Abstract

We investigated the effects of femtosecond, multi-pulse laser exposure on the structural changes in an Er3+-doped and heavy-metal co-doped, SiO2-based oxide glass. We analyzed microstructural alterations in the glass network and we monitored the formation of defects resulting from variable laser exposure conditions. To elucidate the subtle differences in glass network reorganization, generated by two laser irradiation wavelengths, we used Raman spectroscopy. We demonstrate how to decouple the very weak luminescence signals of laser-generated optically-active defects from the dominating emission of Er3+. We discuss the relationship between the initial and the irradiation-modified glass microstructure, including bond breaking, the formation of optically active defects and defect-assisted densification build-up in the glass network.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quench-free enhanced emission in cluster-free Er-doped heavy metal oxide glasses

Kristina Lipinska, Francesca Cavallo, A. Jean-Luc Ayitou, and Carlo U. Segre
Opt. Mater. Express 9(3) 1072-1084 (2019)

Photoinscription domains for ultrafast laser writing of refractive index changes in BK7 borosilicate crown optical glass

K. Mishchik, A. Ferrer, A. Ruiz de la Cruz, A. Mermillod-Blondin, C. Mauclair, Y. Ouerdane, A. Boukenter, J. Solis, and R. Stoian
Opt. Mater. Express 3(1) 67-85 (2013)

X-ray preconditioning for enhancing refractive index contrast in femtosecond laser photoinscription of embedded waveguides in pure silica

Maxime Royon, Emmanuel Marin, Sylvain Girard, Aziz Boukenter, Youcef Ouerdane, and Razvan Stoian
Opt. Mater. Express 9(1) 65-74 (2019)

References

  • View by:
  • |
  • |
  • |

  1. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  2. K. Miura, J. Qiu, T. Mitsuya, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
    [Crossref]
  3. J. R. Qiu, M. Shirai, T. Nakaya, J. Si, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
    [Crossref]
  4. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
    [Crossref]
  5. J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
    [Crossref]
  6. J. J. Witcher, W. Reichman, L. B. Fletcher, N. W. Troy, and D. M. Krol, “Thermal annealing of femtosecond laser written structures in silica glass,” Opt. Mater. Express 3(4), 502–510 (2013).
    [Crossref]
  7. A. M. Streltsov and N. F. Borrelli, “Study of femtosecond-laser-written waveguides in glasses,” J. Opt. Soc. Am. B 19(10), 2496–2504 (2002).
    [Crossref]
  8. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express 1(5), 845–855 (2011).
    [Crossref]
  9. G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
    [Crossref]
  10. R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
    [Crossref]
  11. L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112(2), 023109 (2012).
    [Crossref]
  12. N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
    [Crossref]
  13. A. Polman and F. C. J. M. van Veggel, “Broadband sensitizers for erbium-doped planar optical amplifiers: review,” J. Opt. Soc. Am. B 21(5), 871–892 (2004).
    [Crossref]
  14. W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [Crossref]
  15. K. Lipinska, F. Cavallo, J.-L. Aitou, and C. Segre, “Quench-free enhanced emission in cluster-free Er-doped heavy metal oxide glasses,” Opt. Mater. Express 9(3), 1072–1084 (2019).
    [Crossref]
  16. K. Lipinska and C. Segre, “Evidence of two erbium sites in Ga-doped oxide glasses by XAFS spectroscopy,” in preparation.
  17. F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
    [Crossref]
  18. G. S. Henderson, “The structure of silicate melts: A glass perspective,” Can. Mineral. 43(6), 1921–1958 (2005).
    [Crossref]
  19. M. Micoulaut, L. Cormier, and G. S. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter 18(45), R753–R784 (2006).
    [Crossref]
  20. G. S. Henderson, G. M. Bancroft, M. E. Fleet, and D. J. Rogers, “Raman spectra of gallium and germanium substituted silicate glasses: variation in intermediate order,” Am. Mineral. 70, 946–960 (1985).
  21. G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
    [Crossref]
  22. J. W. Chan, T. Huser, S. Risbud, , and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
    [Crossref]
  23. J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
    [Crossref]
  24. R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).
  25. P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16(7), 4688–4697 (2008).
    [Crossref]
  26. D. L. Griscom, “A Minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self- trapped holes and how they can be controlled,” Phys. Res. Int. 2013, 1–14 (2013).
    [Crossref]
  27. L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 159–168 (2012).
    [Crossref]
  28. L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett. 37(7), 1148–1150 (2012).
    [Crossref]
  29. T. Toney Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
    [Crossref]
  30. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
    [Crossref]
  31. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
    [Crossref]
  32. S. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10(25), 1444–1450 (2002).
    [Crossref]
  33. W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B 24(7), 1627–1632 (2007).
    [Crossref]
  34. W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
    [Crossref]
  35. K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
    [Crossref]
  36. B. H. Babu, M. Niu, T. Billotte, P. Bi, F. Zheng, B. Poumellec, M. Lancry, and X.-T. Hao, “Femtosecond laser processing induced low loss waveguides in multicomponent glasses,” Opt. Mater. Express 7(10), 3580–3590 (2017).
    [Crossref]
  37. A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
    [Crossref]
  38. Y. S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P. R. Foy, P. D. Dragic, and J. G. Eden, “Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy,” Opt. Express 20(13), 14494–14507 (2012).
    [Crossref]

