Abstract

In this paper, a two transmission window plasmonically-induced transparency (PIT) with hybrid coupling mechanism has been numerically demonstrated. The hybrid coupling mechanism is composed of a bright mode (square ring), bright mode (SRR), and a dark mode (cut wire). Bright-dark coupling is one of the coupling ways; another two of the coupling ways are bright-bright coupling. Only three modes are needed to obtain two transmission window PIT, which can lead to miniaturization of the meta-atom of PIT. In addition, SRR is embedded in a square ring by using an ingenious design, which further leads to miniaturization of the meta-atom of PIT. The miniaturized PIT can enrich PIT research and has potential applications in slow light devices.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Broadband terahertz plasmon-induced transparency via asymmetric coupling inside meta-molecules

Xiaobo Zheng, Zhenyu Zhao, Wangzhou Shi, and Wei Peng
Opt. Mater. Express 7(3) 1035-1047 (2017)

Localized terahertz electromagnetically-induced transparency-like phenomenon in a conductively coupled trimer metamolecule

Zhenyu Zhao, Xiaobo Zheng, Wei Peng, Jianbing Zhang, Hongwei Zhao, Zhijian Luo, and Wangzhou Shi
Opt. Express 25(20) 24410-24424 (2017)

Plasmon induced transparency effect through alternately coupled resonators in terahertz metamaterial

Koijam Monika Devi, Amarendra K. Sarma, Dibakar Roy Chowdhury, and Gagan Kumar
Opt. Express 25(9) 10484-10493 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
    [Crossref]
  2. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref]
  3. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
    [Crossref]
  4. G. Shvets and J. S. Wurtele, “Transparency of magnetized plasma at the cyclotron frequency,” Phys. Rev. Lett. 89(11), 115003 (2002).
    [Crossref]
  5. C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
    [Crossref]
  6. M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
    [Crossref]
  7. X. Q. Lu, J. H. Shi, R. Liu, and C. Y. Guan, “Highly-dispersive electromagnetically induced transparency in planar symmetric metamaterials,” Opt. Express 20(16), 17581–17590 (2012).
    [Crossref]
  8. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [Crossref]
  9. S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
    [Crossref]
  10. Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12(5), 1331–1342 (2017).
    [Crossref]
  11. Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
    [Crossref]
  12. M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
    [Crossref]
  13. Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
    [Crossref]
  14. Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” in Integrated Optics: Devices, Materials, and Technologies XXII. International Society for Optics and Photonics, San Francisco, CA, ed. (Academic, 2018), pp. 105352A.
  15. Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
    [Crossref]
  16. Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
    [Crossref]
  17. Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
    [Crossref]
  18. Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35(3), 417–422 (2018).
    [Crossref]
  19. C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
    [Crossref]
  20. L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
    [Crossref]
  21. A. Jabber, F. A. Tahir, R. Ramzan, O. Siddiqui, and M. Amin, “A Lumped Element Analog of Dual-Stub Microwave Electromagnetically Induced Transparency Resonator,” in 2018 18th Mediterranean Microwave Symposium (MMS). IEEE, Istanbul, Turkey, ed. (Academic, 2018), pp. 168-170.
  22. X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
    [Crossref]
  23. A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
    [Crossref]
  24. W. Pan, Y. J. Yan, Y. Ma, and D. J. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431, 115–119 (2019).
    [Crossref]
  25. A. Keshavarz and Z. Vafapour, “Water-Based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
    [Crossref]
  26. C.-K. Chen, Y.-C. Lai, Y.-H. Yang, C.-Y. Chen, and T.-J. Yen, “Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials,” Opt. Express 20(7), 6952–6960 (2012).
    [Crossref]
  27. S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
    [Crossref]
  28. H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
    [Crossref]
  29. X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
    [Crossref]
  30. J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
    [Crossref]
  31. L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
    [Crossref]
  32. F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
    [Crossref]
  33. L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency,” IEEE Trans. Magn. 48(11), 4285–4288 (2012).
    [Crossref]
  34. H.-M. Li, S.-B. Liu, S.-Y. Liu, and H.-F. Zhang, “Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance,” Appl. Phys. Lett. 105(13), 133514 (2014).
    [Crossref]
  35. F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
    [Crossref]
  36. S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  37. H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
    [Crossref]
  38. R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
    [Crossref]
  39. X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
    [Crossref]
  40. X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonics Technol. Lett. 27(12), 1321–1324 (2015).
    [Crossref]
  41. S. Han, R. Singh, L. Q. Cong, and H. L. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D: Appl. Phys. 48(3), 035104 (2015).
    [Crossref]
  42. J. Malik, S. K. Oruganti, S. Song, N. Y. Ko, and F. Bien, “Electromagnetically induced transparency in sinusoidal modulated ring resonator,” Appl. Phys. Lett. 112(23), 234102 (2018).
    [Crossref]
  43. L. Zhu, L. Dong, F.-Y. Meng, J.-H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Appl. Opt. 51(32), 7794 (2012).
    [Crossref]
  44. H. Chen, H. Y. Zhang, M. D. Liu, Y. K. Zhao, X. H. Guo, and Y. P. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
    [Crossref]
  45. G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
    [Crossref]
  46. H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling,” Opt. Commun. 391, 9–15 (2017).
    [Crossref]
  47. R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
    [Crossref]
  48. M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
    [Crossref]
  49. A. Halpin, N. Hoof, A. Bhattacharya, M. Christiaan, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
    [Crossref]
  50. A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
    [Crossref]
  51. A. Bhattacharya and J. G. Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1(8), 086103 (2016).
    [Crossref]
  52. M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
    [Crossref]
  53. L. Zhu, F.-Y. Meng, J.-H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4512 (2012).
    [Crossref]
  54. I. M. Mirza, W. Ge, and H. Jing, “On the optical nonreciprocity and slow light propagation in coupled spinning optomechanical resonators,” arXiv preprint arXiv,1810.03709 (2018).
  55. M. Amin, R. Ramzan, and O. Siddiqui, “Slow wave applications of electromagnetically induced transparency in microstrip resonator,” Sci. Rep. 8(1), 2357 (2018).
    [Crossref]
  56. Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
    [Crossref]
  57. Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
    [Crossref]
  58. https://www.cst.com/products/csts2.

