Abstract

High-quality factor microresonators are a key component in photonic integrated circuits. However, it is more difficult to precisely engineer a single component after fabrication as integration density gets higher. In this work, we improve the quality factor of the fabricated resonator by femtosecond laser shots. The high repetition laser pulses scatter into the cavity, and then the localized high-density light field introduces a light refining and “annealing” process that may restore the lattice disorders. The intrinsic quality factor of a measured mode can be promoted from 2.17×10 5 to 1.84×10 6. Moreover, increasing the shot power may kill the high order modes, and only the fundamental mode survives. This method may inspire new potential application in femtosecond laser modification in photonic integrated circuits.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Lithium niobate micro-disk resonators of quality factors above 107

Rongbo Wu, Jianhao Zhang, Ni Yao, Wei Fang, Lingling Qiao, Zhifang Chai, Jintian Lin, and Ya Cheng
Opt. Lett. 43(17) 4116-4119 (2018)

Integrated high quality factor lithium niobate microdisk resonators

Cheng Wang, Michael J. Burek, Zin Lin, Haig A. Atikian, Vivek Venkataraman, I-Chun Huang, Peter Stark, and Marko Lončar
Opt. Express 22(25) 30924-30933 (2014)

High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation

Jie Wang, Fang Bo, Shuai Wan, Wuxia Li, Feng Gao, Junjie Li, Guoquan Zhang, and Jingjun Xu
Opt. Express 23(18) 23072-23078 (2015)

References

  • View by:
  • |
  • |
  • |

  1. G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (lnoi) for micro-photonic devices,” Laser & Photonics Rev. 6, 488–503 (2012).
    [Crossref]
  2. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
    [Crossref]
  3. L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40, 3013–3016 (2015).
    [Crossref] [PubMed]
  4. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  5. S. Liu, Y. Zheng, and X. Chen, “Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk,” Opt. Lett. 42, 3626 (2017).
    [Crossref] [PubMed]
  6. L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, and X. Chen, “Broadband quasi-phase matching in a mgo:ppln thin film,” Photon. Res. 6, 954–958 (2018).
    [Crossref]
  7. S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1, 293 (2007).
    [Crossref]
  8. M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
    [Crossref] [PubMed]
  9. T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality linbo 3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20, 28119–28124 (2012).
    [Crossref] [PubMed]
  10. H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
    [Crossref]
  11. L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
    [Crossref]
  12. N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y. F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151 (2017).
    [Crossref]
  13. F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
    [Crossref]
  14. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  15. J. Wang, F. Bo, S. Wan, W. Li, F. Gao, J. Li, G. Zhang, and J. Xu, “High-q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation,” Opt. Express 23, 23072–23078 (2015).
    [Crossref] [PubMed]
  16. J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Reports 5, 8072 (2015).
    [Crossref]
  17. B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, and et al., “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 ×106,” Optica 4, 218–221 (2017).
    [Crossref]
  18. D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925 (2003).
    [Crossref] [PubMed]
  19. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  20. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
    [Crossref] [PubMed]
  21. D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
    [Crossref] [PubMed]
  22. D. Bachman, Z. Chen, R. Fedosejevs, Y. Tsui, and V. Van, “Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation,” Appl. Phys. Lett. 109, 091901 (2016).
    [Crossref]
  23. A. H. Nejadmalayeri and P. R. Herman, “Rapid thermal annealing in high repetition rate ultrafast laser waveguide writing in lithium niobate,” Opt. Express 15, 10842–10854 (2007).
    [Crossref] [PubMed]
  24. S. Liu, W. Sun, Y. Wang, X. Yu, K. Xu, Y. Huang, S. Xiao, and Q. Song, “End-fire injection of light into high-q silicon microdisks,” Optica 5, 612–616 (2018).
    [Crossref]
  25. X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
    [Crossref] [PubMed]
  26. L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
    [Crossref] [PubMed]
  27. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
    [Crossref]
  28. M. Garcia-Lechuga, J. Solis, and J. Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
    [Crossref]
  29. T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
    [Crossref]
  30. J. Bonse, S. Wiggins, and J. Solis, “Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide,” J. applied physics 96, 2352–2358 (2004).
    [Crossref]

2018 (6)

2017 (7)

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
[Crossref]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