2019 (1)

2017 (2)

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

B. H. Babu, M. Niu, T. Billotte, P. Bi, F. Zheng, B. Poumellec, M. Lancry, and X.-T. Hao, “Femtosecond laser processing induced low loss waveguides in multicomponent glasses,” Opt. Mater. Express 7(10), 3580–3590 (2017).
[Crossref]

2013 (3)

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

D. L. Griscom, “A Minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self- trapped holes and how they can be controlled,” Phys. Res. Int. 2013, 1–14 (2013).
[Crossref]

J. J. Witcher, W. Reichman, L. B. Fletcher, N. W. Troy, and D. M. Krol, “Thermal annealing of femtosecond laser written structures in silica glass,” Opt. Mater. Express 3(4), 502–510 (2013).
[Crossref]

2012 (4)

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112(2), 023109 (2012).
[Crossref]

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 159–168 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett. 37(7), 1148–1150 (2012).
[Crossref]

Y. S. Liu, T. C. Galvin, T. Hawkins, J. Ballato, L. Dong, P. R. Foy, P. D. Dragic, and J. G. Eden, “Linkage of oxygen deficiency defects and rare earth concentrations in silica glass optical fiber probed by ultraviolet absorption and laser excitation spectroscopy,” Opt. Express 20(13), 14494–14507 (2012).
[Crossref]

2011 (1)

2009 (2)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

2008 (4)

T. Toney Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[Crossref]

P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16(7), 4688–4697 (2008).
[Crossref]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

2007 (2)

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B 24(7), 1627–1632 (2007).
[Crossref]

2006 (4)

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

M. Micoulaut, L. Cormier, and G. S. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter 18(45), R753–R784 (2006).
[Crossref]

2005 (1)

G. S. Henderson, “The structure of silicate melts: A glass perspective,” Can. Mineral. 43(6), 1921–1958 (2005).
[Crossref]

2004 (1)

2003 (2)

W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

2002 (3)

2001 (1)

2000 (1)

1996 (1)

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

1991 (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

1985 (1)

G. S. Henderson, G. M. Bancroft, M. E. Fleet, and D. J. Rogers, “Raman spectra of gallium and germanium substituted silicate glasses: variation in intermediate order,” Am. Mineral. 70, 946–960 (1985).

1983 (1)

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

Aitou, J.-L.

Arai, A.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Babu, B. H.

Ballato, J.

Bancroft, G. M.

G. S. Henderson, G. M. Bancroft, M. E. Fleet, and D. J. Rogers, “Raman spectra of gallium and germanium substituted silicate glasses: variation in intermediate order,” Am. Mineral. 70, 946–960 (1985).

Bi, P.

Billotte, T.

Bookey, H. T.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Borrelli, N. F.

Boukenter, A.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

Brow, R. K.

Cardinal, T.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Carlson, C. G.

Cavallo, F.

Cerillo, G.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

Cerullo, G.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Chan, J. W.

Chan, W.

W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

Chiodo, N.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

T. Toney Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Clarijs, J.

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Cochain, B.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

Cormier, L.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

M. Micoulaut, L. Cormier, and G. S. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter 18(45), R753–R784 (2006).
[Crossref]

Couzi, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Croteau, A.

D’Amico, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Della Valle, G.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

T. Toney Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[Crossref]

Demos, S.

Dong, L.

Dragic, P. D.

Eaton, S. M.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Eden, J. G.

Fleet, M. E.

G. S. Henderson, G. M. Bancroft, M. E. Fleet, and D. J. Rogers, “Raman spectra of gallium and germanium substituted silicate glasses: variation in intermediate order,” Am. Mineral. 70, 946–960 (1985).

Fletcher, L. B.

Foy, P. R.

Fujimoto, J.

Galeener, F. L.

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

Galvin, T. C.

