Abstract

We report a polarization-insensitive dual-band tunable graphene absorber in the terahertz region, which is composed of a top patterned graphene and a gold ground plane, separated by a silicon dielectric layer. Numerical simulations verify the amplitude of the absorption peaks have reached 98.6% and 98.2% at 0.512THz and 1.467THz, respectively. It exhibits excellent performances with high absorptivity and wide incident angles for both transverse electric (TE) and transverse magnetic (TM) polarizations. The frequency and amplitude of the absorption peaks can be regulated by chemical potential of graphene via bias voltage. These characteristics provide great potential applications in imaging, detecting, and sensing in the terahertz regime.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual broadband absorber based on graphene metamaterial in the terahertz range

Ning Hu, Fengling Wu, Li-an Bian, Hanqing Liu, and Peiguo Liu
Opt. Mater. Express 8(12) 3899-3909 (2018)

Multi-band terahertz absorber exploiting graphene metamaterial

Qihui Zhou, Peiguo Liu, Li-an Bian, Xin Cai, and Hanqing Liu
Opt. Mater. Express 8(9) 2928-2940 (2018)

A novel structure for tunable terahertz absorber based on graphene

Bing-zheng Xu, Chang-qing Gu, Zhuo Li, and Zhen-yi Niu
Opt. Express 21(20) 23803-23811 (2013)

References

  • View by:
  • |
  • |
  • |

  1. M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, “Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber,” Opt. Commun. 295, 262–267 (2013).
    [Crossref]
  2. F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
    [Crossref]
  3. Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
    [Crossref]
  4. R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
    [Crossref]
  5. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
    [Crossref]
  6. W. Zhang, J. L. Jiang, J. Yuan, S. Liang, J. S. Qian, J. Shu, and L. Y. Jiang, “Functionality-switchable terahertz polarization converter based on a graphene-integrated planar metamaterial,” OSA Continuum 1(1), 124–135 (2018).
    [Crossref]
  7. H. C. Lin, P. D. Ye, and G. D. Wilk, “Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs,” Appl. Phys. Lett. 87(18), 182904 (2005).
    [Crossref]
  8. G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
    [Crossref]
  9. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref]
  10. X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
    [Crossref]
  11. N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
    [Crossref]
  12. Y. Ma, Q. Chen, J. Grant, S. C. Saha, A. Khalid, and D. R. Cumming, “A terahertz polarization insensitive dual band metamaterial absorber,” Opt. Lett. 36(6), 945–947 (2011).
    [Crossref]
  13. J. Grant, Y. Ma, S. Saha, L. B. Lok, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref]
  14. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]
  15. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref]
  16. M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614 (2013).
    [Crossref]
  17. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref]
  18. Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
    [Crossref]
  19. M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
    [Crossref]
  20. Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
    [Crossref]
  21. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  22. Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum hall effect and berry's phase in graphene,” Nature 438(7065), 201–204 (2005).
    [Crossref]
  23. J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
    [Crossref]
  24. S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
    [Crossref]
  25. A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  26. L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Commun. 369, 65–71 (2016).
    [Crossref]
  27. R. Xing and S. Jian, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 100, 129–132 (2018).
  28. X. Hu, Y. Yao, Z. Zhu, M. Chen, L. Zhu, W. Yang, Y. Yang, F. Wu, and J. Jiang, “Active graphene metamaterial absorber for terahertz absorption bandwidth, intensity and frequency control,” Opt. Mater. Express 8(4), 1031 (2018).
    [Crossref]

2018 (3)

2017 (1)

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

2016 (3)

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref]

2015 (3)

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref]

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

2014 (3)

2013 (4)

2012 (1)

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

2011 (4)

2010 (1)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

2009 (1)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

2008 (2)

2005 (2)

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum hall effect and berry's phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref]

H. C. Lin, P. D. Ye, and G. D. Wilk, “Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs,” Appl. Phys. Lett. 87(18), 182904 (2005).
[Crossref]

Amin, M.

Andryieuski, A.

Averitt, R. D.

Bagci, H.

Bingham, C.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Bingham, C. M.

Bo, S.

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Capolino, F.

Chen, M.

Chen, Q.

Chen, T.

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Cheng, L.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Cui, T. J.

Cumming, D. R.

Cumming, D. R. S.

Ding, C.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Farhat, M.

Feng, Y.

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Gao, R.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Grant, J.

Grigorenko, A.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Gu, C.

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Guclu, C.

Guo, E.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Guo, L.

M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, “Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber,” Opt. Commun. 295, 262–267 (2013).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, T.

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

He, Y.

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Hou, Y.

