Abstract

It is well known that noble metals are not compatible with silicon fabrication processing due to their low melting point, and that their plasmonic behaviour suffers from the material losses at visible wavelengths. As an alternative, titanium nitride has been highly investigated in order to overcome these challenges. High temperature characterization of TiN films has been performed, showing its CMOS compatibility; however, information on intrinsic losses at lower temperatures is still lacking. Here we experimentally investigate the optical properties of a 100 nm TiN film under low temperatures down to 1.5 K. From the reflection measurements we retrieve the dielectric constant and analyze plasmonic applications possibilities.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Titanium nitride as a plasmonic material for visible and near-infrared wavelengths

Gururaj V. Naik, Jeremy L. Schroeder, Xingjie Ni, Alexander V. Kildishev, Timothy D. Sands, and Alexandra Boltasseva
Opt. Mater. Express 2(4) 478-489 (2012)

Double-plasmon broadband response of engineered titanium silicon oxynitride

W. A. Britton, Y. Chen, and L. Dal Negro
Opt. Mater. Express 9(2) 878-891 (2019)

Correlation between electrical direct current resistivity and plasmonic properties of CMOS compatible titanium nitride thin films

S. Viarbitskaya, J. Arocas, O. Heintz, G. Colas-Des-Francs, D. Rusakov, U. Koch, J. Leuthold, L. Markey, A. Dereux, and J.-C. Weeber
Opt. Express 26(8) 9813-9821 (2018)

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
    [Crossref]
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
    [Crossref]
  3. A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
    [Crossref]
  4. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
    [Crossref]
  5. A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science 347(6228), 1308–1310 (2015).
    [Crossref]
  6. G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
    [Crossref]
  7. E. Shkondin, T. Repän, O. Takayama, and A. V. Lavrinenko, “High aspect ratio titanium nitride trench structures as plasmonic biosensor,” Opt. Mater. Express 7(11), 4171–4182 (2017).
    [Crossref]
  8. S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
    [Crossref]
  9. H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. Coat. Technol. 63(1-2), 1–13 (1994).
    [Crossref]
  10. A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(05), 461–468 (2014).
    [Crossref]
  11. E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8(11), 3392–3400 (2018).
    [Crossref]
  12. N. Engheta, “Pursuing near-zero reponse,” Science 340(6130), 286–287 (2013).
    [Crossref]
  13. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref]
  14. J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
    [Crossref]
  15. H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
    [Crossref]
  16. F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, “Optical properties of TiN thin films close to the superconductor-insulator transition,” New J. Phys. 11(11), 113017 (2009).
    [Crossref]
  17. T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
    [Crossref]
  18. A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
    [Crossref]
  19. P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8(6), 3128–3154 (2015).
    [Crossref]
  20. A. Kuzmenko, RefFIT, https://reffit.ch/products/ , (2016).
  21. M. A. Panah, O. Takayama, S. V. Morozov, K. E. Kudryavtsev, E. S. Semenova, and A. V. Lavrinenko, “Highly doped InP as a low loss plasmonic material for mid-IR region,” Opt. Express 24(25), 29077–29088 (2016).
    [Crossref]
  22. C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Optica Acta: Intl. J. Optics 18(6), 415–423 (1971).
    [Crossref]
  23. S. V. Jayanti, J. H. Park, A. Dejneka, D. Chvostova, K. M. McPeak, X. Chen, and D. J. Norris, “Low-temperature enhancement of plasmonic performance in silver films,” Opt. Mater. Express 5(5), 1147–1155 (2015).
    [Crossref]
  24. I. V. Bondarev and V. M. Shalaev, “Universal features of the optical properties of ultrathin plasmonic films,” Opt. Mater. Express 7(10), 3731–3740 (2017).
    [Crossref]
  25. I. V. Bondarev, H. Mousavi, and V. M. Shalaev, “Optical response of finite-thickness ultrathin plasmonic films,” MRS Commun. 8(03), 1092–1097 (2018).
    [Crossref]
  26. A. Manjavacas and F. J. Garcia de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
    [Crossref]
  27. D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
    [Crossref]
  28. D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
    [Crossref]
  29. A. Catellani and A. Calzolari, “Plasmonic Properties of Refractory Titanium Nitride,” Phys. Rev. B 95(11), 115145 (2017).
    [Crossref]
  30. I. V. Bondarev, “Delocalized positronium in alkali-halide crystals: analysis of possible lattice-scattering processes,” Phys. Lett. A 291(1), 39–45 (2001).
    [Crossref]
  31. B. K. Ridley, Quantum Processes in Semiconductors, 5th edn Oxford, (2013).
  32. S. A. Maier, Plasmonics: Fundamentals and Applications. Springer Science and Business Media, (2007).