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Geissberger, A. E.

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

Girard, S.

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

Griscom, D. L.

D. L. Griscom, “A Minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self- trapped holes and how they can be controlled,” Phys. Res. Int. 2013, 1–14 (2013).
[Crossref]

Grodsky, R.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Hao, X.-T.

Hawkins, T.

Henderson, G. S.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

M. Micoulaut, L. Cormier, and G. S. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter 18(45), R753–R784 (2006).
[Crossref]

G. S. Henderson, “The structure of silicate melts: A glass perspective,” Can. Mineral. 43(6), 1921–1958 (2005).
[Crossref]

G. S. Henderson, G. M. Bancroft, M. E. Fleet, and D. J. Rogers, “Raman spectra of gallium and germanium substituted silicate glasses: variation in intermediate order,” Am. Mineral. 70, 946–960 (1985).

Herman, P. R.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Hernandez-Rueda, J.

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

Hirano, M.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 159–168 (2012).
[Crossref]

Hirao, K.

J. R. Qiu, M. Shirai, T. Nakaya, J. Si, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

K. Miura, J. Qiu, T. Mitsuya, and K. Hirao, “Space-selective growth of frequency-conversion crystals in glasses with ultrashort infrared laser pulses,” Opt. Lett. 25(6), 408–410 (2000).
[Crossref]

Hosono, H.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 159–168 (2012).
[Crossref]

Huser, T.

Huser, T. R.

W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

Ito, D.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Jha, A.

T. Toney Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Jiménez-Rey, D.

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

Jose, G.

Kajihara, K.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 159–168 (2012).
[Crossref]

Kar, A. K.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Krol, D. M.

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

J. J. Witcher, W. Reichman, L. B. Fletcher, N. W. Troy, and D. M. Krol, “Thermal annealing of femtosecond laser written structures in silica glass,” Opt. Mater. Express 3(4), 502–510 (2013).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, R. K. Brow, and D. M. Krol, “Single-pass waveguide amplifiers in Er-Yb doped zinc polyphosphate glass fabricated with femtosecond laser pulses,” Opt. Lett. 37(7), 1148–1150 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112(2), 023109 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express 1(5), 845–855 (2011).
[Crossref]

W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B 24(7), 1627–1632 (2007).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

J. W. Chan, T. Huser, S. Risbud, , and D. M. Krol, “Structural changes in fused silica after exposure to focused femtosecond laser pulses,” Opt. Lett. 26(21), 1726–1728 (2001).
[Crossref]

Lancry, M.

Laporta, P.

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

T. Toney Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[Crossref]

León, M.

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

Lipinska, K.

Liu, Y. S.

Martin, P.

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

Mauclair, C.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Micoulaut, M.

M. Micoulaut, L. Cormier, and G. S. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter 18(45), R753–R784 (2006).
[Crossref]

Mihailov, S. J.

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

Minoshima, K.

Mishchik, K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Mitsuya, T.

Miura, K.

Nagasawa, K.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Nakaya, T.

J. R. Qiu, M. Shirai, T. Nakaya, J. Si, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Neuville, D. R.

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

Nishikawa, H.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Niu, M.

Ohki, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Osellame, R.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express 1(5), 845–855 (2011).
[Crossref]

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

T. Toney Fernandez, G. Della Valle, R. Osellame, G. Jose, N. Chiodo, A. Jha, and P. Laporta, “Active waveguides written by femtosecond laser irradiation in an erbium-doped phospho-tellurite glass,” Opt. Express 16(19), 15198–15205 (2008).
[Crossref]

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Ouerdane, Y.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

Polman, A.

Poumellec, B.

Psaila, N. D.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Qiu, J.

Qiu, J. R.

J. R. Qiu, M. Shirai, T. Nakaya, J. Si, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Reichman, W.

Reichman, W. J.

W. J. Reichman, J. W. Chan, C. W. Smelser, S. J. Mihailov, and D. M. Krol, “Spectroscopic characterization of different femtosecond laser modification regimes in fused silica,” J. Opt. Soc. Am. B 24(7), 1627–1632 (2007).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Reis, S. T.

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112(2), 023109 (2012).
[Crossref]

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, R. M. Vazquez, R. Osellame, and D. M. Krol, “Femtosecond laser writing of waveguides in zinc phosphate glasses,” Opt. Mater. Express 1(5), 845–855 (2011).
[Crossref]

Richardson, K.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Richardson, M.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Risbud, S.

Risbud, S. H.

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

Rivero, C.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Rogers, D. J.