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Hu, F.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Hu, X.

Ji, J.

Jian, S.

R. Xing and S. Jian, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 100, 129–132 (2018).

Jiang, J.

Jiang, J. L.

Jiang, L. Y.

Jiang, T.

Jiang, W. X.

Jiang, X.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Jokerst, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Khalid, A.

Kim, P.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum hall effect and berry's phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref]

Landy, N.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Landy, N. I.

Lavrinenko, A. V.

Li, H.

Li, J.

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Li, M.

M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, “Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber,” Opt. Commun. 295, 262–267 (2013).
[Crossref]

Liang, S.

Lin, H.

M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, “Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber,” Opt. Commun. 295, 262–267 (2013).
[Crossref]

Lin, H. C.

H. C. Lin, P. D. Ye, and G. D. Wilk, “Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs,” Appl. Phys. Lett. 87(18), 182904 (2005).
[Crossref]

Ling, F.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Liu, S.

M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, “Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber,” Opt. Commun. 295, 262–267 (2013).
[Crossref]

Liu, W.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Lok, L. B.

Luo, C.

Ma, H. F.

Ma, Y.

Novoselov, K.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Othman, M. A. K.

Padilla, W. J.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

Polini, M.

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Qian, J. S.

Qin, S.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Quan, B.

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Saha, S.

Saha, S. C.

Shen, J.

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Shen, X.

Shu, J.

Smith, D. R.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Stormer, H. L.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum hall effect and berry's phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref]

Su, Z.

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tan, Y. W.

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum hall effect and berry's phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref]

Tao, H.

Tyler, T.

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Wang, B.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Wang, G.

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Wang, L.

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Wang, T.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Wang, Y.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Wilk, G. D.

H. C. Lin, P. D. Ye, and G. D. Wilk, “Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs,” Appl. Phys. Lett. 87(18), 182904 (2005).
[Crossref]

Wu, F.

Wu, L.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Xiao, B.

M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, “Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber,” Opt. Commun. 295, 262–267 (2013).
[Crossref]

Xiao, S.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Xing, R.

R. Xing and S. Jian, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 100, 129–132 (2018).

Xiong, W.

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Xu, X.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Xu, Z.

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Yan, X.

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Yang, H.

M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, “Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber,” Opt. Commun. 295, 262–267 (2013).
[Crossref]

Yang, W.

Yang, Y.

Yao, G.

Yao, J.

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref]

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

Yao, Y.

Ye, P. D.

H. C. Lin, P. D. Ye, and G. D. Wilk, “Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs,” Appl. Phys. Lett. 87(18), 182904 (2005).
[Crossref]

Yin, J.

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Yuan, J.

Yuan, X.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Yue, J.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Zhang, B.

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

Zhang, J.

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Zhang, L.

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

Zhang, W.

Zhang, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

Zhang, Y.

Zhao, J.

Zhao, X.

Zhu, B.

Zhu, L.

Zhu, Z.

X. Hu, Y. Yao, Z. Zhu, M. Chen, L. Zhu, W. Yang, Y. Yang, F. Wu, and J. Jiang, “Active graphene metamaterial absorber for terahertz absorption bandwidth, intensity and frequency control,” Opt. Mater. Express 8(4), 1031 (2018).
[Crossref]

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Zou, T.

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Appl. Phys. Lett. (1)

H. C. Lin, P. D. Ye, and G. D. Wilk, “Leakage current and breakdown electric-field studies on ultrathin atomic-layer-deposited Al2O3 on GaAs,” Appl. Phys. Lett. 87(18), 182904 (2005).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Phys. D: Appl. Phys. (1)

S. Xiao, T. Wang, X. Jiang, X. Yan, L. Cheng, and B. Wang, “Strong interaction between graphene layer and fano resonance in terahertz metamaterials,” J. Phys. D: Appl. Phys. 50(19), 195101 (2017).
[Crossref]

Nat. Photonics (2)

A. Grigorenko, M. Polini, and K. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Nature (2)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref]

Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, “Experimental observation of the quantum hall effect and berry's phase in graphene,” Nature 438(7065), 201–204 (2005).
[Crossref]

Opt. Commun. (6)

M. Li, S. Liu, L. Guo, H. Lin, H. Yang, and B. Xiao, “Influence of the dielectric-spacer thickness on the dual-band metamaterial absorber,” Opt. Commun. 295, 262–267 (2013).
[Crossref]

F. Hu, T. Zou, B. Quan, X. Xu, S. Bo, T. Chen, L. Wang, C. Gu, and J. Li, “Polarization-dependent terahertz metamaterial absorber with high absorption in two orthogonal directions,” Opt. Commun. 332, 321–326 (2014).
[Crossref]