B. Guha, F. Marsault, F. Cadiz, L. Morgenroth, V. Ulin, V. Berkovitz, A. Lemaître, C. Gomez, A. Amo, S. Combrié, and et al., “Surface-enhanced gallium arsenide photonic resonator with quality factor of 6 ×106,” Optica 4, 218–221 (2017).
[Crossref]

N. Zhang, Z. Gu, S. Liu, Y. Wang, S. Wang, Z. Duan, W. Sun, Y. F. Xiao, S. Xiao, and Q. Song, “Far-field single nanoparticle detection and sizing,” Optica 4, 1151 (2017).
[Crossref]

S. Liu, Y. Zheng, and X. Chen, “Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk,” Opt. Lett. 42, 3626 (2017).
[Crossref] [PubMed]

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref] [PubMed]

2016 (3)

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Tsui, and V. Van, “Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation,” Appl. Phys. Lett. 109, 091901 (2016).
[Crossref]

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

2015 (3)

2014 (2)

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I.-C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

2013 (1)

2012 (2)

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (lnoi) for micro-photonic devices,” Laser & Photonics Rev. 6, 488–503 (2012).
[Crossref]

T.-J. Wang, J.-Y. He, C.-A. Lee, and H. Niu, “High-quality linbo 3 microdisk resonators by undercut etching and surface tension reshaping,” Opt. Express 20, 28119–28124 (2012).
[Crossref] [PubMed]

2008 (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
[Crossref]

2007 (2)

2005 (1)

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

2004 (1)

J. Bonse, S. Wiggins, and J. Solis, “Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide,” J. applied physics 96, 2352–2358 (2004).
[Crossref]

2003 (1)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925 (2003).
[Crossref] [PubMed]

Amo, A.

Armani, D.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925 (2003).
[Crossref] [PubMed]

Atikian, H. A.

Bachman, D.

D. Bachman, Z. Chen, R. Fedosejevs, Y. Tsui, and V. Van, “Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation,” Appl. Phys. Lett. 109, 091901 (2016).
[Crossref]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
[Crossref] [PubMed]

Bainier, C.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Berkovitz, V.

Bernal, M.-P.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Bo, F.

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Bonse, J.

T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
[Crossref]

J. Bonse, S. Wiggins, and J. Solis, “Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide,” J. applied physics 96, 2352–2358 (2004).
[Crossref]

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Bowers, J. E.

Burek, M. J.

Cadiz, F.

Cai, L.

Chai, Z.

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Chen, X.

Chen, Y.

L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, and X. Chen, “Broadband quasi-phase matching in a mgo:ppln thin film,” Photon. Res. 6, 954–958 (2018).
[Crossref]

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

Chen, Z.

D. Bachman, Z. Chen, R. Fedosejevs, Y. Tsui, and V. Van, “Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation,” Appl. Phys. Lett. 109, 091901 (2016).
[Crossref]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
[Crossref] [PubMed]

Cheng, R.

Cheng, Y.

Chu, W.

Combrié, S.

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Courjal, N.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Duan, Z.

Eberstein, M.

T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
[Crossref]

Fang, W.

Fang, Z.

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref] [PubMed]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Reports 5, 8072 (2015).
[Crossref]

Fedosejevs, R.

D. Bachman, Z. Chen, R. Fedosejevs, Y. Tsui, and V. Van, “Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation,” Appl. Phys. Lett. 109, 091901 (2016).
[Crossref]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
[Crossref] [PubMed]

Gao, F.

Garcia-Lechuga, M.

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
[Crossref]

Ge, L.

Gomez, C.

Gong, Q.

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref] [PubMed]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Grehn, M.

T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
[Crossref]

Gu, Z.

Guenter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (lnoi) for micro-photonic devices,” Laser & Photonics Rev. 6, 488–503 (2012).
[Crossref]

Guha, B.

He, J.-Y.

Herman, P. R.

Hu, H.

L. Cai, Y. Wang, and H. Hu, “Low-loss waveguides in a single-crystal lithium niobate thin film,” Opt. Lett. 40, 3013–3016 (2015).
[Crossref] [PubMed]

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (lnoi) for micro-photonic devices,” Laser & Photonics Rev. 6, 488–503 (2012).
[Crossref]

Hua, S.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Huang, I.-C.

Huang, Y.

Jiang, H.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, and X. Chen, “Broadband quasi-phase matching in a mgo:ppln thin film,” Photon. Res. 6, 954–958 (2018).
[Crossref]

Jiang, L.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Jiang, X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Kippenberg, T.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925 (2003).
[Crossref] [PubMed]

Lacour, F.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Lee, C.-A.