2019 (5)

Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
[Crossref]

W. Pan, Y. J. Yan, Y. Ma, and D. J. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431, 115–119 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Water-Based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
[Crossref]

2018 (12)

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

J. Malik, S. K. Oruganti, S. Song, N. Y. Ko, and F. Bien, “Electromagnetically induced transparency in sinusoidal modulated ring resonator,” Appl. Phys. Lett. 112(23), 234102 (2018).
[Crossref]

Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
[Crossref]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
[Crossref]

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35(3), 417–422 (2018).
[Crossref]

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

M. Amin, R. Ramzan, and O. Siddiqui, “Slow wave applications of electromagnetically induced transparency in microstrip resonator,” Sci. Rep. 8(1), 2357 (2018).
[Crossref]

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
[Crossref]

2017 (5)

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling,” Opt. Commun. 391, 9–15 (2017).
[Crossref]

H. Chen, H. Y. Zhang, M. D. Liu, Y. K. Zhao, X. H. Guo, and Y. P. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

A. Halpin, N. Hoof, A. Bhattacharya, M. Christiaan, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12(5), 1331–1342 (2017).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

2016 (6)

X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

A. Bhattacharya and J. G. Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1(8), 086103 (2016).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

2015 (4)

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonics Technol. Lett. 27(12), 1321–1324 (2015).
[Crossref]

S. Han, R. Singh, L. Q. Cong, and H. L. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D: Appl. Phys. 48(3), 035104 (2015).
[Crossref]

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

2014 (3)

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, and H.-F. Zhang, “Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance,” Appl. Phys. Lett. 105(13), 133514 (2014).
[Crossref]

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

2013 (3)

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

2012 (7)

X. Q. Lu, J. H. Shi, R. Liu, and C. Y. Guan, “Highly-dispersive electromagnetically induced transparency in planar symmetric metamaterials,” Opt. Express 20(16), 17581–17590 (2012).
[Crossref]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency,” IEEE Trans. Magn. 48(11), 4285–4288 (2012).
[Crossref]

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

C.-K. Chen, Y.-C. Lai, Y.-H. Yang, C.-Y. Chen, and T.-J. Yen, “Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials,” Opt. Express 20(7), 6952–6960 (2012).
[Crossref]

L. Zhu, L. Dong, F.-Y. Meng, J.-H. Fu, and Q. Wu, “Influence of symmetry breaking in a planar metamaterial on transparency effect and sensing application,” Appl. Opt. 51(32), 7794 (2012).
[Crossref]

L. Zhu, F.-Y. Meng, J.-H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4512 (2012).
[Crossref]

2009 (1)

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

2002 (1)

G. Shvets and J. S. Wurtele, “Transparency of magnetized plasma at the cyclotron frequency,” Phys. Rev. Lett. 89(11), 115003 (2002).
[Crossref]

2001 (2)

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

1999 (1)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

1997 (2)

Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Agha, I.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Al-Naib, I.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Amin, M.

M. Amin, R. Ramzan, and O. Siddiqui, “Slow wave applications of electromagnetically induced transparency in microstrip resonator,” Sci. Rep. 8(1), 2357 (2018).
[Crossref]

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

A. Jabber, F. A. Tahir, R. Ramzan, O. Siddiqui, and M. Amin, “A Lumped Element Analog of Dual-Stub Microwave Electromagnetically Induced Transparency Resonator,” in 2018 18th Mediterranean Microwave Symposium (MMS). IEEE, Istanbul, Turkey, ed. (Academic, 2018), pp. 168-170.

An, S.

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

Awad, E.

Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Azad, A. K.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Bagci, H.

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

Barnes, W. L.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Behroozi, C. H.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Bettiol, A. A.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Bhattacharya, A.

A. Halpin, N. Hoof, A. Bhattacharya, M. Christiaan, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

A. Bhattacharya and J. G. Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1(8), 086103 (2016).
[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

Bian, B.-R.

