Abstract

A two-composition thin film (Ge20Sb10Se70/Ge20Sb10Se67S3 atomic % core/cladding glasses) was fabricated using a hot-fibre-pressing technique in which both glasses follow the same post-fibre processing. A simple approach is proposed that uses normal incidence transmission spectra to determine their refractive index contrast over the wavelength range from 2 to 25 µm with an error of less than ± 0.002. Using an improved Swanepoel method, the calculated numerical aperture of these two compositions was within ± 0.011 of that obtained from prism minimum deviation measurements. Results show that introducing 3 atomic % S into the Ge-Sb-Se glass system lowered the refractive index and blue-shifted the visible optical bandgap, the far-infrared fundamental vibrational absorption bands and the zero-dispersion wavelength.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm

Irnis Kubat, Christian S. Agger, Uffe Møller, Angela B. Seddon, Zhuoqi Tang, Slawomir Sujecki, Trevor M. Benson, David Furniss, Samir Lamrini, Karsten Scholle, Peter Fuhrberg, Bruce Napier, Mark Farries, Jon Ward, Peter M. Moselund, and Ole Bang
Opt. Express 22(16) 19169-19182 (2014)

Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation

Harshana G. Dantanarayana, Nabil Abdel-Moneim, Zhuoqi Tang, Lukasz Sojka, Slawomir Sujecki, David Furniss, Angela B. Seddon, Irnis Kubat, Ole Bang, and Trevor M. Benson
Opt. Mater. Express 4(7) 1444-1455 (2014)

Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber

D. Jayasuriya, C. R. Petersen, D. Furniss, C. Markos, Z. Tang, MD. S. Habib, O. Bang, T. M Benson, and A. B Seddon
Opt. Mater. Express 9(6) 2617-2629 (2019)

References

  • View by:
  • |
  • |
  • |

  1. A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
    [Crossref]
  2. J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
    [Crossref]
  3. D. Lezal, “Chalcogenide glasses-survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).
  4. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
    [Crossref]
  5. A. M. Andriesh, “Properties of chalcogenide for optical waveguides,” J. Non-Cryst. Solids 77-78, 1219–1228 (1985).
    [Crossref]
  6. Z. Cimpl and F. Kosek, “Utilization of chalcogenide glasses in infrared optics,” J. Non-Cryst. Solids 90(1-3), 577–579 (1987).
    [Crossref]
  7. I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).
  8. A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
    [Crossref]
  9. A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
    [Crossref]
  10. N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
    [Crossref]
  11. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  12. R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy : chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
    [Crossref]
  13. J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
    [Crossref]
  14. M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR Emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
    [Crossref]
  15. M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
    [Crossref]
  16. X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5, 1327–1333 (2003).
  17. M. Anne, J. Keirsse, and V. Nazabal, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
    [Crossref]
  18. F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
    [Crossref]
  19. J. A. Savage, P. J. Weber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12 µm infrared transmitting glasses,” J. Mater. Sci. 13(4), 859–864 (1978).
    [Crossref]
  20. A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
    [Crossref]
  21. M. Frumar, H. Tichá, J. Klikorka and, and P. Tomiska, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
    [Crossref]
  22. M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
    [Crossref]
  23. H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
    [Crossref]
  24. R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. A 2(8), 1339–1343 (1985).
    [Crossref]
  25. J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
    [Crossref]
  26. Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
    [Crossref]
  27. N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
    [Crossref]
  28. J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
    [Crossref]
  29. Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).
  30. H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
    [Crossref]
  31. D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
    [Crossref]
  32. Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
    [Crossref]
  33. J. Senior, Optical Fibre Communication: Principles and Practice, 3rd edition (Pearson Education Limited, 2009).
  34. D. Furniss and A. B. Seddon, “Thermal analysis of inorganic compound glasses and glass ceramics,” in Principles and Applications of Thermal Analysis, Paul Gabbott, ed. (Blackwells, 2007).
  35. D. C. Sati, A. Kovalskiy, R. Golovchak, and H. Jain, “Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number,” J. Non-Cryst. Solids 358(2), 163–167 (2012).
    [Crossref]
  36. P. Boolchand, P. Chen, and U. Vempati, “Intermediate Phase, structural variance and network demixing in chalcogenides: The usual case of group V sulphides,” J. Non-Cryst. Solids 355(37-42), 1773–1785 (2009).
    [Crossref]
  37. P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (Blackie, 1990).
  38. L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
    [Crossref]
  39. S. M. El-Sayed, “Far-infrared studies of the amorphous SbxGe28−xSe72 glass semiconductor,” Semicond. Sci. Technol. 18(4), 337–341 (2003).
    [Crossref]
  40. G. P. Agrawal, Nonlinear Fiber Optics, 5th edition (Academic Press, 2013).
  41. Amorphous Materials Inc, “AMTIR-2 Information” (consulted December 2018).
  42. J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