2018 (5)

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

E. G. Carnemolla, L. Caspani, C. DeVault, M. Clerici, S. Vezzoli, V. Bruno, and M. Ferrera, “Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides,” Opt. Mater. Express 8(11), 3392–3400 (2018).
[Crossref]

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

I. V. Bondarev, H. Mousavi, and V. M. Shalaev, “Optical response of finite-thickness ultrathin plasmonic films,” MRS Commun. 8(03), 1092–1097 (2018).
[Crossref]

2017 (6)

I. V. Bondarev and V. M. Shalaev, “Universal features of the optical properties of ultrathin plasmonic films,” Opt. Mater. Express 7(10), 3731–3740 (2017).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

A. Catellani and A. Calzolari, “Plasmonic Properties of Refractory Titanium Nitride,” Phys. Rev. B 95(11), 115145 (2017).
[Crossref]

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

E. Shkondin, T. Repän, O. Takayama, and A. V. Lavrinenko, “High aspect ratio titanium nitride trench structures as plasmonic biosensor,” Opt. Mater. Express 7(11), 4171–4182 (2017).
[Crossref]

2016 (1)

2015 (3)

S. V. Jayanti, J. H. Park, A. Dejneka, D. Chvostova, K. M. McPeak, X. Chen, and D. J. Norris, “Low-temperature enhancement of plasmonic performance in silver films,” Opt. Mater. Express 5(5), 1147–1155 (2015).
[Crossref]

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science 347(6228), 1308–1310 (2015).
[Crossref]

2014 (2)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(05), 461–468 (2014).
[Crossref]

A. Manjavacas and F. J. Garcia de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
[Crossref]

2013 (1)

N. Engheta, “Pursuing near-zero reponse,” Science 340(6130), 286–287 (2013).
[Crossref]

2012 (2)

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
[Crossref]

2011 (1)

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

2010 (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

2009 (1)

F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, “Optical properties of TiN thin films close to the superconductor-insulator transition,” New J. Phys. 11(11), 113017 (2009).
[Crossref]

2007 (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

2006 (1)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

2005 (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

2001 (1)

I. V. Bondarev, “Delocalized positronium in alkali-halide crystals: analysis of possible lattice-scattering processes,” Phys. Lett. A 291(1), 39–45 (2001).
[Crossref]

1994 (1)

H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. Coat. Technol. 63(1-2), 1–13 (1994).
[Crossref]

1971 (1)

C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Optica Acta: Intl. J. Optics 18(6), 415–423 (1971).
[Crossref]

Atwater, H. A.

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Baklanov, M. R.

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
[Crossref]

F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, “Optical properties of TiN thin films close to the superconductor-insulator transition,” New J. Phys. 11(11), 113017 (2009).
[Crossref]

Barry, P. S.

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

Baturina, T. I.

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
[Crossref]

F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, “Optical properties of TiN thin films close to the superconductor-insulator transition,” New J. Phys. 11(11), 113017 (2009).
[Crossref]

Bhat, D. G.

H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. Coat. Technol. 63(1-2), 1–13 (1994).
[Crossref]

Boltasseva, A.

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science 347(6228), 1308–1310 (2015).
[Crossref]

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(05), 461–468 (2014).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Bondarev, I. V.

I. V. Bondarev, H. Mousavi, and V. M. Shalaev, “Optical response of finite-thickness ultrathin plasmonic films,” MRS Commun. 8(03), 1092–1097 (2018).
[Crossref]

I. V. Bondarev and V. M. Shalaev, “Universal features of the optical properties of ultrathin plasmonic films,” Opt. Mater. Express 7(10), 3731–3740 (2017).
[Crossref]

I. V. Bondarev, “Delocalized positronium in alkali-halide crystals: analysis of possible lattice-scattering processes,” Phys. Lett. A 291(1), 39–45 (2001).
[Crossref]

Briggs, J. A.

