Abstract

We report on the synthesis and systematic investigation of quantum dot based optical gain material potentially suitable for applications in active devices operating around a wavelength of 1.55 µm and above. The quantum dots were selectively grown in a process assisted by block-copolymer lithography. We applied a new type of diblock copolymer, PS-b-PDMS (polystyrene-block-polydimethylsiloxane), which allows for the direct fabrication of a silicon oxycarbide hard mask used for lithography. Arrays of InAs/InP quantum dots were selectively grown via droplet epitaxy. Our detailed optical investigations of the quantum dot carrier dynamics in the 10-300 K temperature range indicate the presence of a significant density of defect states located within the InP bandgap and in the vicinity of the quantum dots. Those defects have a substantial impact on the optical properties of the quantum dots.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum dot lasers for silicon photonics [Invited]

Alan Y. Liu, Sudharsanan Srinivasan, Justin Norman, Arthur C. Gossard, and John E. Bowers
Photon. Res. 3(5) B1-B9 (2015)

Cd-free quantum dot pellets for efficient white light generation

Yemliha Altintas, Mohammad Younis Talpur, and Evren Mutlugün
Opt. Express 25(23) 28371-28384 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
    [Crossref]
  2. Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
    [Crossref]
  3. G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
    [Crossref]
  4. O. B. Shchekin, J. Ahn, and D. G. Deppe, “High temperature performance of self-organised quantum dot laser with stacked p-doped active region,” Electron. Lett. 38(14), 712 (2002).
    [Crossref]
  5. A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
    [Crossref]
  6. T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
    [Crossref]
  7. K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.
  8. A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.
  9. T. W. Berg and J. Mørk, “Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure,” in ECOC 2002 Proceedings (IEEE, 2002), Vol. 2, pp. 1–2.
  10. T. W. Berg and J. Mørk, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083–3085 (2003).
    [Crossref]
  11. R. Wang, A. Stintz, and P. Varangis, “Room-temperature operation of InAs quantum-dash lasers on InP,” IEEE Photonics Technol. Lett. 13(8), 767–769 (2001).
    [Crossref]
  12. E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, M. Schubert, R. E. Dunin-Borkowski, and K. Yvind, “InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers,” Conf. Proc. - Int. Conf. Indium Phosphide Relat. Mater. IEEE (2011).
  13. Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
    [Crossref]
  14. W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
    [Crossref]
  15. D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
    [Crossref]
  16. B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
    [Crossref]
  17. M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
    [Crossref]
  18. Y. D. Galeuchet, R. Hugo, and P. Roentgen, “MOVPE on patterned substrates: a new fabrication method for nanometer structure devices,” Microelectron. Eng. 15(1-4), 667–670 (1991).
    [Crossref]
  19. T. Fukui, S. Ando, Y. Tokura, and T. Toriyama, “GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition,” Appl. Phys. Lett. 58(18), 2018–2020 (1991).
    [Crossref]
  20. R. A. Segalman, “Patterning with block copolymer thin films,” Mater. Sci. Eng., R 48(6), 191–226 (2005).
    [Crossref]
  21. H. Yoshida and M. Takenaka, “Physics of block copolymers from bulk to thin films,” in Directed Self-Assembly of Block Co-Polymers for Nano-Manufacturing (Elsevier, 2015), pp. 3–26.
  22. I. W. Hamley, “Ordering in thin films of block copolymers: Fundamentals to potential applications,” Prog. Polym. Sci. 34(11), 1161–1210 (2009).
    [Crossref]
  23. J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
    [Crossref]
  24. E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
    [Crossref]
  25. H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
    [Crossref]
  26. H. Kim, W. Wei, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Quantum Dot Laser Diodes emitting 1 . 57 ∼ 1 . 67μm at room temperature grown by Block Copolymer Lithography and Selective Area MOCVD,” 2018 IEEE Int. Semicond. Laser Conf.63–64 (2018).
  27. Y. S. Jung and C. A. Ross, “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns,” Adv. Mater. 21(24), 2540–2545 (2009).
    [Crossref]
  28. K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
    [Crossref]
  29. T. Li, Z. Wang, L. Schulte, and S. Ndoni, “Substrate tolerant direct block copolymer nanolithography,” Nanoscale 8(1), 136–140 (2016).
    [Crossref]
  30. C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
    [Crossref]
  31. T. Li, Z. Wang, L. Schulte, O. Hansen, and S. Ndoni, “Fast & scalable pattern transfer via block copolymer nanolithography,” RSC Adv. 5(124), 102619 (2015).
    [Crossref]
  32. A. P. Smith, J. F. Douglas, J. C. Meredith, E. J. Amis, and A. Karim, “Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films,” Phys. Rev. Lett. 87(1), 015503 (2001).
    [Crossref]
  33. T. Li, “Functional materials derived from block copolymer self-assembly,” PhD thesis, DTU Nanotech (2015).
  34. S. Arakawa, M. Ito, R. Nakasaki, and A. Kasukawa, “Improvement of MOCVD Growth Technique Using CBr4,” Furukawa Rev.76–81 (2003).
  35. N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
    [Crossref]
  36. M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
    [Crossref]
  37. M. A. Reshchikov, “Temperature dependence of defect-related photoluminescence in III-V and II-VI semiconductors,” J. Appl. Phys. 115(1), 012010 (2014).
    [Crossref]
  38. R. Mishra, O. D. Restrepo, A. Kumar, and W. Windl, “Native point defects in binary InP semiconductors,” J. Mater. Sci. 47(21), 7482–7497 (2012).
    [Crossref]
  39. D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
    [Crossref]
  40. H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
    [Crossref]
  41. M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
    [Crossref]
  42. E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
    [Crossref]
  43. P. Miska, J. Even, O. Dehaese, and X. Marie, “Carrier relaxation dynamics in InAs/InP quantum dots,” Appl. Phys. Lett. 92(19), 191103 (2008).
    [Crossref]
  44. M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
    [Crossref]
  45. M. Gong, W. Zhang, G. Can Guo, and L. He, “Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots,” Appl. Phys. Lett. 99(23), 231106 (2011).
    [Crossref]
  46. M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
    [Crossref]
  47. K. Mukai, N. Ohtsuka, and M. Sugawara, “High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique,” Appl. Phys. Lett. 70(18), 2416–2418 (1997).
    [Crossref]
  48. M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
    [Crossref]