Y. He, B. Zhang, T. He, T. Chen, G. Wang, Y. Hou, W. Xiong, and J. Shen, “Optically-controlled metamaterial absorber based on hybrid structure,” Opt. Commun. 356, 595–598 (2015).
[Crossref]

R. Gao, Z. Xu, C. Ding, L. Wu, and J. Yao, “Graphene metamaterial for multiband and broadband terahertz absorber,” Opt. Commun. 356, 400–404 (2015).
[Crossref]

L. Zhang, F. Hu, X. Xu, Y. Wang, and E. Guo, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Commun. 369, 65–71 (2016).
[Crossref]

R. Xing and S. Jian, “Design of separately tunable terahertz two-peak absorber based on graphene,” Opt. Commun. 100, 129–132 (2018).

Opt. Express (9)

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743–22752 (2014).
[Crossref]

G. Yao, F. Ling, J. Yue, C. Luo, J. Ji, and J. Yao, “Dual-band tunable perfect metamaterial absorber in the THz range,” Opt. Express 24(2), 1518–1527 (2016).
[Crossref]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref]

X. Shen, T. J. Cui, J. Zhao, H. F. Ma, W. X. Jiang, and H. Li, “Polarization-independent wide-angle triple-band metamaterial absorber,” Opt. Express 19(10), 9401–9407 (2011).
[Crossref]

M. A. K. Othman, C. Guclu, and F. Capolino, “Graphene-based tunable hyperbolic metamaterials and enhanced near-field absorption,” Opt. Express 21(6), 7614 (2013).
[Crossref]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref]

Y. Zhang, Y. Feng, B. Zhu, J. Zhao, and T. Jiang, “Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency,” Opt. Express 22(19), 22743 (2014).
[Crossref]

M. Amin, M. Farhat, and H. Bağcı, “An ultra-broadband multilayered graphene absorber,” Opt. Express 21(24), 29938–29948 (2013).
[Crossref]

Z. Su, J. Yin, and X. Zhao, “Terahertz dual-band metamaterial absorber based on graphene/MgF(2) multilayer structures,” Opt. Express 23(2), 1679–1690 (2015).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

OSA Continuum (1)

Phys. Rev. B: Condens. Matter Mater. Phys. (1)

N. Landy, C. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B: Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Sci. Rep. (1)

J. Zhang, W. Liu, Z. Zhu, X. Yuan, and S. Qin, “Towards nano-optical tweezers with graphene plasmons: numerical investigation of trapping 10-nm particles with mid-infrared light,” Sci. Rep. 6(1), 38086 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the proposed all-graphene-dielectric terahertz absorber (Here, the parameters of the terahertz absorber are set as Px=Py=50µm, R = 15µm, r = 10µm, s = 8µm, g = 3µm, and t = 45µm).
Fig. 2.
Fig. 2. Relation between Fermi energy and voltage
Fig. 3.
Fig. 3. Absorption spectra for different chemical potential of 0.5 eV, 0.7 eV and 0.9eV
Fig. 4.
Fig. 4. (a) Absorption spectra based on the graphene crossing shaped, ring with four gaps, crossing shaped and ring with four gaps composite structure under normal incidence, (b) Electric field distribution (color for the intensity) of the all-graphene-dielectric patterns to describe the plasmon hybridization effect in the proposed absorber structure when the grapheme chemical potential is assumed to be 0.7 eV.
Fig. 5.
Fig. 5. Side view of electric field (a-b) and magnetic field (c-d) distributions at resonance points of 0.512THz, 1.461THz, respectively.
Fig. 6.
Fig. 6. Top view of power loss intensity distribution (a-b) and surface current distributions (c-d) for all grapheme dielectric based crossing-shaped and ring with four gaps composite structure. The according resonant frequencies are of 0.512THz and 1.461THz.
Fig. 7.
Fig. 7. Absorption characteristics for the proposed terahertz absorber for various substrate thickness t (a), various the outer radius of the graphene ring with four gaps values of R (b), various width of the graphene crossing structure values of s (c).
Fig. 8.
Fig. 8. Absorption spectra under different polarization angles for (a) TE- and (b) TM-wave polarization incidence

Tables (1)

Tables Icon

Table 1. Compared the proposed absorber with some others in terahertz region

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ=σintra+σinter=2e2kBTπ2iω+iτ1ln[2cosh(EF2kBT)]+e24[12+1πarctan(ω2EF2kBT)i2πln(ω+2EF)2(ω2EF)2+4(kBT)2]
σ=e2EFπ2iω+iτ1

Metrics