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Bruno, V.

Calzolari, A.

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

A. Catellani and A. Calzolari, “Plasmonic Properties of Refractory Titanium Nitride,” Phys. Rev. B 95(11), 115145 (2017).
[Crossref]

Carnemolla, E. G.

Caspani, L.

Catellani, A.

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

A. Catellani and A. Calzolari, “Plasmonic Properties of Refractory Titanium Nitride,” Phys. Rev. B 95(11), 115145 (2017).
[Crossref]

Chen, X.

Chvostova, D.

Clerici, M.

Dao, T. D.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Degiorgi, L.

F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, “Optical properties of TiN thin films close to the superconductor-insulator transition,” New J. Phys. 11(11), 113017 (2009).
[Crossref]

Dejneka, A.

DeVault, C.

Dionne, J. A.

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Earnest, N.

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Engheta, N.

N. Engheta, “Pursuing near-zero reponse,” Science 340(6130), 286–287 (2013).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Ferrera, M.

Gabriel, C. J.

C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Optica Acta: Intl. J. Optics 18(6), 415–423 (1971).
[Crossref]

Garcia de Abajo, F. J.

A. Manjavacas and F. J. Garcia de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
[Crossref]

Glatz, A.

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
[Crossref]

Goldhaber-Gordon, D.

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Guler, U.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Heremans, F. J.

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

Ishii, S.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Jayanti, S. V.

Kalfagiannis, N.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

Kamakura, R.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Kassavetis, S.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

Kildishev, A. V.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

Kinsey, N.

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Koolstra, G.

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

Kudryavtsev, K. E.

Kudyshev, Z.

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

Kuzmenko, A.

A. Kuzmenko, RefFIT, https://reffit.ch/products/ , (2016).

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Lavrinenko, A. V.

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

S. A. Maier, Plasmonics: Fundamentals and Applications. Springer Science and Business Media, (2007).

Manjavacas, A.

A. Manjavacas and F. J. Garcia de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
[Crossref]

McPeak, K. M.

Mironov, A. Y.

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
[Crossref]

Morozov, S. V.

Mousavi, H.

I. V. Bondarev, H. Mousavi, and V. M. Shalaev, “Optical response of finite-thickness ultrathin plasmonic films,” MRS Commun. 8(03), 1092–1097 (2018).
[Crossref]

Nagao, T.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Naik, G. A.

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Naik, G. V.

G. V. Naik, J. L. Schroeder, X. Ni, A. V. Kildishev, T. D. Sands, and A. Boltasseva, “Titanium nitride as a plasmonic material for visible and near-infrared wavelengths,” Opt. Mater. Express 2(4), 478–489 (2012).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Nedoluha, A.

C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Optica Acta: Intl. J. Optics 18(6), 415–423 (1971).
[Crossref]

Ni, X.

Norris, D. J.

Panah, M. A.

Park, J. H.

Patsalas, P.

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

Petach, T. A.

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Pfuner, F.

F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, “Optical properties of TiN thin films close to the superconductor-insulator transition,” New J. Phys. 11(11), 113017 (2009).
[Crossref]

Postolova, S. V.

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
[Crossref]

Rebenne, H. E.

H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. Coat. Technol. 63(1-2), 1–13 (1994).
[Crossref]

Reddy, H.

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Repän, T.

Ridley, B. K.

B. K. Ridley, Quantum Processes in Semiconductors, 5th edn Oxford, (2013).

Sahasrabuddhe, K.

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Sakamoto, H.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Sands, T. D.

Schroeder, J. L.

Schuster, D. I.

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

Semenova, E. S.

Shah, D.

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Shalaev, V.

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

Shalaev, V. M.

I. V. Bondarev, H. Mousavi, and V. M. Shalaev, “Optical response of finite-thickness ultrathin plasmonic films,” MRS Commun. 8(03), 1092–1097 (2018).
[Crossref]

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

I. V. Bondarev and V. M. Shalaev, “Universal features of the optical properties of ultrathin plasmonic films,” Opt. Mater. Express 7(10), 3731–3740 (2017).
[Crossref]

A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science 347(6228), 1308–1310 (2015).
[Crossref]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Shearrow, A.

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

Shinde, S. L.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Shkondin, E.

Silveirinha, M.

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Takayama, O.

Tanaka, K.

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Vezzoli, S.

