Abstract

We propose a broadband reflective linear-to-circular (LTC) polarization converter in a mid-infrared regime based on monolayer black phosphorus (phosphorene) metamaterial. The proposed converter consists of periodic unit cells, each cell of which is formed by multiple phosphorene layers, a dielectric layer, and a fully reflective gold mirror. In the frequency range of 14.20 and 23.10 THz, the magnitudes of the reflection coefficients are approximately equal and the phase difference value between the two orthogonal electric field components of the reflected wave is close to π/2 or −3π/2, which indicates the reflective wave can be deemed the circular polarization with the incidence of linearly polarized wave. The simulation results show that the relative bandwidth of LTC polarization conversion reaches 58% and 47.8%, respectively, when the pucker ridge alignment of the phosphorene is perpendicular to the y-direction and x-direction. Finally, the physical mechanism is revealed via the field decomposition and current distribution. This polarization converter has great potential for future applications in electronic measurement, photonic design, and in some other optoelectronic systems.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies

Yannan Jiang, Lei Wang, Jiao Wang, Charles Nwakanma Akwuruoha, and Weiping Cao
Opt. Express 25(22) 27616-27623 (2017)

Dynamically tunable broadband linear-to-circular polarization converter based on Dirac semimetals

Linlin Dai, Yuping Zhang, Xiaohan Guo, Yukun Zhao, Shande Liu, and Huiyun Zhang
Opt. Mater. Express 8(10) 3238-3249 (2018)

Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials

Jiao Wang and Yannan Jiang
Opt. Express 25(5) 5206-5216 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-Macpherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 489–499 (2013).
    [Crossref]
  2. X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
    [Crossref]
  3. A. B. Li, S. Singh, and D. Sievenpiper, “Metasurfaces and their applications,” Nanophotonics 7(6), 989–1011 (2018).
    [Crossref]
  4. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
    [Crossref]
  5. A. X. Chen, W. W. Jiang, Z. Z. Chen, and J. H. Wang, “Overview on multipattern and multipolarization antennas for aerospace and terrestrial applications,” Int. J. Antenn. Propag. 2013, 1–11 (2013).
    [Crossref]
  6. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref]
  7. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four u-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
    [Crossref]
  8. H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
    [Crossref]
  9. Y. N. Jiang, L. Wang, J. Wang, C. N. Akwuruoha, and W. P. Cao, “Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies,” Opt. Express 25(22), 27616–27623 (2017).
    [Crossref]
  10. R. S. Chu and K. M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antennas Propag. 35(6), 652–661 (1987).
    [Crossref]
  11. M. Euler, V. Fusco, R. Cahill, and R. Dickie, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antenna. P. 4(11), 1764–1772 (2010).
    [Crossref]
  12. E. Lier and T. Schaug-Pettersen, “A novel type of waveguide polarizer with large cross-polar bandwidth,” IEEE Trans. Microwave Theory Tech. 36(11), 1531–1534 (1988).
    [Crossref]
  13. M. Mutlu, A. E. Akosman, and E. Ozbay, “Broadband circular polarizer based on high-contrast gratings,” Opt. Lett. 37(11), 2094–2096 (2012).
    [Crossref]
  14. M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antennas Propag. 60(6), 3007–3011 (2012).
    [Crossref]
  15. Y. Chen, G. B. Jiang, S. Q. Chen, Z. N. Guo, X. F. Yu, C. J. Zhao, H. Zhang, Q. L. Bao, S. C. Wen, D. Y. Tang, and D. Y. Fan, “Mechanically exfoliated black phosphorus as a new saturable absorber for both Q-switching and mode-locking laser operation,” Opt. Express 23(10), 12823–12833 (2015).
    [Crossref]
  16. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  17. Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
    [Crossref]
  18. L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
    [Crossref]
  19. B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MOS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
    [Crossref]
  20. M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MOS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
    [Crossref]
  21. S. P. Koening, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Ozyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
    [Crossref]
  22. F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
    [Crossref]
  23. D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” EPL 108(6), 67004 (2014).
    [Crossref]
  24. F. Zhou and J. F. Zhang, “Polarization independent black-phosphorus polarizer in visible regime,” IEEE Photonics Technol. Lett. 29(22), 1923–1926 (2017).
    [Crossref]
  25. W. F. Shen, C. G. Hu, S. C. Huo, Z. Y. Sun, S. Q. Fan, J. Liu, and X. T. Hu, “Wavelength tunable polarizer based on layered black phosphorus on Si/SiO2 substrate,” Opt. Lett. 43(6), 1255–1258 (2018).
    [Crossref]
  26. N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
    [Crossref]
  27. J. Wang, Y. N. Jiang, and Z. R. Hu, “Dual-band and polarization-independent infrared absorber based on two-dimensional black phosphorus metamaterials,” Opt. Express 25(18), 22149–22157 (2017).
    [Crossref]