2018 (1)

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

2017 (3)

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

2016 (2)

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

T. Li, Z. Wang, L. Schulte, and S. Ndoni, “Substrate tolerant direct block copolymer nanolithography,” Nanoscale 8(1), 136–140 (2016).
[Crossref]

2015 (1)

T. Li, Z. Wang, L. Schulte, O. Hansen, and S. Ndoni, “Fast & scalable pattern transfer via block copolymer nanolithography,” RSC Adv. 5(124), 102619 (2015).
[Crossref]

2014 (4)

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

M. A. Reshchikov, “Temperature dependence of defect-related photoluminescence in III-V and II-VI semiconductors,” J. Appl. Phys. 115(1), 012010 (2014).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

2013 (3)

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

2012 (2)

R. Mishra, O. D. Restrepo, A. Kumar, and W. Windl, “Native point defects in binary InP semiconductors,” J. Mater. Sci. 47(21), 7482–7497 (2012).
[Crossref]

K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
[Crossref]

2011 (2)

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

M. Gong, W. Zhang, G. Can Guo, and L. He, “Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots,” Appl. Phys. Lett. 99(23), 231106 (2011).
[Crossref]

2009 (5)

I. W. Hamley, “Ordering in thin films of block copolymers: Fundamentals to potential applications,” Prog. Polym. Sci. 34(11), 1161–1210 (2009).
[Crossref]

J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
[Crossref]

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Y. S. Jung and C. A. Ross, “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns,” Adv. Mater. 21(24), 2540–2545 (2009).
[Crossref]

2008 (3)

C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
[Crossref]

M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
[Crossref]

P. Miska, J. Even, O. Dehaese, and X. Marie, “Carrier relaxation dynamics in InAs/InP quantum dots,” Appl. Phys. Lett. 92(19), 191103 (2008).
[Crossref]

2007 (1)

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

2005 (1)

R. A. Segalman, “Patterning with block copolymer thin films,” Mater. Sci. Eng., R 48(6), 191–226 (2005).
[Crossref]

2003 (4)

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

T. W. Berg and J. Mørk, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083–3085 (2003).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

2002 (1)

O. B. Shchekin, J. Ahn, and D. G. Deppe, “High temperature performance of self-organised quantum dot laser with stacked p-doped active region,” Electron. Lett. 38(14), 712 (2002).
[Crossref]

2001 (2)

R. Wang, A. Stintz, and P. Varangis, “Room-temperature operation of InAs quantum-dash lasers on InP,” IEEE Photonics Technol. Lett. 13(8), 767–769 (2001).
[Crossref]

A. P. Smith, J. F. Douglas, J. C. Meredith, E. J. Amis, and A. Karim, “Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films,” Phys. Rev. Lett. 87(1), 015503 (2001).
[Crossref]

2000 (1)

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

1997 (1)

K. Mukai, N. Ohtsuka, and M. Sugawara, “High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique,” Appl. Phys. Lett. 70(18), 2416–2418 (1997).
[Crossref]

1991 (2)

Y. D. Galeuchet, R. Hugo, and P. Roentgen, “MOVPE on patterned substrates: a new fabrication method for nanometer structure devices,” Microelectron. Eng. 15(1-4), 667–670 (1991).
[Crossref]

T. Fukui, S. Ando, Y. Tokura, and T. Toriyama, “GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition,” Appl. Phys. Lett. 58(18), 2018–2020 (1991).
[Crossref]

1982 (1)

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Ahn, J.

O. B. Shchekin, J. Ahn, and D. G. Deppe, “High temperature performance of self-organised quantum dot laser with stacked p-doped active region,” Electron. Lett. 38(14), 712 (2002).
[Crossref]

Akiyama, T.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

Alexander-Katz, A.

K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
[Crossref]

Alexandrou, A.

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

Alferov, Z. I.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Almdal, K.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

Amis, E. J.

A. P. Smith, J. F. Douglas, J. C. Meredith, E. J. Amis, and A. Karim, “Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films,” Phys. Rev. Lett. 87(1), 015503 (2001).
[Crossref]

Ando, S.

T. Fukui, S. Ando, Y. Tokura, and T. Toriyama, “GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition,” Appl. Phys. Lett. 58(18), 2018–2020 (1991).
[Crossref]

Andrzejewski, J.

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

Arakawa, S.

S. Arakawa, M. Ito, R. Nakasaki, and A. Kasukawa, “Improvement of MOCVD Growth Technique Using CBr4,” Furukawa Rev.76–81 (2003).

Arakawa, Y.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Baranowski, M.

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

Barettin, D.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

Bauer, S.

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

Bayer, M.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Beloborodov, I. S.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Berg, T. W.