Vinokur, V. M.

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
[Crossref]

F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, “Optical properties of TiN thin films close to the superconductor-insulator transition,” New J. Phys. 11(11), 113017 (2009).
[Crossref]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Whiteley, S. J.

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

Zhao, Y.

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

ACS Photonics (2)

H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, “Temperature-dependent optical properties of plasmonic titanium nitride thin films,” ACS Photonics 4(6), 1413–1420 (2017).
[Crossref]

D. Shah, A. Catellani, H. Reddy, N. Kinsey, V. Shalaev, A. Boltasseva, and A. Calzolari, “Controlling the plasmonic properties of ultrathin TiN films at the atomic level,” ACS Photonics 5(7), 2816–2824 (2018).
[Crossref]

Adv. Opt. Mater. (1)

D. Shah, H. Reddy, N. Kinsey, V. M. Shalaev, and A. Boltasseva, “Optical properties of plasmonic ultrathin TiN films,” Adv. Opt. Mater. 5(13), 1700065 (2017).
[Crossref]

Appl. Phys. Lett. (2)

A. Shearrow, G. Koolstra, S. J. Whiteley, N. Earnest, P. S. Barry, F. J. Heremans, and D. I. Schuster, “Atomic layer deposition of titanium nitride for quantum circuits,” Appl. Phys. Lett. 113(21), 212601 (2018).
[Crossref]

J. A. Briggs, G. A. Naik, Y. Zhao, T. A. Petach, K. Sahasrabuddhe, D. Goldhaber-Gordon, and J. A. Dionne, “Temperature-dependent optical properties of titanium nitride,” Appl. Phys. Lett. 110(10), 101901 (2017).
[Crossref]

Europhys. Lett. (1)

T. I. Baturina, S. V. Postolova, A. Y. Mironov, A. Glatz, M. R. Baklanov, and V. M. Vinokur, “Superconducting phase transitions in ultrathin TiN films,” Europhys. Lett. 97(1), 17012 (2012).
[Crossref]

J. Appl. Phys. (1)

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98(1), 011101 (2005).
[Crossref]

Laser Photon. Rev. (1)

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev. 4(6), 795–808 (2010).
[Crossref]

Materials (1)

P. Patsalas, N. Kalfagiannis, and S. Kassavetis, “Optical properties and plasmonic performance of titanium nitride,” Materials 8(6), 3128–3154 (2015).
[Crossref]

MRS Bull. (1)

A. Boltasseva, “Empowering plasmonics and metamaterials technology with new material platforms,” MRS Bull. 39(05), 461–468 (2014).
[Crossref]

MRS Commun. (1)

I. V. Bondarev, H. Mousavi, and V. M. Shalaev, “Optical response of finite-thickness ultrathin plasmonic films,” MRS Commun. 8(03), 1092–1097 (2018).
[Crossref]

Nanoscale (1)

S. Ishii, R. Kamakura, H. Sakamoto, T. D. Dao, S. L. Shinde, T. Nagao, and K. Tanaka, “Demonstration of temperature-plateau superheated liquid by photothermal conversion of plasmonic titanium nitride nanostructures,” Nanoscale 10(39), 18451–18456 (2018).
[Crossref]

Nat. Commun. (1)

A. Manjavacas and F. J. Garcia de Abajo, “Tunable plasmons in atomically thin gold nanodisks,” Nat. Commun. 5(1), 3548 (2014).
[Crossref]

Nat. Photonics (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007).
[Crossref]

New J. Phys. (1)

F. Pfuner, L. Degiorgi, T. I. Baturina, V. M. Vinokur, and M. R. Baklanov, “Optical properties of TiN thin films close to the superconductor-insulator transition,” New J. Phys. 11(11), 113017 (2009).
[Crossref]

Opt. Express (1)

Opt. Mater. Express (5)

Optica Acta: Intl. J. Optics (1)

C. J. Gabriel and A. Nedoluha, “Transmittance and reflectance of systems of thin and thick layers,” Optica Acta: Intl. J. Optics 18(6), 415–423 (1971).
[Crossref]

Phys. Lett. A (1)

I. V. Bondarev, “Delocalized positronium in alkali-halide crystals: analysis of possible lattice-scattering processes,” Phys. Lett. A 291(1), 39–45 (2001).
[Crossref]