2018 (3)

A. B. Li, S. Singh, and D. Sievenpiper, “Metasurfaces and their applications,” Nanophotonics 7(6), 989–1011 (2018).
[Crossref]

W. F. Shen, C. G. Hu, S. C. Huo, Z. Y. Sun, S. Q. Fan, J. Liu, and X. T. Hu, “Wavelength tunable polarizer based on layered black phosphorus on Si/SiO2 substrate,” Opt. Lett. 43(6), 1255–1258 (2018).
[Crossref]

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

2017 (3)

2015 (1)

2014 (4)

S. P. Koening, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Ozyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” EPL 108(6), 67004 (2014).
[Crossref]

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

2013 (4)

M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MOS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
[Crossref]

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-Macpherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 489–499 (2013).
[Crossref]

A. X. Chen, W. W. Jiang, Z. Z. Chen, and J. H. Wang, “Overview on multipattern and multipolarization antennas for aerospace and terrestrial applications,” Int. J. Antenn. Propag. 2013, 1–11 (2013).
[Crossref]

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

2012 (4)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
[Crossref]

M. Mutlu, A. E. Akosman, and E. Ozbay, “Broadband circular polarizer based on high-contrast gratings,” Opt. Lett. 37(11), 2094–2096 (2012).
[Crossref]

M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antennas Propag. 60(6), 3007–3011 (2012).
[Crossref]

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

2011 (2)

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MOS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Asymmetric chiral metamaterial circular polarizer based on four u-shaped split ring resonators,” Opt. Lett. 36(9), 1653–1655 (2011).
[Crossref]

2010 (3)

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antenna. P. 4(11), 1764–1772 (2010).
[Crossref]

2009 (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

1988 (1)

E. Lier and T. Schaug-Pettersen, “A novel type of waveguide polarizer with large cross-polar bandwidth,” IEEE Trans. Microwave Theory Tech. 36(11), 1531–1534 (1988).
[Crossref]

1987 (1)

R. S. Chu and K. M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antennas Propag. 35(6), 652–661 (1987).
[Crossref]

Akosman, A. E.

Akwuruoha, C. N.

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Bao, Q. L.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
[Crossref]

Brivio, J.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MOS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref]

Cahill, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antenna. P. 4(11), 1764–1772 (2010).
[Crossref]

Cao, W. P.

Chen, A. X.

A. X. Chen, W. W. Jiang, Z. Z. Chen, and J. H. Wang, “Overview on multipattern and multipolarization antennas for aerospace and terrestrial applications,” Int. J. Antenn. Propag. 2013, 1–11 (2013).
[Crossref]

Chen, S. Q.

Chen, X. H.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Chen, Y.

Chen, Z. Z.

A. X. Chen, W. W. Jiang, Z. Z. Chen, and J. H. Wang, “Overview on multipattern and multipolarization antennas for aerospace and terrestrial applications,” Int. J. Antenn. Propag. 2013, 1–11 (2013).
[Crossref]

Cheung, S. W.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

Chu, R. S.

R. S. Chu and K. M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antennas Propag. 35(6), 652–661 (1987).
[Crossref]

Chung, K. L.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

Coleman, J. N.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Cui, Y.

Decker, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Dickie, R.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antenna. P. 4(11), 1764–1772 (2010).
[Crossref]

Doganov, R. A.

