM sets of samples, along with fitting parameters and associated R-squared values.
Fig. 6.
Fig. 6. (a) Pump-band fraction as function of wavelength for pi-polarized light for a number of samples. (b) Same data as for (a) but for sigma-polarized light.
Fig. 7.
Fig. 7. Pi-polarized, pump-band fraction as function of sample pi-polarized 490-nm absorption coefficient, with wavelength as a parameter. Data is for high-FOM samples from Synoptics.
Fig. 8.
Fig. 8. Pi-polarized, pump-band fraction as function of sample pi-polarized 490-nm absorption coefficient, with wavelength as a parameter. Data is for samples other than from Synoptics.
Fig. 9.
Fig. 9. Sigma-polarized, pump-band fraction as function of sample pi-polarized 490-nm absorption coefficient, with wavelength as a parameter. Data is for high-FOM samples from Synoptics.
Fig. 10.
Fig. 10. Sigma-polarized pump-band fraction as function of sample pi-polarized 490-nm absorption coefficient, with wavelength as a parameter. Data is for samples other than from Synoptics.
Fig. 11.
Fig. 11. Data on electrical-optical efficiency of InGaN diode semiconductor lasers as a function of diode wavelength. Data on commercial single-mode (SM) devices from Nichia and Osram and multi-mode (MM) devices from Nichia are from manufacturer’s data sheets. Published reports provided data on Osram MM [29] and Sony MM [30] diodes. Straight lines through the points are only an aid to viewing, not a theoretical model.

Tables (2)

Tables Icon

Table 1. List of samples in data plots

Tables Icon

Table 2. Data and analysis for diode-pumped Ti:sapphire lasers [8].

Metrics