Phys. Rev. B (1)

A. Catellani and A. Calzolari, “Plasmonic Properties of Refractory Titanium Nitride,” Phys. Rev. B 95(11), 115145 (2017).
[Crossref]

Phys. Rev. Lett. (1)

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using epsilon-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref]

Science (3)

N. Engheta, “Pursuing near-zero reponse,” Science 340(6130), 286–287 (2013).
[Crossref]

A. Boltasseva and H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011).
[Crossref]

A. Boltasseva and V. M. Shalaev, “All that glitters need not be gold,” Science 347(6228), 1308–1310 (2015).
[Crossref]

Surf. Coat. Technol. (1)

H. E. Rebenne and D. G. Bhat, “Review of CVD TiN coatings for wear-resistant applications: deposition processes, properties and performance,” Surf. Coat. Technol. 63(1-2), 1–13 (1994).
[Crossref]

Other (3)

A. Kuzmenko, RefFIT, https://reffit.ch/products/ , (2016).

B. K. Ridley, Quantum Processes in Semiconductors, 5th edn Oxford, (2013).

S. A. Maier, Plasmonics: Fundamentals and Applications. Springer Science and Business Media, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Experimental setup. Light from the continuum source is directed towards the cryostat through a beam splitter (BS). The light is then focused by an optical lens (L) on one sample (S) each time. Reflected signal is redirected by another mirror (M) to the detector (D) and analyzed. The ice flake symbolizes the low temperature reached inside the cryostat.
Fig. 2.
Fig. 2. Real (a,c) and imaginary (b,d) parts of the permittivity ($\varepsilon = \varepsilon _1 + i\varepsilon _2$) and refractive index ($N=n+i\kappa$), respectively, for a 100 nm TiN film for different temperatures, as a function of the wavelength. The color coding is depicted in the legends.
Fig. 3.
Fig. 3. (a) Comparison between the real ($\varepsilon _1)$ and imaginary ($\varepsilon _2)$ parts of the dielectric function for Ag at 293 K, TiN at 1.5 K and TiN at 293 K, as a function of the wavelength. (b) Real ($n$) and imaginary ($\kappa$) parts of the refractive index at the same conditions.
Fig. 4.
Fig. 4. Plots of the imaginary part of the complex permittivity at the ENZ point (blue circles) and the plasma wavelength (diamonds) as functions of the sample temperature. The red line represents the linear fit performed on the imaginary part of the permittivity with the lowest temperature data point (red square at 1.5 K) being excluded.
Fig. 5.
Fig. 5. (a) Plasma frequency general behavior as a function of dimensionless temperature and film thickness as computed from Eq. (5). (b) Analysis of the plasma frequency temperature dependence using the confinement induced nonlocal dielectric response model of the finite-thickness plasmonic film [24]. See text for details.
Fig. 6.
Fig. 6. Quality factor of localized surface plasmons $Q_{LSPR}$ for a TiN sphere of not too small diameter as a function of wavelength and temperature (encoded by colors).The $Q_{LSPR}$ of Ag was divided by 25 in order to maintain the visibility of the other curves.
Fig. 7.
Fig. 7. (a) $Q_{SPP}$ and (b) $L_{SPP}$ for TiN as functions of wavelength at different temperatures. The $Q_{SPP}$ and $L_{SPP}$ of Ag were divided by 25 and 200, respectively, in order to keep the visibility of the other curves.

Tables (2)

Tables Icon

Table 1. Parameters of the Drude terms for the permittivity of a 100 nm thick TiN film measured at room temperature

Tables Icon

Table 2. Parameters of the Lorentzian terms for the permittivity of a 100 nm thick TiN film measured at room temperature

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

ε(ω)=εωp2ω2+iΓω+nSnωn2ωn2ω2iγnω.
ε(k,ω)εb=1ωp2(k)ω2+iΓω=1ωp2(k)ω2+Γ2(1iΓω).
ωp(k)=ωp3D1+(εsb+εsp)/εbkd,
ω¯p(T)=0kcdkkωp(k)/{exp[ωp(k)/kBT]1}0kcdkk/{exp[ωp(k)/kBT]1},
ω¯p(T)ωp3D=01dtttt+1/a/[exp(αtt+1/a)1]01dtt/[exp(αtt+1/a)1].
β=ωcεεDε+εD,

Metrics