G. S. Henderson, G. M. Bancroft, M. E. Fleet, and D. J. Rogers, “Raman spectra of gallium and germanium substituted silicate glasses: variation in intermediate order,” Am. Mineral. 70, 946–960 (1985).

Saavedra, R.

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

Sakurai, Y.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Segre, C.

Shah, L.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Shen, S.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Shirai, M.

J. R. Qiu, M. Shirai, T. Nakaya, J. Si, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Si, J.

J. R. Qiu, M. Shirai, T. Nakaya, J. Si, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Skuja, L.

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 159–168 (2012).
[Crossref]

Smelser, C. W.

Staggs, M.

Stoian, R.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Streltsov, A. M.

Suelto, O.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

Taccheo, S.

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

Thomson, R. R.

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

Toney Fernandez, T.

Troy, N.

Troy, N. W.

van Oosten, D.

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

van Veggel, F. C. J. M.

Vazquez, R. M.

Velpula, P. K.

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

Vila, R.

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

Watanabe, E.

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

Witcher, J. J.

Yoshino, F.

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

Zheng, F.

Zoubir, A.

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

Am. Mineral. (1)

G. S. Henderson, G. M. Bancroft, M. E. Fleet, and D. J. Rogers, “Raman spectra of gallium and germanium substituted silicate glasses: variation in intermediate order,” Am. Mineral. 70, 946–960 (1985).

Appl. Phys. A (3)

J. W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

W. Chan, T. R. Huser, S. H. Risbud, and D. M. Krol, “Modification of the fused silica glass network associated with waveguide fabrication using femtosecond laser pulses,” Appl. Phys. A 76(3), 367–372 (2003).
[Crossref]

R. Osellame, G. Della Valle, N. Chiodo, S. Taccheo, P. Laporta, O. Suelto, and G. Cerillo, “Lasing in femtosecond laser written optical waveguides,” Appl. Phys. A 93(1), 17–26 (2008).
[Crossref]

Appl. Phys. Lett. (3)

N. D. Psaila, R. R. Thomson, H. T. Bookey, A. K. Kar, N. Chiodo, R. Osellame, G. Cerullo, A. Jha, and S. Shen, “Er:Yb doped oxyfluoride silicate glass waveguide amplifier fabricated using femtosecond laser inscription,” Appl. Phys. Lett. 90(13), 131102 (2007).
[Crossref]

J. Hernandez-Rueda, J. Clarijs, D. van Oosten, and D. M. Krol, “The influence of femtosecond laser wavelength on waveguide fabrication inside fused silica,” Appl. Phys. Lett. 110(16), 161109 (2017).
[Crossref]

J. R. Qiu, M. Shirai, T. Nakaya, J. Si, and K. Hirao, “Space-selective precipitation of metal nanoparticles inside glasses,” Appl. Phys. Lett. 81(16), 3040–3042 (2002).
[Crossref]

Can. Mineral. (1)

G. S. Henderson, “The structure of silicate melts: A glass perspective,” Can. Mineral. 43(6), 1921–1958 (2005).
[Crossref]

J. Appl. Phys. (5)

L. B. Fletcher, J. J. Witcher, N. Troy, S. T. Reis, R. K. Brow, and D. M. Krol, “Effects of rare-earth doping on femtosecond laser waveguide writing in zinc polyphosphate glass,” J. Appl. Phys. 112(2), 023109 (2012).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, and Y. Ohki, “Visible photoluminescence from Si clusters in γ-irradiated amorphous SiO2,” J. Appl. Phys. 80(6), 3513–3517 (1996).
[Crossref]

W. J. Reichman, D. M. Krol, L. Shah, F. Yoshino, A. Arai, S. M. Eaton, and P. R. Herman, “A spectroscopic comparison of femtosecond-laser-modified fused silica using kilohertz and megahertz laser systems,” J. Appl. Phys. 99(12), 123112 (2006).
[Crossref]

K. Mishchik, C. D’Amico, P. K. Velpula, C. Mauclair, A. Boukenter, Y. Ouerdane, and R. Stoian, “Ultrafast laser induced electronic and structural modifications in bulk fused silica,” J. Appl. Phys. 114(13), 133502 (2013).
[Crossref]

J. Lightwave Technol. (1)

W. J. Miniscalco, “Erbium-doped glasses for fiber amplifiers at 1500 nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[Crossref]

J. Non-Cryst. Solids (1)

G. S. Henderson, D. R. Neuville, B. Cochain, and L. Cormier, “The structure of GeO2–SiO2 glasses and melts: A Raman spectroscopy study,” J. Non-Cryst. Solids 355(8), 468–474 (2009).
[Crossref]