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

Bien, F.

J. Malik, S. K. Oruganti, S. Song, N. Y. Ko, and F. Bien, “Electromagnetically induced transparency in sinusoidal modulated ring resonator,” Appl. Phys. Lett. 112(23), 234102 (2018).
[Crossref]

Burrow, J. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Cao, Y. Y.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling,” Opt. Commun. 391, 9–15 (2017).
[Crossref]

Chen, C.-K.

Chen, C.-Y.

Chen, D. B.

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Chen, H.

Chen, H.-T.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Cheng, Q.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Chiam, S. Y.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Chowdhury, D. R.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Christiaan, M.

A. Halpin, N. Hoof, A. Bhattacharya, M. Christiaan, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Cong, L. Q.

S. Han, R. Singh, L. Q. Cong, and H. L. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D: Appl. Phys. 48(3), 035104 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

Cui, T. J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Ding, G.-W.

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

Ding, X.

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

Dong, L.

Dutton, Z.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

Farhat, M.

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

Field, J. E.

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Forouzeshfard, M. R.

Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12(5), 1331–1342 (2017).
[Crossref]

Fu, G. L.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Fu, J. H.

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency,” IEEE Trans. Magn. 48(11), 4285–4288 (2012).
[Crossref]

Fu, J.-H.

Ge, W.

I. M. Mirza, W. Ge, and H. Jing, “On the optical nonreciprocity and slow light propagation in coupled spinning optomechanical resonators,” arXiv preprint arXiv,1810.03709 (2018).

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Ghahraloud, H.

Gu, J. Q.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Guan, C. Y.

Guo, X. H.

Halpin, A.

A. Halpin, N. Hoof, A. Bhattacharya, M. Christiaan, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Ham, B. S.

Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Han, J. G.

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Han, S.

S. Han, R. Singh, L. Q. Cong, and H. L. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D: Appl. Phys. 48(3), 035104 (2015).
[Crossref]

Han, Y. X.

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Harris, S. E.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Hau, L. V.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

He, M. X.

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

He, X.

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

Hoof, N.

A. Halpin, N. Hoof, A. Bhattacharya, M. Christiaan, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Hua, J.

L. Zhu, F.-Y. Meng, J.-H. Fu, Q. Wu, and J. Hua, “Multi-band slow light metamaterial,” Opt. Express 20(4), 4494–4512 (2012).
[Crossref]

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency,” IEEE Trans. Magn. 48(11), 4285–4288 (2012).
[Crossref]

Huang, J.

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Huang, X.-R.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Humphrey, A. D.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Imamoglu, A.

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Jabber, A.

A. Jabber, F. A. Tahir, R. Ramzan, O. Siddiqui, and M. Amin, “A Lumped Element Analog of Dual-Stub Microwave Electromagnetically Induced Transparency Resonator,” in 2018 18th Mediterranean Microwave Symposium (MMS). IEEE, Istanbul, Turkey, ed. (Academic, 2018), pp. 168-170.

Jing, H.

I. M. Mirza, W. Ge, and H. Jing, “On the optical nonreciprocity and slow light propagation in coupled spinning optomechanical resonators,” arXiv preprint arXiv,1810.03709 (2018).

Keshavarz, A.

A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Water-Based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
[Crossref]

Kim, M. K.

Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Ko, N. Y.

J. Malik, S. K. Oruganti, S. Song, N. Y. Ko, and F. Bien, “Electromagnetically induced transparency in sinusoidal modulated ring resonator,” Appl. Phys. Lett. 112(23), 234102 (2018).
[Crossref]

Kong, X.-K.

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

Lai, Y.-C.

Lan, C. W.

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

Lederer, F.

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Li, B.

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Li, H.-J.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Li, H.-M.

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, and H.-F. Zhang, “Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance,” Appl. Phys. Lett. 105(13), 133514 (2014).
[Crossref]

Li, X.-F.

X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Li, Y.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling,” Opt. Commun. 391, 9–15 (2017).
[Crossref]

Li, Z.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Li, Z. H.

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

Liang, L. J.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

Lin, Q.

Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
[Crossref]

Liu, C.

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

Liu, G.-D.

X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Liu, L. H.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Liu, M. D.

Liu, R.

Liu, S. B.

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

Liu, S.-B.

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, and H.-F. Zhang, “Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance,” Appl. Phys. Lett. 105(13), 133514 (2014).
[Crossref]

Liu, S.-Y.

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, and H.-F. Zhang, “Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance,” Appl. Phys. Lett. 105(13), 133514 (2014).
[Crossref]

Liu, T. T.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, X. J.

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Liu, Y. Z.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling,” Opt. Commun. 391, 9–15 (2017).
[Crossref]

Lu, Q. C.

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Lu, X. Q.

Lukin, M. D.

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

Luo, Y. B.

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Lv, W. H.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonics Technol. Lett. 27(12), 1321–1324 (2015).
[Crossref]

Ma, Y.

W. Pan, Y. J. Yan, Y. Ma, and D. J. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431, 115–119 (2019).
[Crossref]

Ma, Y. F.