T. W. Berg and J. Mørk, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083–3085 (2003).
[Crossref]

T. W. Berg and J. Mørk, “Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure,” in ECOC 2002 Proceedings (IEEE, 2002), Vol. 2, pp. 1–2.

Bimberg, D.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Bornholdt, C.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Brault, J.

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

Bremond, G.

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

Brodie, M.

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

Cagliani, A.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

Can Guo, G.

M. Gong, W. Zhang, G. Can Guo, and L. He, “Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots,” Appl. Phys. Lett. 99(23), 231106 (2011).
[Crossref]

Chen, J. X.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Chen, Y.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

Choi, J.

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

Dehaese, O.

P. Miska, J. Even, O. Dehaese, and X. Marie, “Carrier relaxation dynamics in InAs/InP quantum dots,” Appl. Phys. Lett. 92(19), 191103 (2008).
[Crossref]

Deppe, D. G.

O. B. Shchekin, J. Ahn, and D. G. Deppe, “High temperature performance of self-organised quantum dot laser with stacked p-doped active region,” Electron. Lett. 38(14), 712 (2002).
[Crossref]

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

Desjardins, P.

C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
[Crossref]

Dion, C.

C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
[Crossref]

Douglas, J. F.

A. P. Smith, J. F. Douglas, J. C. Meredith, E. J. Amis, and A. Karim, “Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films,” Phys. Rev. Lett. 87(1), 015503 (2001).
[Crossref]

Duan, K.

M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
[Crossref]

Dunin-Borkowski, R. E.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, M. Schubert, R. E. Dunin-Borkowski, and K. Yvind, “InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers,” Conf. Proc. - Int. Conf. Indium Phosphide Relat. Mater. IEEE (2011).

Dusanowski, L.

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

Ellis, B.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Even, J.

P. Miska, J. Even, O. Dehaese, and X. Marie, “Carrier relaxation dynamics in InAs/InP quantum dots,” Appl. Phys. Lett. 92(19), 191103 (2008).
[Crossref]

Fiore, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Forchel, A.

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

Fossard, F.

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

Fukui, T.

T. Fukui, S. Ando, Y. Tokura, and T. Toriyama, “GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition,” Appl. Phys. Lett. 58(18), 2018–2020 (1991).
[Crossref]

Galeuchet, Y. D.

Y. D. Galeuchet, R. Hugo, and P. Roentgen, “MOVPE on patterned substrates: a new fabrication method for nanometer structure devices,” Microelectron. Eng. 15(1-4), 667–670 (1991).
[Crossref]

Gartner, P.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Gather, M. C.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

Gauthier-Lafaye, O.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Gawarecki, K.

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

Gawelczyk, M.

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

Gendry, M.

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

Gong, M.

M. Gong, W. Zhang, G. Can Guo, and L. He, “Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots,” Appl. Phys. Lett. 99(23), 231106 (2011).
[Crossref]

M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
[Crossref]

Gopalan, P.

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

H. Kim, W. Wei, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Quantum Dot Laser Diodes emitting 1 . 57 ∼ 1 . 67μm at room temperature grown by Block Copolymer Lithography and Selective Area MOCVD,” 2018 IEEE Int. Semicond. Laser Conf.63–64 (2018).

Gotrik, K. W.

K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
[Crossref]

Grote, N.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Gubenko, A.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Haller, E. E.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Hamley, I. W.

I. W. Hamley, “Ordering in thin films of block copolymers: Fundamentals to potential applications,” Prog. Polym. Sci. 34(11), 1161–1210 (2009).
[Crossref]

Hannon, A. F.

K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
[Crossref]

Hansen, O.

T. Li, Z. Wang, L. Schulte, O. Hansen, and S. Ndoni, “Fast & scalable pattern transfer via block copolymer nanolithography,” RSC Adv. 5(124), 102619 (2015).
[Crossref]

Harris, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

He, L.

M. Gong, W. Zhang, G. Can Guo, and L. He, “Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots,” Appl. Phys. Lett. 99(23), 231106 (2011).
[Crossref]

M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
[Crossref]

Hill, M. T.

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

Höfling, S.

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

Huffaker, D. L.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

Hugo, R.

Y. D. Galeuchet, R. Hugo, and P. Roentgen, “MOVPE on patterned substrates: a new fabrication method for nanometer structure devices,” Microelectron. Eng. 15(1-4), 667–670 (1991).
[Crossref]

Hvam, J. M.

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.

Ito, M.

S. Arakawa, M. Ito, R. Nakasaki, and A. Kasukawa, “Improvement of MOCVD Growth Technique Using CBr4,” Furukawa Rev.76–81 (2003).

Jahnke, F.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Johnston-Halperin, E.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Julien, F. H.

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

Jung, Y. S.

Y. S. Jung and C. A. Ross, “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns,” Adv. Mater. 21(24), 2540–2545 (2009).
[Crossref]

Kadhodazadeh, S.

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

Kadkhodazadeh, S.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, M. Schubert, R. E. Dunin-Borkowski, and K. Yvind, “InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers,” Conf. Proc. - Int. Conf. Indium Phosphide Relat. Mater. IEEE (2011).

Kamp, M.

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

Karim, A.

A. P. Smith, J. F. Douglas, J. C. Meredith, E. J. Amis, and A. Karim, “Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films,” Phys. Rev. Lett. 87(1), 015503 (2001).
[Crossref]

Kasukawa, A.