2018 (2)

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

2017 (3)

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR Emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

2015 (3)

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

2014 (3)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

2012 (1)

D. C. Sati, A. Kovalskiy, R. Golovchak, and H. Jain, “Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number,” J. Non-Cryst. Solids 358(2), 163–167 (2012).
[Crossref]

2011 (1)

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

2009 (4)

M. Anne, J. Keirsse, and V. Nazabal, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

P. Boolchand, P. Chen, and U. Vempati, “Intermediate Phase, structural variance and network demixing in chalcogenides: The usual case of group V sulphides,” J. Non-Cryst. Solids 355(37-42), 1773–1785 (2009).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

2008 (1)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy : chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

2006 (2)

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

2003 (6)

S. M. El-Sayed, “Far-infrared studies of the amorphous SbxGe28−xSe72 glass semiconductor,” Semicond. Sci. Technol. 18(4), 337–341 (2003).
[Crossref]

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

D. Lezal, “Chalcogenide glasses-survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5, 1327–1333 (2003).

2002 (1)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

1995 (1)

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

1987 (1)

Z. Cimpl and F. Kosek, “Utilization of chalcogenide glasses in infrared optics,” J. Non-Cryst. Solids 90(1-3), 577–579 (1987).
[Crossref]

1985 (2)

A. M. Andriesh, “Properties of chalcogenide for optical waveguides,” J. Non-Cryst. Solids 77-78, 1219–1228 (1985).
[Crossref]

R. Swanepoel, “Determining refractive index and thickness of thin films from wavelength measurements only,” J. Opt. Soc. Am. A 2(8), 1339–1343 (1985).
[Crossref]

1978 (1)

J. A. Savage, P. J. Weber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12 µm infrared transmitting glasses,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

1975 (2)

A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
[Crossref]

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

1973 (1)

M. Frumar, H. Tichá, J. Klikorka and, and P. Tomiska, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Abdel-Moneim, N.

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Abdel-Moneim, N. S.

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

Adam, J.

Adamietz, F.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Aggarwal, I. D.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy : chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th edition (Academic Press, 2013).

Andriesh, A. M.

A. M. Andriesh, “Properties of chalcogenide for optical waveguides,” J. Non-Cryst. Solids 77-78, 1219–1228 (1985).
[Crossref]

Anheier, N.

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

Anne, M.

M. Anne, J. Keirsse, and V. Nazabal, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Bang, O.

Barny, E.

Benes, L.

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Benson, T. M.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

Bernacki, B.

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

Boolchand, P.

P. Boolchand, P. Chen, and U. Vempati, “Intermediate Phase, structural variance and network demixing in chalcogenides: The usual case of group V sulphides,” J. Non-Cryst. Solids 355(37-42), 1773–1785 (2009).
[Crossref]

Braud, A.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Bureau, B.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Camy, P.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Carlie, N.

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Carter, S. F.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (Blackie, 1990).

Cerna, Z.

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

Chahal, R.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Charpentier, F.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Chen, P.