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Maier, S. A.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Malik, J.

J. Malik, S. K. Oruganti, S. Song, N. Y. Ko, and F. Bien, “Electromagnetically induced transparency in sinusoidal modulated ring resonator,” Appl. Phys. Lett. 112(23), 234102 (2018).
[Crossref]

Manjappa, M.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Mathews, J.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Meinzer, N.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Mekonen, S. M.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Meng, F. Y.

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency,” IEEE Trans. Magn. 48(11), 4285–4288 (2012).
[Crossref]

Meng, F.-Y.

Mirza, I. M.

I. M. Mirza, W. Ge, and H. Jing, “On the optical nonreciprocity and slow light propagation in coupled spinning optomechanical resonators,” arXiv preprint arXiv,1810.03709 (2018).

Oruganti, S. K.

J. Malik, S. K. Oruganti, S. Song, N. Y. Ko, and F. Bien, “Electromagnetically induced transparency in sinusoidal modulated ring resonator,” Appl. Phys. Lett. 112(23), 234102 (2018).
[Crossref]

Pan, W.

W. Pan, Y. J. Yan, Y. Ma, and D. J. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431, 115–119 (2019).
[Crossref]

Pang, L. N.

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

Peng, R.-W.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Qin, L.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Qin, M.

Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
[Crossref]

Qiu, K. P.

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

Ramzan, R.

M. Amin, R. Ramzan, and O. Siddiqui, “Slow wave applications of electromagnetically induced transparency in microstrip resonator,” Sci. Rep. 8(1), 2357 (2018).
[Crossref]

A. Jabber, F. A. Tahir, R. Ramzan, O. Siddiqui, and M. Amin, “A Lumped Element Analog of Dual-Stub Microwave Electromagnetically Induced Transparency Resonator,” in 2018 18th Mediterranean Microwave Symposium (MMS). IEEE, Istanbul, Turkey, ed. (Academic, 2018), pp. 168-170.

Ren, X. M.

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Rivas, J. G.

A. Halpin, N. Hoof, A. Bhattacharya, M. Christiaan, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

A. Bhattacharya and J. G. Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1(8), 086103 (2016).
[Crossref]

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

Rockstuhl, C.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Sarangan, A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Schaafsma, M. C.

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

Searles, T. A.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Shang, X.-J.

X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Shen, D. J.

W. Pan, Y. J. Yan, Y. Ma, and D. J. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431, 115–119 (2019).
[Crossref]

Shi, J. H.

Shvets, G.

G. Shvets and J. S. Wurtele, “Transparency of magnetized plasma at the cyclotron frequency,” Phys. Rev. Lett. 89(11), 115003 (2002).
[Crossref]

Siddiqui, O.

M. Amin, R. Ramzan, and O. Siddiqui, “Slow wave applications of electromagnetically induced transparency in microstrip resonator,” Sci. Rep. 8(1), 2357 (2018).
[Crossref]

A. Jabber, F. A. Tahir, R. Ramzan, O. Siddiqui, and M. Amin, “A Lumped Element Analog of Dual-Stub Microwave Electromagnetically Induced Transparency Resonator,” in 2018 18th Mediterranean Microwave Symposium (MMS). IEEE, Istanbul, Turkey, ed. (Academic, 2018), pp. 168-170.

Singh, R.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

S. Han, R. Singh, L. Q. Cong, and H. L. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D: Appl. Phys. 48(3), 035104 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Song, S.

J. Malik, S. K. Oruganti, S. Song, N. Y. Ko, and F. Bien, “Electromagnetically induced transparency in sinusoidal modulated ring resonator,” Appl. Phys. Lett. 112(23), 234102 (2018).
[Crossref]

Srivastava, Y. K.

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

Starkey, T. A.

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

Tahir, F. A.

A. Jabber, F. A. Tahir, R. Ramzan, O. Siddiqui, and M. Amin, “A Lumped Element Analog of Dual-Stub Microwave Electromagnetically Induced Transparency Resonator,” in 2018 18th Mediterranean Microwave Symposium (MMS). IEEE, Istanbul, Turkey, ed. (Academic, 2018), pp. 168-170.

Taylor, A. J.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Tian, Z.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Vafapour, Z.

A. Keshavarz and Z. Vafapour, “Water-Based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
[Crossref]

A. Keshavarz and Z. Vafapour, “Thermo-optical applications of a novel terahertz semiconductor metamaterial design,” J. Opt. Soc. Am. B 36(1), 35–41 (2019).
[Crossref]

Z. Vafapour, “Slowing down light using terahertz semiconductor metamaterial for dual-band thermally tunable modulator applications,” Appl. Opt. 57(4), 722–729 (2018).
[Crossref]

Z. Vafapour, “Large group delay in a microwave metamaterial analog of electromagnetically induced reflectance,” J. Opt. Soc. Am. A 35(3), 417–422 (2018).
[Crossref]

Z. Vafapour and H. Ghahraloud, “Semiconductor-based far-infrared biosensor by optical control of light propagation using THz metamaterial,” J. Opt. Soc. Am. B 35(5), 1192–1199 (2018).
[Crossref]

Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12(5), 1331–1342 (2017).
[Crossref]

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” in Integrated Optics: Devices, Materials, and Technologies XXII. International Society for Optics and Photonics, San Francisco, CA, ed. (Academic, 2018), pp. 105352A.