S. Arakawa, M. Ito, R. Nakasaki, and A. Kasukawa, “Improvement of MOCVD Growth Technique Using CBr4,” Furukawa Rev.76–81 (2003).

Keller, B.

K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
[Crossref]

Kim, H.

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

H. Kim, W. Wei, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Quantum Dot Laser Diodes emitting 1 . 57 ∼ 1 . 67μm at room temperature grown by Block Copolymer Lithography and Selective Area MOCVD,” 2018 IEEE Int. Semicond. Laser Conf.63–64 (2018).

Ko, D.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Kopylov, O.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

Kovsh, A.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Kovsh, A. R.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Krestnikov, I.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Kryjanovskaya, N. V.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Kryzhanovskaya, N. V.

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

Kuech, T. F.

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
[Crossref]

H. Kim, W. Wei, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Quantum Dot Laser Diodes emitting 1 . 57 ∼ 1 . 67μm at room temperature grown by Block Copolymer Lithography and Selective Area MOCVD,” 2018 IEEE Int. Semicond. Laser Conf.63–64 (2018).

Kulagina, M. M.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Kulkova, I. V.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, M. Schubert, R. E. Dunin-Borkowski, and K. Yvind, “InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers,” Conf. Proc. - Int. Conf. Indium Phosphide Relat. Mater. IEEE (2011).

Kumar, A.

R. Mishra, O. D. Restrepo, A. Kumar, and W. Windl, “Native point defects in binary InP semiconductors,” J. Mater. Sci. 47(21), 7482–7497 (2012).
[Crossref]

Kurtze, H.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Kuznetsova, N.

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

Larsson, D.

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.

Ledentsov, N. N.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Lelarge, F.

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

Lemberger, T. R.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Li, C.-F.

M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
[Crossref]

Li, T.

T. Li, Z. Wang, L. Schulte, and S. Ndoni, “Substrate tolerant direct block copolymer nanolithography,” Nanoscale 8(1), 136–140 (2016).
[Crossref]

T. Li, Z. Wang, L. Schulte, O. Hansen, and S. Ndoni, “Fast & scalable pattern transfer via block copolymer nanolithography,” RSC Adv. 5(124), 102619 (2015).
[Crossref]

T. Li, “Functional materials derived from block copolymer self-assembly,” PhD thesis, DTU Nanotech (2015).

Lingley, Z.

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

Liu, C.-C.

J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
[Crossref]

Livshits, D.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Livshits, D. A.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Löffler, A.

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

Magri, R.

M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
[Crossref]

Maleev, N. A.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Marie, X.

P. Miska, J. Even, O. Dehaese, and X. Marie, “Carrier relaxation dynamics in InAs/InP quantum dots,” Appl. Phys. Lett. 92(19), 191103 (2008).
[Crossref]

Markus, A.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Marynski, A.

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

Mawst, L. J.

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
[Crossref]

H. Kim, W. Wei, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Quantum Dot Laser Diodes emitting 1 . 57 ∼ 1 . 67μm at room temperature grown by Block Copolymer Lithography and Selective Area MOCVD,” 2018 IEEE Int. Semicond. Laser Conf.63–64 (2018).

Maximov, M. V.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Mayer, M. A.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Meredith, J. C.

A. P. Smith, J. F. Douglas, J. C. Meredith, E. J. Amis, and A. Karim, “Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films,” Phys. Rev. Lett. 87(1), 015503 (2001).
[Crossref]

Mikhrin, S.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Mikhrin, S. S.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Miller, D.

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

Mishra, R.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

R. Mishra, O. D. Restrepo, A. Kumar, and W. Windl, “Native point defects in binary InP semiconductors,” J. Mater. Sci. 47(21), 7482–7497 (2012).
[Crossref]

Misiewicz, J.

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

Miska, P.

P. Miska, J. Even, O. Dehaese, and X. Marie, “Carrier relaxation dynamics in InAs/InP quantum dots,” Appl. Phys. Lett. 92(19), 191103 (2008).
[Crossref]

Mork, J.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

Mørk, J.

T. W. Berg and J. Mørk, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083–3085 (2003).
[Crossref]

T. W. Berg and J. Mørk, “Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure,” in ECOC 2002 Proceedings (IEEE, 2002), Vol. 2, pp. 1–2.

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.

Mrowinski, P.

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

Mukai, K.

K. Mukai, N. Ohtsuka, and M. Sugawara, “High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique,” Appl. Phys. Lett. 70(18), 2416–2418 (1997).
[Crossref]

Nakasaki, R.

S. Arakawa, M. Ito, R. Nakasaki, and A. Kasukawa, “Improvement of MOCVD Growth Technique Using CBr4,” Furukawa Rev.76–81 (2003).

Narvaez, G. A.

M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
[Crossref]

Ndoni, S.

T. Li, Z. Wang, L. Schulte, and S. Ndoni, “Substrate tolerant direct block copolymer nanolithography,” Nanoscale 8(1), 136–140 (2016).
[Crossref]

T. Li, Z. Wang, L. Schulte, O. Hansen, and S. Ndoni, “Fast & scalable pattern transfer via block copolymer nanolithography,” RSC Adv. 5(124), 102619 (2015).
[Crossref]

Nealey, P. F.

J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
[Crossref]

Nikitina, E. V.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Ohtsuka, N.

K. Mukai, N. Ohtsuka, and M. Sugawara, “High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique,” Appl. Phys. Lett. 70(18), 2416–2418 (1997).
[Crossref]

Ottaviano, L.

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

Padture, N. P.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Paranthoën, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Park, G.