P. Boolchand, P. Chen, and U. Vempati, “Intermediate Phase, structural variance and network demixing in chalcogenides: The usual case of group V sulphides,” J. Non-Cryst. Solids 355(37-42), 1773–1785 (2009).
[Crossref]

Cimpl, Z.

Z. Cimpl and F. Kosek, “Utilization of chalcogenide glasses in infrared optics,” J. Non-Cryst. Solids 90(1-3), 577–579 (1987).
[Crossref]

Couzi, M.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Dantanarayana, H. G.

Doualan, J.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Drexhage, M. G.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (Blackie, 1990).

Dudley, J. M.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

El-Sayed, S. M.

S. M. El-Sayed, “Far-infrared studies of the amorphous SbxGe28−xSe72 glass semiconductor,” Semicond. Sci. Technol. 18(4), 337–341 (2003).
[Crossref]

Falconi, M. C.

Fang, Y.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

Ferrari, M.

France, P. W.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (Blackie, 1990).

Frumar, M.

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

M. Frumar, H. Tichá, J. Klikorka and, and P. Tomiska, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Frumarova, B.

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

Furniss, D.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

D. Furniss and A. B. Seddon, “Thermal analysis of inorganic compound glasses and glass ceramics,” in Principles and Applications of Thermal Analysis, Paul Gabbott, ed. (Blackwells, 2007).

Golovchak, R.

D. C. Sati, A. Kovalskiy, R. Golovchak, and H. Jain, “Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number,” J. Non-Cryst. Solids 358(2), 163–167 (2012).
[Crossref]

Hayes, D. J.

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
[Crossref]

Hilton, A. R.

A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
[Crossref]

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

Hu, J.

Inc, Amorphous Materials

Amorphous Materials Inc, “AMTIR-2 Information” (consulted December 2018).

Jain, H.

D. C. Sati, A. Kovalskiy, R. Golovchak, and H. Jain, “Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number,” J. Non-Cryst. Solids 358(2), 163–167 (2012).
[Crossref]

Jayasuriya, D.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

Keirsse, J.

M. Anne, J. Keirsse, and V. Nazabal, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Klikorka and, J.

M. Frumar, H. Tichá, J. Klikorka and, and P. Tomiska, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Kohoutek, T.

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

Kosek, F.

Z. Cimpl and F. Kosek, “Utilization of chalcogenide glasses in infrared optics,” J. Non-Cryst. Solids 90(1-3), 577–579 (1987).
[Crossref]

Kovalskiy, A.

D. C. Sati, A. Kovalskiy, R. Golovchak, and H. Jain, “Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number,” J. Non-Cryst. Solids 358(2), 163–167 (2012).
[Crossref]

Kubat, I.

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Laniel, J. M.

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

Lezal, D.

D. Lezal, “Chalcogenide glasses-survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

Loni, A.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Lopez, C.

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

Lucas, J.

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5, 1327–1333 (2003).

Lucas, P.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Ma, H.

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5, 1327–1333 (2003).

Markos, C.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

Mcbrearty, E. M.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Mellor, C. J.

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

Menard, J.

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

Menyuk, C. R.

Michel, K.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Miller, C. A.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Moizan, V.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Moore, M. W.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (Blackie, 1990).

Musgraves, J.

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

Nabil, S.

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

Nazabal, V.

Nazabel, V.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Neate, N. C.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

Orava, J.

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

Palma, G.

Pan, W. J.

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Parker, J. M.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (Blackie, 1990).

Parnell, H.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Petit, L.

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Phillipes, M.

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

Pitt, A. M.

J. A. Savage, P. J. Weber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12 µm infrared transmitting glasses,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

Poelman, D.

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Prudenzano, F.

Qi, S.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Qiao, H.

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

Quetel, L.

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Quimby, R. S.

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy : chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Rechtin, M. D.

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

Richardson, K.

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

Richardson, K. A.

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

Richardson, K. C.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Rodriguez, V.

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Rowe, H.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Sanghera, J. S.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy : chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

Sati, D. C.