J. Opt. A: Pure Appl. Opt. (1)

G. Della Valle, R. Osellame, and P. Laporta, “Micromachining of photonic devices by femtosecond laser pulses,” J. Opt. A: Pure Appl. Opt. 11(1), 013001 (2009).
[Crossref]

J. Opt. Soc. Am. B (3)

J. Phys.: Condens. Matter (1)

M. Micoulaut, L. Cormier, and G. S. Henderson, “The structure of amorphous, crystalline and liquid GeO2,” J. Phys.: Condens. Matter 18(45), R753–R784 (2006).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Nucl. Instrum. Methods Phys. Res., Sect. B (1)

L. Skuja, K. Kajihara, M. Hirano, and H. Hosono, “Oxygen-excess-related point defects in glassy/amorphous SiO2 and related materials,” Nucl. Instrum. Methods Phys. Res., Sect. B 286, 159–168 (2012).
[Crossref]

Opt. Express (4)

Opt. Lett. (3)

Opt. Mater. Express (4)

Phys. Res. Int. (1)

D. L. Griscom, “A Minireview of the natures of radiation-induced point defects in pure and doped silica glasses and their visible/near-IR absorption bands, with emphasis on self- trapped holes and how they can be controlled,” Phys. Res. Int. 2013, 1–14 (2013).
[Crossref]

Phys. Rev. B (2)

A. Zoubir, C. Rivero, R. Grodsky, K. Richardson, M. Richardson, T. Cardinal, and M. Couzi, “Laser-induced defects in fused silica by femtosecond IR irradiation,” Phys. Rev. B 73(22), 224117 (2006).
[Crossref]

F. L. Galeener and A. E. Geissberger, “Vibrational dynamics in 30Si-substituted vitreous SiO2,” Phys. Rev. B 27(10), 6199–6204 (1983).
[Crossref]

Other (2)

R. Saavedra, M. León, P. Martin, D. Jiménez-Rey, R. Vila, S. Girard, A. Boukenter, and Y. Ouerdane, “Raman measurements in silica glasses irradiated with energetic ions,” AIP Conf. Proceedings1624, 118 (2014).

K. Lipinska and C. Segre, “Evidence of two erbium sites in Ga-doped oxide glasses by XAFS spectroscopy,” in preparation.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Raman spectra: example of quantitative analysis (Lorentzian and Gaussian deconvolutions) of ring statistics illustrating the diversity of tetrahedral ring structures, from 3-fold to >6-fold rings in: (a) pre-irradiated glass, and (b) post-irradiated glass (800 nm, 1 kHz, 50 fs); (c) sketch illustrating the change in relative ring contribution in pre- and post-irradiated glasses as established from quantitative analysis. Insets are schematics of tetrahedral ring structures.
Fig. 2.
Fig. 2. Raman spectra of pre- and post-irradiated glasses using different irradiation doses: (a) irradiation at 800 nm, 1 kHz, 50 fs and (b) irradiation at 400 nm, 1 kHz, 50 fs; (c) - (d) zoom of the Raman D2 band area, (e) - (f) D2 defect band normalized to the D20 area of the pre-irradiated glass as a function of irradiation dose and (g) - (h) D2 defect band normalized to the D20 area of the pre-irradiated glass as a function of number of laser pulses. In the pre-irradiated glass, the D2/D20 ratio is equal to 1. Dashed lines are guides for the eye.
Fig. 3.
Fig. 3. Luminescence spectra of glasses before and after 800 nm fs-laser irradiation, at the highest dose: (a) the full spectral range of the pre-irradiated glass (dotted line) and of post-irradiated glass (solid line), both showing the typical, intense Er3+ emission bands; (b) zoom on the spectral region of interest, showing a significant irradiation-generated background (shaded area and dash-dot line) in the post-irradiated glass; (c) a Gaussian deconvolution of the irradiation-generated background, illustrating the contribution of two kinds of defect centers; (d) the process of creation of defects, a sketch of the fs-laser irradiation geometry and a white light image of a post-irradiated area of glass.
Fig. 4.
Fig. 4. Luminescence spectra of glasses before and after 400 nm fs-laser irradiation, at the highest dose: (a) the full spectral range of the pre-irradiated glass (dotted line) and of post-irradiated glass (solid line), both showing the typical, intense Er3+ emission bands; (b) zoom on the spectral region of interest, showing a significant irradiation-generated background (shaded area and dash-dot line) in the post-irradiated glass; (c) a Gaussian deconvolution of the irradiation-generated background, illustrating the contribution of two kinds of defect centers; (d) the Er3+ energy diagram.

Metrics