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

Park, J. H.

J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
[Crossref]

Penty, R.

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.

Péronne, E.

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

Platz, C.

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Poole, P. J.

C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
[Crossref]

Rathi, M. K.

J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
[Crossref]

Raymond, S.

C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
[Crossref]

Reddy, K. M.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Reithmaier, J. P.

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

Reitzenstein, S.

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

Reshchikov, M. A.

M. A. Reshchikov, “Temperature dependence of defect-related photoluminescence in III-V and II-VI semiconductors,” J. Appl. Phys. 115(1), 012010 (2014).
[Crossref]

Restrepo, O. D.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

R. Mishra, O. D. Restrepo, A. Kumar, and W. Windl, “Native point defects in binary InP semiconductors,” J. Mater. Sci. 47(21), 7482–7497 (2012).
[Crossref]

Reuter, D.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Roentgen, P.

Y. D. Galeuchet, R. Hugo, and P. Roentgen, “MOVPE on patterned substrates: a new fabrication method for nanometer structure devices,” Microelectron. Eng. 15(1-4), 667–670 (1991).
[Crossref]

Rogowicz, E.

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

Ross, C. A.

K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
[Crossref]

Y. S. Jung and C. A. Ross, “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns,” Adv. Mater. 21(24), 2540–2545 (2009).
[Crossref]

Rudno-Rudzinski, W.

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

S?k, G.

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

Sakaki, H.

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

Salem, B.

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

Sarmiento, T.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Schiettekatte, F.

C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
[Crossref]

Schubert, M.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, M. Schubert, R. E. Dunin-Borkowski, and K. Yvind, “InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers,” Conf. Proc. - Int. Conf. Indium Phosphide Relat. Mater. IEEE (2011).

Schulte, L.

T. Li, Z. Wang, L. Schulte, and S. Ndoni, “Substrate tolerant direct block copolymer nanolithography,” Nanoscale 8(1), 136–140 (2016).
[Crossref]

T. Li, Z. Wang, L. Schulte, O. Hansen, and S. Ndoni, “Fast & scalable pattern transfer via block copolymer nanolithography,” RSC Adv. 5(124), 102619 (2015).
[Crossref]

Seebeck, J.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Segalman, R. A.

R. A. Segalman, “Patterning with block copolymer thin films,” Mater. Sci. Eng., R 48(6), 191–226 (2005).
[Crossref]

Sek, G.

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

Semenova, E.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

Semenova, E. S.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, M. Schubert, R. E. Dunin-Borkowski, and K. Yvind, “InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers,” Conf. Proc. - Int. Conf. Indium Phosphide Relat. Mater. IEEE (2011).

Shambat, G.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Shchekin, O. B.

O. B. Shchekin, J. Ahn, and D. G. Deppe, “High temperature performance of self-organised quantum dot laser with stacked p-doped active region,” Electron. Lett. 38(14), 712 (2002).
[Crossref]

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

Shernyakov, Y. M.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Shtinkov, N.

C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
[Crossref]

Sichkovskyi, V. I.

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

Sin, Y.

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

Sizov, D. S.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Smith, A. P.

A. P. Smith, J. F. Douglas, J. C. Meredith, E. J. Amis, and A. Karim, “Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films,” Phys. Rev. Lett. 87(1), 015503 (2001).
[Crossref]

Somers, A.

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

Son, J. G.

K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
[Crossref]

Soshnikov, I. P.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Stintz, A.

R. Wang, A. Stintz, and P. Varangis, “Room-temperature operation of InAs quantum-dash lasers on InP,” IEEE Photonics Technol. Lett. 13(8), 767–769 (2001).
[Crossref]

Sugawara, M.

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

K. Mukai, N. Ohtsuka, and M. Sugawara, “High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique,” Appl. Phys. Lett. 70(18), 2416–2418 (1997).
[Crossref]

Syperek, M.

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

Takenaka, M.

H. Yoshida and M. Takenaka, “Physics of block copolymers from bulk to thin films,” in Directed Self-Assembly of Block Co-Polymers for Nano-Manufacturing (Elsevier, 2015), pp. 3–26.

Thompson, M.

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.

Tokura, Y.

T. Fukui, S. Ando, Y. Tokura, and T. Toriyama, “GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition,” Appl. Phys. Lett. 58(18), 2018–2020 (1991).
[Crossref]

Toriyama, T.

T. Fukui, S. Ando, Y. Tokura, and T. Toriyama, “GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition,” Appl. Phys. Lett. 58(18), 2018–2020 (1991).
[Crossref]

Trivedi, N.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Tsatsul’nikov, A. F.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Ustinov, V. M.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Varangis, P.

R. Wang, A. Stintz, and P. Varangis, “Room-temperature operation of InAs quantum-dash lasers on InP,” IEEE Photonics Technol. Lett. 13(8), 767–769 (2001).
[Crossref]

Vasil’ev, A. P.

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Vuckovic, J.

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

Wang, R.

R. Wang, A. Stintz, and P. Varangis, “Room-temperature operation of InAs quantum-dash lasers on InP,” IEEE Photonics Technol. Lett. 13(8), 767–769 (2001).
[Crossref]

Wang, Z.

T. Li, Z. Wang, L. Schulte, and S. Ndoni, “Substrate tolerant direct block copolymer nanolithography,” Nanoscale 8(1), 136–140 (2016).
[Crossref]

T. Li, Z. Wang, L. Schulte, O. Hansen, and S. Ndoni, “Fast & scalable pattern transfer via block copolymer nanolithography,” RSC Adv. 5(124), 102619 (2015).
[Crossref]

Wei, W.