D. C. Sati, A. Kovalskiy, R. Golovchak, and H. Jain, “Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number,” J. Non-Cryst. Solids 358(2), 163–167 (2012).
[Crossref]

Savage, J. A.

J. A. Savage, P. J. Weber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12 µm infrared transmitting glasses,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

Seddon, A. B.

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

D. Furniss and A. B. Seddon, “Thermal analysis of inorganic compound glasses and glass ceramics,” in Principles and Applications of Thermal Analysis, Paul Gabbott, ed. (Blackwells, 2007).

Senior, J.

J. Senior, Optical Fibre Communication: Principles and Practice, 3rd edition (Pearson Education Limited, 2009).

Sewell, P.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Shaw, L. B.

J. Hu, C. R. Menyuk, C. Wei, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Highly efficient cascaded amplification using Pr3+- doped mid-infrared chalcogenide fiber amplifiers,” Opt. Lett. 40(16), 3687–3690 (2015).
[Crossref]

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy : chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

Shen, M.

Smet, P.

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Sojka, L.

Sójka, L.

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

Starecki, F.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR Emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Sujecki, S.

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

Swanepoel, R.

Taccheo, S.

Tang, Z.

M. Shen, D. Furniss, Z. Tang, E. Barny, L. Sojka, S. Sujecki, T. M. Benson, and A. B. Seddon, “Modeling of resonantly pumped mid-infrared Pr 3+-doped chalcogenide fiber amplifier with different pumping schemes,” Opt. Express 26(18), 23641–23660 (2018).
[Crossref]

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

H. G. Dantanarayana, N. Abdel-Moneim, Z. Tang, L. Sojka, S. Sujecki, D. Furniss, A. B. Seddon, I. Kubat, O. Bang, and T. M. Benson, “Refractive index dispersion of chalcogenide glasses for ultra-high numerical-aperture fiber for mid-infrared supercontinuum generation,” Opt. Mater. Express 4(7), 1444–1455 (2014).
[Crossref]

Tang, Z. Q.

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

Taylor, J. R.

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

Tichá, H.

M. Frumar, H. Tichá, J. Klikorka and, and P. Tomiska, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Tomiska, P.

M. Frumar, H. Tichá, J. Klikorka and, and P. Tomiska, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

Troles, J.

M. C. Falconi, G. Palma, F. Starecki, V. Nazabal, J. Troles, J. Adam, S. Taccheo, M. Ferrari, and F. Prudenzano, “Dysprosium-doped chalcogenide master oscillator power amplifier (MOPA) for mid-IR Emission,” J. Lightwave Technol. 35(2), 265–273 (2017).
[Crossref]

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Turcotte, K.

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

Vallee, R.

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

Vempati, U.

P. Boolchand, P. Chen, and U. Vempati, “Intermediate Phase, structural variance and network demixing in chalcogenides: The usual case of group V sulphides,” J. Non-Cryst. Solids 355(37-42), 1773–1785 (2009).
[Crossref]

Vicek, M.

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

Villeneuve, A.

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

Wagner, T.

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

Wang, R.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Wang, Y.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Weber, P. J.

J. A. Savage, P. J. Weber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12 µm infrared transmitting glasses,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

Wei, C.

Wright, J. V.

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (Blackie, 1990).

Yang, A.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Yang, Z.

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

Zhang, D. M.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Zhang, L.

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

Zhang, X.

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5, 1327–1333 (2003).

Zhang, Y.