S. P. Koening, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Ozyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Dubey, M.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Euler, M.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antenna. P. 4(11), 1764–1772 (2010).
[Crossref]

Fan, D. Y.

Fan, S. Q.

Feng, D. L.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Fuhrer, M. S.

M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MOS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
[Crossref]

Fusco, V.

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antenna. P. 4(11), 1764–1772 (2010).
[Crossref]

Gansel, J. K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Ge, Q. Q.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Giacometti, V.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MOS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
[Crossref]

Guo, Z. N.

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
[Crossref]

Hone, J.

M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MOS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
[Crossref]

Hu, C. G.

Hu, X. T.

Hu, Z. R.

Huo, S. C.

Jiang, G. B.

Jiang, W. W.

A. X. Chen, W. W. Jiang, Z. Z. Chen, and J. H. Wang, “Overview on multipattern and multipolarization antennas for aerospace and terrestrial applications,” Int. J. Antenn. Propag. 2013, 1–11 (2013).
[Crossref]

Jiang, Y. N.

Joyal, M. A.

M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antennas Propag. 60(6), 3007–3011 (2012).
[Crossref]

Kalantar-Zadeh, K.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Kis, A.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MOS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref]

Koening, S. P.

S. P. Koening, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Ozyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
[Crossref]

Laurin, J. J.

M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antennas Propag. 60(6), 3007–3011 (2012).
[Crossref]

Lee, K. M.

R. S. Chu and K. M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antennas Propag. 35(6), 652–661 (1987).
[Crossref]

Li, A. B.

A. B. Li, S. Singh, and D. Sievenpiper, “Metasurfaces and their applications,” Nanophotonics 7(6), 989–1011 (2018).
[Crossref]

Li, L. K.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Lier, E.

E. Lier and T. Schaug-Pettersen, “A novel type of waveguide polarizer with large cross-polar bandwidth,” IEEE Trans. Microwave Theory Tech. 36(11), 1531–1534 (1988).
[Crossref]

Liu, J.

Lu, W. J.

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” EPL 108(6), 67004 (2014).
[Crossref]

Lv, H. Y.

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” EPL 108(6), 67004 (2014).
[Crossref]

Mao, N. N.

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Mutlu, M.

Neto, A. H. C.

S. P. Koening, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Ozyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
[Crossref]

Ou, X. D.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Ozbay, E.

Ozyilmaz, B.

S. P. Koening, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Ozyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Park, H.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-Macpherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 489–499 (2013).
[Crossref]

Parrott, E. P. J.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-Macpherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 489–499 (2013).
[Crossref]

Peng, H. L.

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Pickwell-Macpherson, E.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-Macpherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 489–499 (2013).
[Crossref]

Radenovic, A.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MOS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref]

Radisavljevic, B.

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MOS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref]

Ramasubramaniam, A.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Schaug-Pettersen, T.

E. Lier and T. Schaug-Pettersen, “A novel type of waveguide polarizer with large cross-polar bandwidth,” IEEE Trans. Microwave Theory Tech. 36(11), 1531–1534 (1988).
[Crossref]

Schmidt, H.

S. P. Koening, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Ozyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

Serebryannikov, A. E.

Shao, D. F.

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” EPL 108(6), 67004 (2014).
[Crossref]

Shen, W. F.

Sievenpiper, D.

A. B. Li, S. Singh, and D. Sievenpiper, “Metasurfaces and their applications,” Nanophotonics 7(6), 989–1011 (2018).
[Crossref]

Singh, S.

A. B. Li, S. Singh, and D. Sievenpiper, “Metasurfaces and their applications,” Nanophotonics 7(6), 989–1011 (2018).
[Crossref]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
[Crossref]

Strano, M. S.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Sun, W. F.

Sun, Y. P.

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” EPL 108(6), 67004 (2014).
[Crossref]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Sun, Z. Y.

Tang, D. Y.

Thiel, M.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Tian, H. H.

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Tong, L. M.

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Wang, H.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Wang, J.

Wang, J. H.