H. Kim, W. Wei, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Quantum Dot Laser Diodes emitting 1 . 57 ∼ 1 . 67μm at room temperature grown by Block Copolymer Lithography and Selective Area MOCVD,” 2018 IEEE Int. Semicond. Laser Conf.63–64 (2018).

Weimert, J.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

West, L.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

White, I.

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.

Wieck, A. D.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Willatzen, M.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

Windl, W.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

R. Mishra, O. D. Restrepo, A. Kumar, and W. Windl, “Native point defects in binary InP semiconductors,” J. Mater. Sci. 47(21), 7482–7497 (2012).
[Crossref]

Wojcik, G.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Xue, W.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

Yakovlev, D. R.

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

Yang, F. Y.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Yin, D.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Yoshida, H.

H. Yoshida and M. Takenaka, “Physics of block copolymers from bulk to thin films,” in Directed Self-Assembly of Block Co-Polymers for Nano-Manufacturing (Elsevier, 2015), pp. 3–26.

Yu, Y.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

Yvind, K.

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, M. Schubert, R. E. Dunin-Borkowski, and K. Yvind, “InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers,” Conf. Proc. - Int. Conf. Indium Phosphide Relat. Mater. IEEE (2011).

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.

Zhang, W.

M. Gong, W. Zhang, G. Can Guo, and L. He, “Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots,” Appl. Phys. Lett. 99(23), 231106 (2011).
[Crossref]

Zhao, X. W.

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

Zhukov, A.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

Zhukov, A. E.

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

ACS Nano (1)

K. W. Gotrik, A. F. Hannon, J. G. Son, B. Keller, A. Alexander-Katz, and C. A. Ross, “Morphology Control in Block Copolymer Films Using Mixed Solvent Vapors,” ACS Nano 6(9), 8052–8059 (2012).
[Crossref]

Adv. Mater. (1)

Y. S. Jung and C. A. Ross, “Solvent-Vapor-Induced Tunability of Self-Assembled Block Copolymer Patterns,” Adv. Mater. 21(24), 2540–2545 (2009).
[Crossref]

Appl. Phys. Lett. (9)

P. Miska, J. Even, O. Dehaese, and X. Marie, “Carrier relaxation dynamics in InAs/InP quantum dots,” Appl. Phys. Lett. 92(19), 191103 (2008).
[Crossref]

M. Syperek, Ł. Dusanowski, J. Andrzejewski, W. Rudno-Rudziński, G. Sȩk, J. Misiewicz, and F. Lelarge, “Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm,” Appl. Phys. Lett. 103(8), 083104 (2013).
[Crossref]

M. Gong, W. Zhang, G. Can Guo, and L. He, “Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots,” Appl. Phys. Lett. 99(23), 231106 (2011).
[Crossref]

M. Syperek, J. Andrzejewski, E. Rogowicz, J. Misiewicz, S. Bauer, V. I. Sichkovskyi, J. P. Reithmaier, and G. Sȩk, “Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μ m,” Appl. Phys. Lett. 112(22), 221901 (2018).
[Crossref]

K. Mukai, N. Ohtsuka, and M. Sugawara, “High photoluminescence efficiency of InGaAs/GaAs quantum dots self-formed by atomic layer epitaxy technique,” Appl. Phys. Lett. 70(18), 2416–2418 (1997).
[Crossref]

A. Markus, J. X. Chen, C. Paranthoën, A. Fiore, C. Platz, and O. Gauthier-Lafaye, “Simultaneous two-state lasing in quantum-dot lasers,” Appl. Phys. Lett. 82(12), 1818–1820 (2003).
[Crossref]

Y. Arakawa and H. Sakaki, “Multidimensional quantum well laser and temperature dependence of its threshold current,” Appl. Phys. Lett. 40(11), 939–941 (1982).
[Crossref]

T. W. Berg and J. Mørk, “Quantum dot amplifiers with high output power and low noise,” Appl. Phys. Lett. 82(18), 3083–3085 (2003).
[Crossref]

T. Fukui, S. Ando, Y. Tokura, and T. Toriyama, “GaAs tetrahedral quantum dot structures fabricated using selective area metalorganic chemical vapor deposition,” Appl. Phys. Lett. 58(18), 2018–2020 (1991).
[Crossref]

Electron. Lett. (1)

O. B. Shchekin, J. Ahn, and D. G. Deppe, “High temperature performance of self-organised quantum dot laser with stacked p-doped active region,” Electron. Lett. 38(14), 712 (2002).
[Crossref]

IEEE Photonics Technol. Lett. (2)

R. Wang, A. Stintz, and P. Varangis, “Room-temperature operation of InAs quantum-dash lasers on InP,” IEEE Photonics Technol. Lett. 13(8), 767–769 (2001).
[Crossref]

G. Park, O. B. Shchekin, D. L. Huffaker, and D. G. Deppe, “Low-threshold oxide-confined 1.3-μm quantum-dot laser,” IEEE Photonics Technol. Lett. 12(3), 230–232 (2000).
[Crossref]

J. Appl. Phys. (3)

C. Dion, P. Desjardins, N. Shtinkov, F. Schiettekatte, P. J. Poole, and S. Raymond, “Effects of grown-in defects on interdiffusion dynamics in InAs/InP(001) quantum dots subjected to rapid thermal annealing,” J. Appl. Phys. 103(8), 083526 (2008).
[Crossref]