Wang, B.-X.

X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Wang, L. L.

Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Wang, L.-L.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Wang, M.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Wang, S.-Y.

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

Wang, T.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Wei, D. Q.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

Wen, S. C.

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Wu, C. K.

Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Wu, Q.

Wurtele, J. S.

G. Shvets and J. S. Wurtele, “Transparency of magnetized plasma at the cyclotron frequency,” Phys. Rev. Lett. 89(11), 115003 (2002).
[Crossref]

Xia, S. X.

Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
[Crossref]

Xia, S.-X.

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

Xiang, Y. L.

Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
[Crossref]

Xiao, S. Y.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xie, J. H.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Xiong, X.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Xu, C.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, S. L.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonics Technol. Lett. 27(12), 1321–1324 (2015).
[Crossref]

Xu, S. Y.

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Yahiaoui, R.

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

Yan, X.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Yan, X. C.

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yan, Y. J.

W. Pan, Y. J. Yan, Y. Ma, and D. J. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431, 115–119 (2019).
[Crossref]

Yang, H.

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

Yang, H. L.

S. Han, R. Singh, L. Q. Cong, and H. L. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D: Appl. Phys. 48(3), 035104 (2015).
[Crossref]

Yang, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Yang, J. B.

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Yang, M. S.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Yang, Q. L.

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

Yang, Y.-H.

Yao, J. Q.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonics Technol. Lett. 27(12), 1321–1324 (2015).
[Crossref]

Yen, T.-J.

Yu, G. Y.

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

Yu, Z.-Y.

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

Yuan, C.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonics Technol. Lett. 27(12), 1321–1324 (2015).
[Crossref]

Zeng, Q. S.

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Zhai, X.

Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
[Crossref]

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Zhang, C.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhang, F. L.

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

Zhang, H. F.

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

Zhang, H. Y.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling,” Opt. Commun. 391, 9–15 (2017).
[Crossref]

H. Chen, H. Y. Zhang, M. D. Liu, Y. K. Zhao, X. H. Guo, and Y. P. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Zhang, H.-F.

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, and H.-F. Zhang, “Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance,” Appl. Phys. Lett. 105(13), 133514 (2014).
[Crossref]

Zhang, J. J.

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Zhang, J. N.

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Zhang, K.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Zhang, M. J.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Zhang, S.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, W.

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

Zhang, W. H.

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

Zhang, W. L.

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

Zhang, X.

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

Zhang, X. Q.

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Zhang, Y. P.

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling,” Opt. Commun. 391, 9–15 (2017).
[Crossref]

H. Chen, H. Y. Zhang, M. D. Liu, Y. K. Zhao, X. H. Guo, and Y. P. Zhang, “Realization of tunable plasmon-induced transparency by bright-bright mode coupling in Dirac semimetals,” Opt. Mater. Express 7(9), 3397–3407 (2017).
[Crossref]

Zhang, Z.

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

Zhang, Z. J.

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Zhao, J.

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

Zhao, Q.

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

Zhao, X. L.

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonics Technol. Lett. 27(12), 1321–1324 (2015).
[Crossref]

Zhao, Y.

Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

Zhao, Y. K.

Zhou, J.

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

Zhou, X.

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

Zhou, Y. L.

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

Zhu, J.

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

Zhu, L.

ACS Photonics (2)

M. C. Schaafsma, A. Bhattacharya, and J. G. Rivas, “Diffraction enhanced transparency and slow thz light in periodic arrays of detuned and displaced dipoles,” ACS Photonics 3(9), 1596–1603 (2016).
[Crossref]

A. D. Humphrey, N. Meinzer, T. A. Starkey, and W. L. Barnes, “Surface lattice resonances in plasmonic arrays of asymmetric disc dimers,” ACS Photonics 3(4), 634–639 (2016).
[Crossref]

APL Photonics (1)

A. Bhattacharya and J. G. Rivas, “Full vectorial mapping of the complex electric near-fields of THz resonators,” APL Photonics 1(8), 086103 (2016).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (9)

H.-M. Li, S. B. Liu, S.-Y. Liu, S.-Y. Wang, G.-W. Ding, H. Yang, Z.-Y. Yu, and H.-F. Zhang, “Low-loss metamaterial electromagnetically induced transparency based on electric toroidal dipolar response,” Appl. Phys. Lett. 106(8), 083511 (2015).
[Crossref]

R. Singh, I. Al-Naib, D. R. Chowdhury, L. Q. Cong, C. Rockstuhl, and W. L. Zhang, “Probing the transition from an uncoupled to a strong near-field coupled regime between bright and dark mode resonators in metasurfaces,” Appl. Phys. Lett. 105(8), 081108 (2014).
[Crossref]