A. X. Chen, W. W. Jiang, Z. Z. Chen, and J. H. Wang, “Overview on multipattern and multipolarization antennas for aerospace and terrestrial applications,” Int. J. Antenn. Propag. 2013, 1–11 (2013).
[Crossref]

Wang, L.

Wang, Q. H.

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

Wang, X. K.

Wen, S. C.

Wu, H.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Wu, J. X.

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Xia, F.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xiao, D.

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

Xu, H.

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Yan, F.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-Macpherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 489–499 (2013).
[Crossref]

Ye, G. J.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Ye, J. S.

Yu, C.

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-Macpherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 489–499 (2013).
[Crossref]

Yu, X. F.

Yu, Y. J.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

Yuk, T. I.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

Zhang, H.

Zhang, J.

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Zhang, J. F.

F. Zhou and J. F. Zhang, “Polarization independent black-phosphorus polarizer in visible regime,” IEEE Photonics Technol. Lett. 29(22), 1923–1926 (2017).
[Crossref]

Zhang, S. S.

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Zhang, Y.

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

X. K. Wang, Y. Cui, W. F. Sun, J. S. Ye, and Y. Zhang, “Terahertz polarization real-time imaging based on balanced electro-optic detection,” J. Opt. Soc. Am. A 27(11), 2387–2393 (2010).
[Crossref]

Zhao, C. J.

Zhou, F.

F. Zhou and J. F. Zhang, “Polarization independent black-phosphorus polarizer in visible regime,” IEEE Photonics Technol. Lett. 29(22), 1923–1926 (2017).
[Crossref]

Zhu, H. L.

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

Appl. Phys. Lett. (1)

S. P. Koening, R. A. Doganov, H. Schmidt, A. H. C. Neto, and B. Ozyilmaz, “Electric field effect in ultrathin black phosphorus,” Appl. Phys. Lett. 104(10), 103106 (2014).
[Crossref]

EPL (1)

D. F. Shao, W. J. Lu, H. Y. Lv, and Y. P. Sun, “Electron-doped phosphorene: A potential monolayer superconductor,” EPL 108(6), 67004 (2014).
[Crossref]

IEEE Antenn. Propag. M. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,” IEEE Antenn. Propag. M. 54(2), 10–35 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (1)

F. Zhou and J. F. Zhang, “Polarization independent black-phosphorus polarizer in visible regime,” IEEE Photonics Technol. Lett. 29(22), 1923–1926 (2017).
[Crossref]

IEEE Trans. Antennas Propag. (3)

H. L. Zhu, S. W. Cheung, K. L. Chung, and T. I. Yuk, “Linear-to-circular polarization conversion using metasurface,” IEEE Trans. Antennas Propag. 61(9), 4615–4623 (2013).
[Crossref]

R. S. Chu and K. M. Lee, “Analytical method of a multilayered meander-line polarizer plate with normal and oblique plane-wave incidence,” IEEE Trans. Antennas Propag. 35(6), 652–661 (1987).
[Crossref]

M. A. Joyal and J. J. Laurin, “Analysis and design of thin circular polarizers based on meander lines,” IEEE Trans. Antennas Propag. 60(6), 3007–3011 (2012).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

E. Lier and T. Schaug-Pettersen, “A novel type of waveguide polarizer with large cross-polar bandwidth,” IEEE Trans. Microwave Theory Tech. 36(11), 1531–1534 (1988).
[Crossref]

IET Microw. Antenna. P. (1)

M. Euler, V. Fusco, R. Cahill, and R. Dickie, “Comparison of frequency-selective screen-based linear to circular split-ring polarisation convertors,” IET Microw. Antenna. P. 4(11), 1764–1772 (2010).
[Crossref]

Int. J. Antenn. Propag. (1)

A. X. Chen, W. W. Jiang, Z. Z. Chen, and J. H. Wang, “Overview on multipattern and multipolarization antennas for aerospace and terrestrial applications,” Int. J. Antenn. Propag. 2013, 1–11 (2013).
[Crossref]