M. A. Reshchikov, “Temperature dependence of defect-related photoluminescence in III-V and II-VI semiconductors,” J. Appl. Phys. 115(1), 012010 (2014).
[Crossref]

D. Ko, X. W. Zhao, K. M. Reddy, O. D. Restrepo, R. Mishra, T. R. Lemberger, I. S. Beloborodov, N. Trivedi, N. P. Padture, W. Windl, F. Y. Yang, and E. Johnston-Halperin, “Defect states and disorder in charge transport in semiconductor nanowires,” J. Appl. Phys. 114(4), 043711 (2013).
[Crossref]

J. Cryst. Growth (2)

N. Kuznetsova, I. V. Kulkova, E. S. Semenova, S. Kadhodazadeh, N. V. Kryzhanovskaya, A. E. Zhukov, and K. Yvind, “Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE,” J. Cryst. Growth 406, 111–115 (2014).
[Crossref]

H. Kim, J. Choi, Z. Lingley, M. Brodie, Y. Sin, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Selective growth of strained (In)GaAs quantum dots on GaAs substrates employing diblock copolymer lithography nanopatterning,” J. Cryst. Growth 465, 48–54 (2017).
[Crossref]

J. Mater. Sci. (1)

R. Mishra, O. D. Restrepo, A. Kumar, and W. Windl, “Native point defects in binary InP semiconductors,” J. Mater. Sci. 47(21), 7482–7497 (2012).
[Crossref]

J. Nanophotonics (1)

J. H. Park, C.-C. Liu, M. K. Rathi, L. J. Mawst, P. F. Nealey, and T. F. Kuech, “Nanoscale selective growth and optical characteristics of quantum dots on III-V substrates prepared by diblock copolymer nanopatterning,” J. Nanophotonics 3(1), 031604 (2009).
[Crossref]

Mater. Sci. Eng., R (1)

R. A. Segalman, “Patterning with block copolymer thin films,” Mater. Sci. Eng., R 48(6), 191–226 (2005).
[Crossref]

Microelectron. Eng. (1)

Y. D. Galeuchet, R. Hugo, and P. Roentgen, “MOVPE on patterned substrates: a new fabrication method for nanometer structure devices,” Microelectron. Eng. 15(1-4), 667–670 (1991).
[Crossref]

Nanoscale (1)

T. Li, Z. Wang, L. Schulte, and S. Ndoni, “Substrate tolerant direct block copolymer nanolithography,” Nanoscale 8(1), 136–140 (2016).
[Crossref]

Nat. Photonics (3)

Y. Yu, W. Xue, E. Semenova, K. Yvind, and J. Mork, “Demonstration of a self-pulsing photonic crystal Fano laser,” Nat. Photonics 11(2), 81–84 (2017).
[Crossref]

B. Ellis, M. A. Mayer, G. Shambat, T. Sarmiento, J. Harris, E. E. Haller, and J. Vučković, “Ultralow-threshold electrically pumped quantum-dot photonic-crystal nanocavity laser,” Nat. Photonics 5(5), 297–300 (2011).
[Crossref]

M. T. Hill and M. C. Gather, “Advances in small lasers,” Nat. Photonics 8(12), 908–918 (2014).
[Crossref]

Phys. E (1)

A. E. Zhukov, A. R. Kovsh, S. S. Mikhrin, A. P. Vasil’ev, E. S. Semenova, N. A. Maleev, V. M. Ustinov, M. M. Kulagina, E. V. Nikitina, I. P. Soshnikov, Y. M. Shernyakov, D. A. Livshits, N. V. Kryjanovskaya, D. S. Sizov, M. V. Maximov, A. F. Tsatsul’nikov, N. N. Ledentsov, D. Bimberg, and Z. I. Alferov, “High external differential efficiency and high optical gain of long-wavelength quantum dot diode laser,” Phys. E 17, 589–592 (2003).
[Crossref]

Phys. Rev. B (5)

H. Kurtze, J. Seebeck, P. Gartner, D. R. Yakovlev, D. Reuter, A. D. Wieck, M. Bayer, and F. Jahnke, “Carrier relaxation dynamics in self-assembled semiconductor quantum dots,” Phys. Rev. B 80(23), 235319 (2009).
[Crossref]

M. Gong, K. Duan, C.-F. Li, R. Magri, G. A. Narvaez, and L. He, “Electronic structure of self-assembled In As/InP quantum dots: Comparison with self-assembled In As/GaAs quantum dots,” Phys. Rev. B 77(4), 045326 (2008).
[Crossref]

M. Syperek, M. Baranowski, G. Sȩk, J. Misiewicz, A. Löffler, S. Höfling, S. Reitzenstein, M. Kamp, and A. Forchel, “Impact of wetting-layer density of states on the carrier relaxation process in low indium content self-assembled (In,Ga)As/GaAs quantum dots,” Phys. Rev. B 87(12), 125305 (2013).
[Crossref]

E. Péronne, F. Fossard, F. H. Julien, J. Brault, M. Gendry, B. Salem, G. Bremond, and A. Alexandrou, “Dynamic saturation of an intersublevel transition in self-organized InAs/InxAl1 − x As quantum dots,” Phys. Rev. B 67(20), 205329 (2003).
[Crossref]

M. Gawełczyk, M. Syperek, A. Maryński, P. Mrowiński, Ł. Dusanowski, K. Gawarecki, J. Misiewicz, A. Somers, J. P. Reithmaier, S. Höfling, and G. Sęk, “Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures,” Phys. Rev. B 96(24), 245425 (2017).
[Crossref]