J. Malik, S. K. Oruganti, S. Song, N. Y. Ko, and F. Bien, “Electromagnetically induced transparency in sinusoidal modulated ring resonator,” Appl. Phys. Lett. 112(23), 234102 (2018).
[Crossref]

C. Zhang, Q. Cheng, J. Yang, J. Zhao, and T. J. Cui, “Broadband metamaterial for optical transparency and microwave absorption,” Appl. Phys. Lett. 110(14), 143511 (2017).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, S.-Y. Wang, H. F. Zhang, B.-R. Bian, and X.-K. Kong, “Electromagnetically induced transparency with large delay-bandwidth product induced by magnetic resonance near field coupling to electric resonance,” Appl. Phys. Lett. 106(11), 114101 (2015).
[Crossref]

X. J. Liu, J. Q. Gu, R. Singh, Y. F. Ma, J. Zhu, Z. Tian, M. X. He, J. G. Han, and W. L. Zhang, “Electromagnetically induced transparency in terahertz plasmonic metamaterials via dual excitation pathways of the dark mode,” Appl. Phys. Lett. 100(13), 131101 (2012).
[Crossref]

F. L. Zhang, X. He, X. Zhou, Y. L. Zhou, S. An, G. Y. Yu, and L. N. Pang, “Large group index induced by asymmetric split ring resonator dimmer,” Appl. Phys. Lett. 103(22), 221904 (2013).
[Crossref]

H.-M. Li, S.-B. Liu, S.-Y. Liu, and H.-F. Zhang, “Electromagnetically induced transparency with large group index induced by simultaneously exciting the electric and the magnetic resonance,” Appl. Phys. Lett. 105(13), 133514 (2014).
[Crossref]

F. L. Zhang, Q. Zhao, C. W. Lan, X. He, W. H. Zhang, J. Zhou, and K. P. Qiu, “Magnetically coupled electromagnetically induced transparency analogy of dielectric metamaterial,” Appl. Phys. Lett. 104(13), 131907 (2014).
[Crossref]

Biosens. Bioelectron. (1)

X. Yan, M. S. Yang, Z. Zhang, L. J. Liang, D. Q. Wei, M. Wang, M. J. Zhang, T. Wang, L. H. Liu, J. H. Xie, and J. Q. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Carbon (1)

S. Y. Xiao, T. Wang, T. T. Liu, X. C. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (3)

Y. L. Xiang, L. L. Wang, Q. Lin, S. X. Xia, M. Qin, and X. Zhai, “Tunable dual-band perfect absorber based on L-shaped graphene resonator,” IEEE Photonics Technol. Lett. 31(6), 483–486 (2019).
[Crossref]

Y. L. Xiang, X. Zhai, Q. Lin, S. X. Xia, M. Qin, and L. L. Wang, “Dynamically tunable plasmon-induced transparency based on an H-shaped graphene resonator,” IEEE Photonics Technol. Lett. 30(7), 622–625 (2018).
[Crossref]

X. L. Zhao, C. Yuan, W. H. Lv, S. L. Xu, and J. Q. Yao, “Plasmon-induced transparency in metamaterial based on graphene and split-ring resonators,” IEEE Photonics Technol. Lett. 27(12), 1321–1324 (2015).
[Crossref]

IEEE Sens. J. (1)

A. Keshavarz and Z. Vafapour, “Water-Based Terahertz Metamaterial for Skin Cancer Detection Application,” IEEE Sens. J. 19(4), 1519–1524 (2019).
[Crossref]

IEEE Trans. Magn. (1)

L. Zhu, F. Y. Meng, J. H. Fu, Q. Wu, and J. Hua, “An approach to configure low-loss and full transmission metamaterial based on electromagnetically induced transparency,” IEEE Trans. Magn. 48(11), 4285–4288 (2012).
[Crossref]

J. Electron. Sci. Technol. (1)

L. J. Liang, Z. Zhang, X. Yan, X. Ding, D. Q. Wei, Q. L. Yang, Z. H. Li, and J. Q. Yao, “Broadband Terahertz Transmission Modulation Based on Hybrid Graphene-Metal Metamaterial,” J. Electron. Sci. Technol. 16(2), 98–104 (2018).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Phys. D: Appl. Phys. (1)

S. Han, R. Singh, L. Q. Cong, and H. L. Yang, “Engineering the fano resonance and electromagnetically induced transparency in near-field coupled bright and dark metamaterial,” J. Phys. D: Appl. Phys. 48(3), 035104 (2015).
[Crossref]

Materials (1)

Z. J. Zhang, J. B. Yang, X. He, Y. X. Han, J. J. Zhang, J. Huang, D. B. Chen, and S. Y. Xu, “Active Enhancement of Slow Light Based on Plasmon-Induced Transparency with Gain Materials,” Materials 11(6), 941 (2018).
[Crossref]

Microw. Opt. Technol. Lett. (1)

Y. B. Luo, X. Yan, Q. S. Zeng, J. N. Zhang, X. Zhang, B. Li, Q. C. Lu, and X. M. Ren, “Graphene-based dual-band antenna in the millimeter-wave band,” Microw. Opt. Technol. Lett. 60(12), 3014–3019 (2018).
[Crossref]