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal, “Chalcogenide glass-fiber-based mid-IR sources and applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009).
[Crossref]

IEEE Photonics Technol. Lett. (1)

R. S. Quimby, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Modeling of cascade lasing in Dy : chalcogenide glass fiber laser with efficient output at 4.5 µm,” IEEE Photonics Technol. Lett. 20(2), 123–125 (2008).
[Crossref]

J. Am. Ceram. Soc. (1)

H. Parnell, D. Furniss, Z. Tang, N. C. Neate, T. M. Benson, and A. B. Seddon, “Compositional dependence of crystallization in Ge-Sb-Se glasses relevant to optical fiber making,” J. Am. Ceram. Soc. 101(1), 208–219 (2018).
[Crossref]

J. Electron. Mater. (1)

M. D. Rechtin, A. R. Hilton, and D. J. Hayes, “Infrared transmission in Ge-Sb-Se glasses,” J. Electron. Mater. 4(2), 347–362 (1975).
[Crossref]

J. Lightwave Technol. (1)

J. Mater. Sci. (1)

J. A. Savage, P. J. Weber, and A. M. Pitt, “An assessment of Ge-Sb-Se glasses as 8 to 12 µm infrared transmitting glasses,” J. Mater. Sci. 13(4), 859–864 (1978).
[Crossref]

J. Non-Cryst. Solids (12)

A. R. Hilton and D. J. Hayes, “The interdependence of physical parameters for infrared transmitting glasses,” J. Non-Cryst. Solids 17(3), 339–348 (1975).
[Crossref]

M. Frumar, H. Tichá, J. Klikorka and, and P. Tomiska, “Optical absorption in vitreous GeSb2Se4,” J. Non-Cryst. Solids 13(1), 173–178 (1973).
[Crossref]

A. B. Seddon, “Chalcogenide glasses: a review of their preparation, properties and applications,” J. Non-Cryst. Solids 184(1), 44–50 (1995).
[Crossref]

A. B. Seddon, W. J. Pan, D. Furniss, C. A. Miller, H. Rowe, D. M. Zhang, E. M. Mcbrearty, Y. Zhang, A. Loni, P. Sewell, and T. M. Benson, “Fine embossing of chalcogenide glasses – a new fabrication route for photonic integrated circuits,” J. Non-Cryst. Solids 352(23-25), 2515–2520 (2006).
[Crossref]

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330(1-3), 1–12 (2003).
[Crossref]

A. M. Andriesh, “Properties of chalcogenide for optical waveguides,” J. Non-Cryst. Solids 77-78, 1219–1228 (1985).
[Crossref]

Z. Cimpl and F. Kosek, “Utilization of chalcogenide glasses in infrared optics,” J. Non-Cryst. Solids 90(1-3), 577–579 (1987).
[Crossref]

D. C. Sati, A. Kovalskiy, R. Golovchak, and H. Jain, “Structure of SbxGe40-xSe60 glasses around 2.67 average coordination number,” J. Non-Cryst. Solids 358(2), 163–167 (2012).
[Crossref]

P. Boolchand, P. Chen, and U. Vempati, “Intermediate Phase, structural variance and network demixing in chalcogenides: The usual case of group V sulphides,” J. Non-Cryst. Solids 355(37-42), 1773–1785 (2009).
[Crossref]

J. Orava, T. Kohoutek, T. Wagner, Z. Cerna, M. Vicek, L. Benes, B. Frumarova, and M. Frumar, “Optical and structural properties of Ge-Se bulk glasses and Ag-Ge-Se thin films,” J. Non-Cryst. Solids 355(37-42), 1951–1954 (2009).
[Crossref]

Y. Wang, S. Qi, Z. Yang, R. Wang, A. Yang, and P. Lucas, “Composition dependences of refractive index and thermo-optic coefficient in Ge-As-Se chalcogenide glasses,” J. Non-Cryst. Solids 459, 88–93 (2017).
[Crossref]

J. M. Laniel, J. Menard, K. Turcotte, A. Villeneuve, R. Vallee, C. Lopez, and K. A. Richardson, “Refractive index measurements of planar chalcogenide thin film,” J. Non-Cryst. Solids 328(1-3), 183–191 (2003).
[Crossref]

J. Opt. Soc. Am. A (1)

J. Optoelectron. Adv. Mater. (3)

I. D. Aggarwal and J. S. Sanghera, “Development and applications of chalcogenide glass optical fibers at NRL,” J. Optoelectron. Adv. Mater. 4(3), 665–678 (2002).