Lemaître, A.

Li, G.

L. Ge, Y. Chen, H. Jiang, G. Li, B. Zhu, Y. Liu, and X. Chen, “Broadband quasi-phase matching in a mgo:ppln thin film,” Photon. Res. 6, 954–958 (2018).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Li, J.

Li, W.

Li, Y.

Liang, H.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

Liao, Y.

Lin, J.

Lin, Q.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

Lin, Z.

Lipson, M.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1, 293 (2007).
[Crossref]

Liu, S.

Liu, Y.

Loncar, M.

Luo, R.

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

Marsault, F.

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
[Crossref]

Mermillod-Blondin, A.

T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
[Crossref]

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Morgenroth, L.

Nejadmalayeri, A. H.

Niu, H.

Peters, J.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (lnoi) for micro-photonic devices,” Laser & Photonics Rev. 6, 488–503 (2012).
[Crossref]

Preble, S. F.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1, 293 (2007).
[Crossref]

Qiao, L.

Sabac, A.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Seuthe, T.

T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
[Crossref]

Shams-Ansari, A.

Shao, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Siegel, J.

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

Sohler, W.

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (lnoi) for micro-photonic devices,” Laser & Photonics Rev. 6, 488–503 (2012).
[Crossref]

Solis, J.

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

J. Bonse, S. Wiggins, and J. Solis, “Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide,” J. applied physics 96, 2352–2358 (2004).
[Crossref]

Song, J.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Reports 5, 8072 (2015).
[Crossref]

Song, Q.

Spajer, M.

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Spillane, S.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925 (2003).
[Crossref] [PubMed]

Stark, P.

Sun, W.

Tsui, Y.

D. Bachman, Z. Chen, R. Fedosejevs, Y. Tsui, and V. Van, “Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation,” Appl. Phys. Lett. 109, 091901 (2016).
[Crossref]

Tsui, Y. Y.

Ulin, V.

Vahala, K.

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925 (2003).
[Crossref] [PubMed]

Van, V.

D. Bachman, Z. Chen, R. Fedosejevs, Y. Tsui, and V. Van, “Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation,” Appl. Phys. Lett. 109, 091901 (2016).
[Crossref]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Y. Tsui, and V. Van, “Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation,” Opt. Express 21, 11048–11056 (2013).
[Crossref] [PubMed]

Venkataraman, V.

Volet, N.

Wan, S.

Wang, C.

Wang, G.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Wang, J.

Wang, L.

Wang, M.

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref] [PubMed]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Reports 5, 8072 (2015).
[Crossref]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Reports 5, 8072 (2015).
[Crossref]

Wang, P.

Wang, S.

Wang, T.-J.

Wang, Y.

Wen, J.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Wiersig, J.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Wiggins, S.

J. Bonse, S. Wiggins, and J. Solis, “Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide,” J. applied physics 96, 2352–2358 (2004).
[Crossref]

Wondraczek, L.

T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
[Crossref]

Wu, R.

Xiao, M.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Xiao, S.

Xiao, Y. F.

Xiao, Y.-F.

L. Wang, C. Wang, J. Wang, F. Bo, M. Zhang, Q. Gong, M. Lončar, and Y.-F. Xiao, “High-q chaotic lithium niobate microdisk cavity,” Opt. Lett. 43, 2917–2920 (2018).
[Crossref] [PubMed]

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Xu, J.

Xu, K.

Xu, Q.

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1, 293 (2007).
[Crossref]

Xu, Y.

M. Wang, Y. Xu, Z. Fang, Y. Liao, P. Wang, W. Chu, L. Qiao, J. Lin, W. Fang, and Y. Cheng, “On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes,” Opt. Express 25, 124–129 (2017).
[Crossref] [PubMed]

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Reports 5, 8072 (2015).
[Crossref]

Yang, C.

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

Yang, L.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Yao, N.

Yi, X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Yu, X.

Zhang, G.

Zhang, J.

Zhang, M.

Zhang, N.

Zhang, S.-X.

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Zheng, Y.

Zhu, B.