Nat. Commun. (1)

J. Q. Gu, R. Singh, X. J. Liu, X. Q. Zhang, Y. F. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. G. Han, and W. L. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3(1), 1151 (2012).
[Crossref]

Nature (3)

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999).
[Crossref]

C. Liu, Z. Dutton, C. H. Behroozi, and L. V. Hau, “Observation of coherent optical information storage in an atomic medium using halted light pulses,” Nature 409(6819), 490–493 (2001).
[Crossref]

M. D. Lukin and A. Imamoglu, “Controlling photons using electromagnetically induced transparency,” Nature 413(6853), 273–276 (2001).
[Crossref]

Opt. Commun. (2)

W. Pan, Y. J. Yan, Y. Ma, and D. J. Shen, “A terahertz metamaterial based on electromagnetically induced transparency effect and its sensing performance,” Opt. Commun. 431, 115–119 (2019).
[Crossref]

H. Y. Zhang, Y. Y. Cao, Y. Z. Liu, Y. Li, and Y. P. Zhang, “A novel graphene metamaterial design for tunable terahertz plasmon induced transparency by two bright mode coupling,” Opt. Commun. 391, 9–15 (2017).
[Crossref]

Opt. Express (3)

Opt. Mater. Express (1)

Photonics Res. (1)

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photonics Res. 6(7), 692–702 (2018).
[Crossref]

Phys. Rev. B (5)

S. Y. Chiam, R. Singh, C. Rockstuhl, F. Lederer, W. L. Zhang, and A. A. Bettiol, “Analogue of electromagnetically induced transparency in a terahertz metamaterial,” Phys. Rev. B 80(15), 153103 (2009).
[Crossref]

L. Qin, K. Zhang, R.-W. Peng, X. Xiong, W. Zhang, X.-R. Huang, and M. Wang, “Optical-magnetism-induced transparency in a metamaterial,” Phys. Rev. B 87(12), 125136 (2013).
[Crossref]

R. Yahiaoui, J. A. Burrow, S. M. Mekonen, A. Sarangan, J. Mathews, I. Agha, and T. A. Searles, “Electromagnetically induced transparency control in terahertz metasurfaces based on bright-bright mode coupling,” Phys. Rev. B 97(15), 155403 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, and R. Singh, “Lattice-induced transparency in planar metamaterials,” Phys. Rev. B 94(16), 161103 (2016).
[Crossref]

A. Halpin, N. Hoof, A. Bhattacharya, M. Christiaan, and J. G. Rivas, “Terahertz diffraction enhanced transparency probed in the near field,” Phys. Rev. B 96(8), 085110 (2017).
[Crossref]

Phys. Rev. Lett. (4)

Y. Zhao, C. K. Wu, B. S. Ham, M. K. Kim, and E. Awad, “Microwave induced transparency in ruby,” Phys. Rev. Lett. 79(4), 641–644 (1997).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[Crossref]

G. Shvets and J. S. Wurtele, “Transparency of magnetized plasma at the cyclotron frequency,” Phys. Rev. Lett. 89(11), 115003 (2002).
[Crossref]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref]

Phys. Today (1)

S. E. Harris, “Electromagnetically induced transparency,” Phys. Today 50(7), 36–42 (1997).
[Crossref]

Plasmonics (3)

Z. Vafapour and M. R. Forouzeshfard, “Disappearance of plasmonically induced reflectance by breaking symmetry in metamaterials,” Plasmonics 12(5), 1331–1342 (2017).
[Crossref]

G. L. Fu, X. Zhai, H.-J. Li, S.-X. Xia, and L.-L. Wang, “Tunable plasmon-induced transparency based on bright-bright mode coupling between two parallel graphene nanostrips,” Plasmonics 11(6), 1597–1602 (2016).
[Crossref]

X.-J. Shang, X. Zhai, X.-F. Li, L.-L. Wang, B.-X. Wang, and G.-D. Liu, “Realization of graphene-based tunable plasmon-induced transparency by the dipole-dipole coupling,” Plasmonics 11(2), 419–423 (2016).
[Crossref]

Sci. Rep. (2)

M. Amin, R. Ramzan, and O. Siddiqui, “Slow wave applications of electromagnetically induced transparency in microstrip resonator,” Sci. Rep. 8(1), 2357 (2018).
[Crossref]

M. Amin, M. Farhat, and H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3(1), 2105 (2013).
[Crossref]

Other (4)

Z. Vafapour, “Slow light modulator using semiconductor metamaterial,” in Integrated Optics: Devices, Materials, and Technologies XXII. International Society for Optics and Photonics, San Francisco, CA, ed. (Academic, 2018), pp. 105352A.

A. Jabber, F. A. Tahir, R. Ramzan, O. Siddiqui, and M. Amin, “A Lumped Element Analog of Dual-Stub Microwave Electromagnetically Induced Transparency Resonator,” in 2018 18th Mediterranean Microwave Symposium (MMS). IEEE, Istanbul, Turkey, ed. (Academic, 2018), pp. 168-170.