D. Lezal, “Chalcogenide glasses-survey and progress,” J. Optoelectron. Adv. Mater. 5(1), 23–34 (2003).

X. Zhang, H. Ma, and J. Lucas, “Applications of chalcogenide glass bulks and fibres,” J. Optoelectron. Adv. Mater. 5, 1327–1333 (2003).

J. Phys. D: Appl. Phys. (1)

D. Poelman and P. Smet, “Methods for the determination of the optical constants of thin films from single transmission measurements: a critical review,” J. Phys. D: Appl. Phys. 36(15), 1850–1857 (2003).
[Crossref]

Mater. Chem. Phys. (1)

L. Petit, N. Carlie, F. Adamietz, M. Couzi, V. Rodriguez, and K. C. Richardson, “Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S,” Mater. Chem. Phys. 97(1), 64–70 (2006).
[Crossref]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, and D. Furniss, “Mid-infrared supercontinuum covering the 1.4-13.3 mum molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Eng. (1)

A. B. Seddon, S. Nabil, N. Abdel-Moneim, L. Zhang, W. J. Pan, D. Furniss, C. J. Mellor, T. Kohoutek, J. Orava, T. Wagner, and T. M. Benson, “Mid-infrared integrated optics: versatile hot embossing of mid-infrared glasses for on-chip planar waveguides for molecular sensing,” Opt. Eng. 53(7), 071824 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. Express (1)

Opt. Quantum Electron. (2)

Y. Fang, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method,” Opt. Quantum Electron. 49(7), 237 (2017).
[Crossref]

N. S. Abdel-Moneim, C. J. Mellor, T. M. Benson, D. Furniss, and A. B. Seddon, “Fabrication of stable, low loss optical loss rib-waveguides via embossing of sputtered chalcogenide glass-film on glass-chip,” Opt. Quantum Electron. 47(2), 351–361 (2015).
[Crossref]

Rev. Sci. Instrum. (1)

N. Carlie, N. Anheier, H. Qiao, B. Bernacki, M. Phillipes, L. Petit, J. Musgraves, and K. Richardson, “Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range,” Rev. Sci. Instrum. 82(5), 053103 (2011).
[Crossref]

Semicond. Sci. Technol. (1)

S. M. El-Sayed, “Far-infrared studies of the amorphous SbxGe28−xSe72 glass semiconductor,” Semicond. Sci. Technol. 18(4), 337–341 (2003).
[Crossref]

Sens. Actuators, B (1)

F. Starecki, F. Charpentier, J. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, and V. Nazabel, “Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy3+: Ga5Ge20Sb10S65 fibers,” Sens. Actuators, B 207, 518–525 (2015).
[Crossref]

Sensors (1)

M. Anne, J. Keirsse, and V. Nazabal, “Chalcogenide glass optical waveguides for infrared biosensing,” Sensors 9(9), 7398–7411 (2009).
[Crossref]

Other (7)

G. P. Agrawal, Nonlinear Fiber Optics, 5th edition (Academic Press, 2013).

Amorphous Materials Inc, “AMTIR-2 Information” (consulted December 2018).

J. M. Dudley and J. R. Taylor, Supercontinuum Generation in Optical Fibers (Cambridge University Press, 2010).

J. Senior, Optical Fibre Communication: Principles and Practice, 3rd edition (Pearson Education Limited, 2009).

D. Furniss and A. B. Seddon, “Thermal analysis of inorganic compound glasses and glass ceramics,” in Principles and Applications of Thermal Analysis, Paul Gabbott, ed. (Blackwells, 2007).

P. W. France, M. G. Drexhage, J. M. Parker, M. W. Moore, S. F. Carter, and J. V. Wright, Fluoride Glass Optical Fibres (Blackie, 1990).