Appl. Phys. Lett. (3)

H. Jiang, H. Liang, R. Luo, X. Chen, Y. Chen, and Q. Lin, “Nonlinear frequency conversion in one dimensional lithium niobate photonic crystal nanocavities,” Appl. Phys. Lett. 113, 021104 (2018).
[Crossref]

D. Bachman, Z. Chen, R. Fedosejevs, Y. Tsui, and V. Van, “Threshold for permanent refractive index change in crystalline silicon by femtosecond laser irradiation,” Appl. Phys. Lett. 109, 091901 (2016).
[Crossref]

M. Garcia-Lechuga, J. Solis, and J. Siegel, “Melt front propagation in dielectrics upon femtosecond laser irradiation: Formation dynamics of a heat-affected layer,” Appl. Phys. Lett. 108, 171901 (2016).
[Crossref]

J. applied physics (1)

J. Bonse, S. Wiggins, and J. Solis, “Dynamics of femtosecond laser-induced melting and amorphization of indium phosphide,” J. applied physics 96, 2352–2358 (2004).
[Crossref]

Laser & Photonics Rev. (2)

G. Poberaj, H. Hu, W. Sohler, and P. Guenter, “Lithium niobate on insulator (lnoi) for micro-photonic devices,” Laser & Photonics Rev. 6, 488–503 (2012).
[Crossref]

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (lnoi) for photonic integrated circuits,” Laser & Photonics Rev. 12, 1700256 (2018).
[Crossref]

Nat. Photonics (3)

S. F. Preble, Q. Xu, and M. Lipson, “Changing the colour of light in a silicon resonator,” Nat. Photonics 1, 293 (2007).
[Crossref]

L. Chang, X. Jiang, S. Hua, C. Yang, J. Wen, L. Jiang, G. Li, G. Wang, and M. Xiao, “Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators,” Nat. Photonics 8, 524–529 (2014).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219 (2008).
[Crossref]

Nature (1)

D. Armani, T. Kippenberg, S. Spillane, and K. Vahala, “Ultra-high-q toroid microcavity on a chip,” Nature 421, 925 (2003).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (4)

Opt. Mater. (1)

F. Lacour, N. Courjal, M.-P. Bernal, A. Sabac, C. Bainier, and M. Spajer, “Nanostructuring lithium niobate substrates by focused ion beam milling,” Opt. Mater. 27, 1421–1425 (2005).
[Crossref]

Optica (5)

Photon. Res. (1)

Sci. Reports (2)

J. Lin, Y. Xu, Z. Fang, M. Wang, J. Song, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Fabrication of high-q lithium niobate microresonators using femtosecond laser micromachining,” Sci. Reports 5, 8072 (2015).
[Crossref]

T. Seuthe, A. Mermillod-Blondin, M. Grehn, J. Bonse, L. Wondraczek, and M. Eberstein, “Structural relaxation phenomena in silicate glasses modified by irradiation with femtosecond laser pulses,” Sci. Reports 7, 43815 (2017).
[Crossref]

Science (1)

X. Jiang, L. Shao, S.-X. Zhang, X. Yi, J. Wiersig, L. Wang, Q. Gong, M. Lončar, L. Yang, and Y.-F. Xiao, “Chaos-assisted broadband momentum transformation in optical microresonators,” Science 358, 344–347 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup of the dual-beam pump-probe system. The inset shows the optical image of interaction between femtosecond laser and LN micro-disk. PC: polarization controller. PD: photo detector. OSC: oscilloscope.
Fig. 2
Fig. 2 (a)Transmission spectrum of the original LN micro-disk resonator with a diameter of 55μm. (b) and (c) shows Lorentzian fit of mode 3 around 1548.18nm before and after laser interaction, respectively. The intrinsic Q has one order of magnitude promotion from 105 to 106. The inset in (b) shows the original coupled micro-disk. The inset in (c) exhibits SEM image of the disk after femtosecond laser shots.
Fig. 3
Fig. 3 The relationship between Q factors and interacting laser power. (a) (b) and (c) correspond to mode 1,2 and 3 respectively.
Fig. 4
Fig. 4 Surface roughness (a) before and (b) after femtosecond laser shotting. There exist many nano particles around the hole after post-fabrication in (b).
Fig. 5
Fig. 5 Radial intensity distribution of mode 1, 2 and 3. The orange zone represents the heat affected zone induced by femtosecond laser shots. It has some overlapping with the intensity distribution of mode 2 resulting in a Q decrease.
Fig. 6
Fig. 6 Transmission spectrum after 42mW laser interaction. The inset shows the mode profile of mode 3.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L D = 4 D R P .

Metrics