I. M. Mirza, W. Ge, and H. Jing, “On the optical nonreciprocity and slow light propagation in coupled spinning optomechanical resonators,” arXiv preprint arXiv,1810.03709 (2018).

https://www.cst.com/products/csts2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) The schematic view of cut wire. (b) The transmission spectra of cut wire under incident x-pol and y-pol electromagnetic wave. (c) The electric field distribution of cut wire under incident x-pol electromagnetic wave. (d) The electric field distribution of cut wire under the incident y-pol electromagnetic wave. The geometrical parameters are as follows: a = 16 mm, b = 16 mm, l1 = 14 mm, w1 = 1 mm, h = 1 mm.
Fig. 2.
Fig. 2. (a) The schematic view of square ring. (b) The transmission spectra of square ring under incident y-pol electromagnetic wave. (c) The electric field distribution of square ring under incident y-pol electromagnetic wave. The geometrical parameters are as follows: a = 16 mm, b = 16 mm, l2 = 10.9 mm, w2 = 0.2 mm, h = 1 mm.
Fig. 3.
Fig. 3. (a) The schematic view of SRR. (b) The transmission spectra of SRR under incident y-pol electromagnetic wave. (c) The electric field distribution of SRR under incident y-pol electromagnetic wave. The geometrical parameters are as follows: a = 16 mm, b = 16 mm, l3 = 10 mm, w3 = 0.2 mm, g = 0.6 mm, h = 1 mm.
Fig. 4.
Fig. 4. (a) The schematic view of two transmission window PIT. (b) The transmission spectra of two transmission window PIT.
Fig. 5.
Fig. 5. (a) The electric field distribution of two transmission window PIT at low transmission valley frequency (5.40 GHz). (b) The electric field distribution of two transmission window PIT at low transmission peak (6.05 GHz). (c) The electric field distribution of two transmission window PIT at middle transmission valley frequency (6.72 GHz). (d) The electric field distribution of two transmission window PIT at high transmission peak (7.05 GHz). (e) The electric field distribution of two transmission window PIT at high transmission valley frequency (7.60 GHz).
Fig. 6.
Fig. 6. The transmission spectra of SRR + SR + CW (SRR, square ring, cut wire), SRR + SR (SRR, square ring), SRR + CW (SRR, cut wire), and SR + CW (square ring, cut wire).
Fig. 7.
Fig. 7. (a) The transmission spectra of two transmission window PIT with different d2. (b) The transmission spectra of two transmission window PIT with different d1.
Fig. 8.
Fig. 8. The transmission spectra of two transmission window PIT based on simulated and model.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Q ¨ 1 ( t ) + γ 1 Q ˙ 1 ( t ) + ω a 2 Q 1 ( t ) + κ 12 Q 2 ( t ) + κ 13 Q 3 ( t ) = g 1 E 0 ( t ) Q ¨ 2 ( t ) + γ 2 Q ˙ 2 ( t ) + ω b 2 Q 2 ( t ) + κ 21 Q 1 ( t ) + κ 2 3 Q 3 ( t ) = g 2 E 0 ( t ) Q ¨ 3 ( t ) + γ 3 Q ˙ 3 ( t ) + ω c 2 Q 3 ( t ) + κ 31 Q 1 ( t ) + κ 32 Q 2 ( t ) = 0
E 0 ( t ) = E 0 e i ω t
Q 1 ( t ) = Q 1 e i ω t
Q 2 ( t ) = Q 2 e i ω t
Q 1 = g 1 ( a 2 a 3 k 23 k 32 ) E 0 + g 2 ( k 32 k 13 k 12 a 3 ) E 0 a 1 a 2 a 3 + k 12 k 23 k 31 + k 13 k 21 k 32 k 23 k 32 a 1 k 13 k 31 a 2 k 21 k 12 a 3
Q 2 = g 1 ( k 23 k 31 k 21 a 3 ) E 0 + g 2 ( a 1 a 3 k 12 k 31 ) E 0 a 1 a 2 a 3 + k 12 k 23 k 31 + k 13 k 21 k 32 k 23 k 32 a 1 k 13 k 31 a 2 k 21 k 12 a 3
Q 3 = g 1 ( k 21 k 32 k 31 a 2 ) E 0 + g 2 ( k 31 k 12 k 32 a 1 ) E 0 a 1 a 2 a 3 + k 12 k 23 k 31 + k 13 k 21 k 32 k 23 k 32 a 1 k 13 k 31 a 2 k 21 k 12 a 3
χ = g 1 ( a 2 a 3 + k 23 k 31 k 32 k 23 k 21 a 3 ) + g 2 ( a 1 a 3 + k 32 k 13 k 13 k 31 k 12 a 3 ) a 1 a 2 a 3 + k 12 k 23 k 31 + k 13 k 21 k 32 k 23 k 32 a 1 k 13 k 31 a 2 k 21 k 12 a 3
| t | = | c ( 1 + n ) / c ( 1 + n ) [ c ( 1 + n ) i ω x ] [ c ( 1 + n ) i ω x ] |

Metrics