Y. Fang, L. Sójka, D. Jayasuriya, D. Furniss, Z. Q. Tang, C. Markos, S. Sujecki, A. B. Seddon, and T. M. Benson, “Characterising refractive index dispersion in chalcogenide glasses,” Proc. 18th International Conference on Transparent Optical Networks (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Photograph of the two-composition thin film comprised of nominal batch Ge20Sb10Se70 / Ge20Sb10Se67S3 at. % thin film. The red circles indicate the measurement locations at each part of the thin film; (b) The SEM image of the same two-composition thin film. The contrast shows the interface of the two different materials. The red rectangles indicate the positions of the scans. Scans 1-3 are for Ge20Sb10Se70 at. % (measured concentrations in Table 1), and scans 4-6 are for Ge20Sb10Se67S3 at. % (measured concentrations in Table 1).
Fig. 2.
Fig. 2. (a) The transmission spectra at different locations (shown schematically in (b)) of a two-composition (Ge-Sb-Se / Ge-Sb-Se-S) = (core / cladding glasses) thin film. Points 2 and 5 were most representative of the core glass and cladding glass, respectively, without edge or interfacial effects. There are no vibrational absorption bands evident for the spectrum taken at point 2 for the core glass. Yet, in the spectrum taken at point 5 for the cladding glass, two vibrational absorption bands are evident at 25.5 µm (small shoulder) and 26.1 µm (strong band), (as indicated in the inset to (a)); the chemical bond vibrations responsible are identified in the text.
Fig. 3.
Fig. 3. The transmission spectra of the Ge-Sb-Se (dash curve) and Ge-Sb-Se-S (solid curve) regions of the two-composition thin film at normal incidence.
Fig. 4.
Fig. 4. The refractive index contrasts of the two-composition thin film: Ge-Sb-Se and Ge-Sb-Se-S, determined by a single measurement at normal-incidence and calculated after using the prism minimum deviation method to measure the refractive index of a prism of each composition with sources at 3.1 and 6.45 µm wavelength; all measurements were at ambient temperature.
Fig. 5.
Fig. 5. The refractive indices of the core glass composition Ge-Sb-Se and cladding glass composition Ge-Sb-Se-S determined by applying the improved Swanepoel method [32] to the two-composition hot-pressed thin film and to single-glass thin films of each composition.
Fig. 6.
Fig. 6. The refractive index contrast of the two-composition hot-pressed thin film (Ge-Sb-Se core glass and Ge-Sb-Se-S cladding glass) determined using the improved Swanepoel method (solid curve), and prism minimum deviation method (triangles).
Fig. 7.
Fig. 7. The NA of step-index fibres based on the Ge-Sb-Se core glass and Ge-Sb-Se-S cladding glass. The blue solid curve is from the two-composition thin film measurements using the improved Swanepoel method; the red triangles are from prism measurements.
Fig. 8.
Fig. 8. Material dispersion D calculated from Eq. (10) and the fitted Sellmeier models of the Ge-Sb-Se core glass and Ge-Sb-Se-S cladding glass. Inset: material dispersion close to the material zero dispersion wavelength.

Tables (2)

Tables Icon

Table 1. The compositions at different scan locations (see Fig. 1(b)) on a two-composition thin film obtained using EDX with a SEM. (Key: - means none detected).

Tables Icon

Table 2. Refractive indices of the Ge-Sb-Se and Ge-Sb-Se-S glasses at five wavelengths, as obtained by applying the inproved Swanepoel method [32] to both the two-composition hot-pressed thin film and individual glass thin films, and also from minimum deviation measurements on prisms at wavelengths of 3.1 and 6.45 µm.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

v(f/m)1/2
2n0d=mλ0
Δ=ncore2nclad22ncore2=12[1(ncladncore)2]
n1n2=λ1mλ2m
Δ=12[1(λ2mλ1m)2]
n2(λ)=A0+n=1NAnλ2λ2an2
n2=5.469+1.006λ2λ20.64722+1.189λ2λ240.822forGe20Sb10Se70core.
n2=4.956+1.458λ2λ20.50222+0.8864λ2λ235.972 for Ge20Sb10Se67S3cladding.
NA=n12n22
D=λc(d2ndλ2)

Metrics