J. Infrared, Millimeter, Terahertz Waves (1)

F. Yan, C. Yu, H. Park, E. P. J. Parrott, and E. Pickwell-Macpherson, “Advances in polarizer technology for terahertz frequency applications,” J. Infrared, Millimeter, Terahertz Waves 34(9), 489–499 (2013).
[Crossref]

J. Opt. Soc. Am. A (1)

Nano Res. (1)

N. N. Mao, S. S. Zhang, J. X. Wu, H. H. Tian, J. X. Wu, H. Xu, H. L. Peng, L. M. Tong, and J. Zhang, “Investigation of black phosphorus as a nano-optical polarization element by polarized Raman spectroscopy,” Nano Res. 11(6), 3154–3163 (2018).
[Crossref]

Nanophotonics (1)

A. B. Li, S. Singh, and D. Sievenpiper, “Metasurfaces and their applications,” Nanophotonics 7(6), 989–1011 (2018).
[Crossref]

Nat. Nanotechnol. (4)

Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nat. Nanotechnol. 7(11), 699–712 (2012).
[Crossref]

L. K. Li, Y. J. Yu, G. J. Ye, Q. Q. Ge, X. D. Ou, H. Wu, D. L. Feng, X. H. Chen, and Y. Zhang, “Black phosphorus field-effect transistors,” Nat. Nanotechnol. 9(5), 372–377 (2014).
[Crossref]

B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MOS2 transistors,” Nat. Nanotechnol. 6(3), 147–150 (2011).
[Crossref]

M. S. Fuhrer and J. Hone, “Measurement of mobility in dual-gated MOS2 transistors,” Nat. Nanotechnol. 8(3), 146–147 (2013).
[Crossref]

Nat. Photonics (2)

F. Xia, H. Wang, D. Xiao, M. Dubey, and A. Ramasubramaniam, “Two-dimensional material nanophotonics,” Nat. Photonics 8(12), 899–907 (2014).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Science (1)

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, and et al., “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) 3×3 units structure diagram of the proposed polarization converter, (b) side view, (c) top view of the unit cell and (d) relative permittivity of phosphorene for various ns and d = 1 nm.
Fig. 2.
Fig. 2. Reflection coefficient magnitude (a) and phase differences (b) of u-component and v-component for the PRA perpendicular to the x and y direction and the anisotropic phosphorene being replaced by an isotropic 2D-material with ɛav=(ɛx +ɛy)/2.
Fig. 3.
Fig. 3. The ellipticity and axis ratio.
Fig. 4.
Fig. 4. (a & d) Magnitude and (b & e) phase difference of reflection coefficient and (c & f) axis ratio for various ns and N.
Fig. 5.
Fig. 5. (a & d) Magnitude, (b & e) phase difference and (c & f) AR of reflection coefficient for various h and θ .
Fig. 6.
Fig. 6. (a) Magnitude and (b) phase difference of reflection coefficients for x-component and y-component.
Fig. 7.
Fig. 7. Current distributions crossing the plane of the upper phosphorene metamaterial (the 1st column; the red arrow representing the overall direction of current) and surface current on the gold mirror (the 2nd column) and diagrams of the equivalent electric dipoles or magnetic moments (the 3rd column): the 1st and 2nd rows and the 3rd and 4th rows are for 15 THz and 20 THz, respectively; the 1st and 3rd rows and the 2nd and 4th rows are for the x-polarized and y-polarized incident waves, respectively. Note that, the currents cross each layer phosphorene metamaterial have the similar distributions, and then the current distributions cross the plane of the 6th layer are provided along the 1st column.
Fig. 8.
Fig. 8. Current distribution crossing the plane of the first phosphorene layer for various time phases from 0° to 150° with a step of 30° at 15 THz.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I=ruu2+rvu2
Q=ruu2rvu2
U=2ruurvucosΔϕ
V=2ruurvusinΔϕ.
Ei=Eiejkzeu=Ei2ejkzex+Ei2ejkzey
Er=Ei2[rxxej(kz+φxx)+rxyej(kz+φxy)]ex+Ei2[ryxej(kz+φyx)+ryyej(kz+φyy)]ey.
Er=rEi2ejkz[ejφxxex+ej(φxx+2nπ±π/π22)ey],

Metrics