Phys. Rev. Lett. (2)

A. P. Smith, J. F. Douglas, J. C. Meredith, E. J. Amis, and A. Karim, “Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films,” Phys. Rev. Lett. 87(1), 015503 (2001).
[Crossref]

W. Xue, Y. Yu, L. Ottaviano, Y. Chen, E. Semenova, K. Yvind, and J. Mork, “Threshold Characteristics of Slow-Light Photonic Crystal Lasers,” Phys. Rev. Lett. 116(6), 063901 (2016).
[Crossref]

Proc. IEEE (2)

D. Miller, “Device Requirements for Optical Interconnects to Silicon Chips,” Proc. IEEE 97(7), 1166–1185 (2009).
[Crossref]

T. Akiyama, M. Sugawara, and Y. Arakawa, “Quantum-Dot Semiconductor Optical Amplifiers,” Proc. IEEE 95(9), 1757–1766 (2007).
[Crossref]

Proc. SPIE (1)

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, D. Barettin, O. Kopylov, A. Cagliani, K. Almdal, M. Willatzen, and K. Yvind, “Epitaxial growth of quantum dots on InP for device applications operating at the 1.55 μm wavelength range,” Proc. SPIE 8996, 899606 (2014).
[Crossref]

Prog. Polym. Sci. (1)

I. W. Hamley, “Ordering in thin films of block copolymers: Fundamentals to potential applications,” Prog. Polym. Sci. 34(11), 1161–1210 (2009).
[Crossref]

RSC Adv. (1)

T. Li, Z. Wang, L. Schulte, O. Hansen, and S. Ndoni, “Fast & scalable pattern transfer via block copolymer nanolithography,” RSC Adv. 5(124), 102619 (2015).
[Crossref]

Other (8)

H. Kim, W. Wei, T. F. Kuech, P. Gopalan, and L. J. Mawst, “Quantum Dot Laser Diodes emitting 1 . 57 ∼ 1 . 67μm at room temperature grown by Block Copolymer Lithography and Selective Area MOCVD,” 2018 IEEE Int. Semicond. Laser Conf.63–64 (2018).

T. Li, “Functional materials derived from block copolymer self-assembly,” PhD thesis, DTU Nanotech (2015).

S. Arakawa, M. Ito, R. Nakasaki, and A. Kasukawa, “Improvement of MOCVD Growth Technique Using CBr4,” Furukawa Rev.76–81 (2003).

H. Yoshida and M. Takenaka, “Physics of block copolymers from bulk to thin films,” in Directed Self-Assembly of Block Co-Polymers for Nano-Manufacturing (Elsevier, 2015), pp. 3–26.

K. Yvind, D. Larsson, J. Mørk, J. M. Hvam, M. Thompson, R. Penty, and I. White, “Low-noise monolithic mode-locked semiconductor lasers through low-dimensional structures,” in A. A. Belyanin and P. M. Smowton, eds. (2008), p. 69090A.

A. Kovsh, A. Gubenko, I. Krestnikov, D. Livshits, S. Mikhrin, J. Weimert, L. West, G. Wojcik, D. Yin, C. Bornholdt, N. Grote, M. V. Maximov, and A. Zhukov, “Quantum dot comb-laser as efficient light source for silicon photonics,” in G. C. Righini, S. K. Honkanen, L. Pavesi, and L. Vivien, eds. (International Society for Optics and Photonics, 2008), Vol. 6996, p. 69960 V.

T. W. Berg and J. Mørk, “Theoretical analysis of quantum dot amplifiers with high saturation power and low noise figure,” in ECOC 2002 Proceedings (IEEE, 2002), Vol. 2, pp. 1–2.

E. S. Semenova, I. V. Kulkova, S. Kadkhodazadeh, M. Schubert, R. E. Dunin-Borkowski, and K. Yvind, “InAs/InGaAsP Quantum Dots Emitting at 1.5 μm for Applications in Lasers,” Conf. Proc. - Int. Conf. Indium Phosphide Relat. Mater. IEEE (2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic illustration of the mask fabrication and QD growth process.
Fig. 2.
Fig. 2. SEM image of SiOxCy hard mask.
Fig. 3.
Fig. 3. (a) InP surface defects formed underneath the SiOxCy mask after 650 °C annealing. (b) The same sample after the mask is removed. The red arrows indicate the crystallographic orientations.
Fig. 4.
Fig. 4. (a) Temperature dependence of PL emission from SAG InAs/InP QDs (Eexc = 1.48 eV, Pexc ≈ 5.5 W/cm−2). Inset: PL emission from the InP barrier and the laser spectrum at T = 10 K. (b) Temperature PL quenching for QDs measured under high/low excitation power above InP barrier (red and blue squares) and below InP barrier excitation under low excitation power (green squares), and the PL quench for InP barrier under low excitation power (black squares). These dependences are arbitrary shifted on the intensity scale for better visibility. (c) The Full-Width-at-Half-Maximum (FWHM) parameter for the QDs PL band for two optical pumping powers.
Fig. 5.
Fig. 5. (a) Time-resolved photoluminescence (TRPL) traces for selective-area growth InAs/InP QDs at various temperatures. (b) TRPL traces at their initial time-period after photo-excitation. (c) Dispersion of photoluminescence decay times at various temperatures, (d) dispersion of photoluminescence rise times as a function of temperature.

Tables (1)

Tables Icon

Table 1. Parameters of the PL thermal quenching.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I ( T ) = I 0 / ( 1 + i = 1 n C i e E a,i / k B T ) ,