Abstract

A novel metamaterial device with simultaneous asymmetric transmission and absorption has been proposed. The proposed device is made of two artificial metallo-dielectric layers which are perpendicular to each other. The three-dimensional structure is light-weight and does not alter the polarization of waves for the lack of Faraday rotation. The transmission is asymmetric, when TE wave propagates from the front side to back side at 30°. In such a case, the transmission coefficients are 0.81, 0.17 and 0.82, at f1 = 1.72GHz, f2 = 2.3GHz, and f3 = 3.48GHz, respectively. When the TE wave is back propagating (from the back side to front side) at the same incident angle, the transmission coefficients are changed to 0.81, 0.17 and 0.82, at f1 = 1.72GHz, f2 = 2.3GHz, and f3 = 3.48GHz, respectively. The similar asymmetric phenomena also can be seen in the absorption. The asymmetric transmission and absorption have been elucidated with tangential surface parameters, which provides the physical intuition. Finally, the proposed device has been fabricated and measured, and the experimental results agree reasonably well with theoretical simulations.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial

Junming Zhao, Liang Sun, Bo Zhu, and Yijun Feng
Opt. Express 23(4) 4658-4665 (2015)

Tunable asymmetric mode conversion using the dark-mode of three-mode waveguide system

Joonsoo Kim, Seung-Yeol Lee, Yohan Lee, Hwi Kim, and Byoungho Lee
Opt. Express 22(23) 28683-28696 (2014)

Slowing and stopping of wave in dispersive metamaterial loaded helical guide

Dushyant K. Sharma and Surya K. Pathak
Opt. Express 24(3) 2687-2700 (2016)

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Sov. Phys. Usp. 10(4), 509 (1968).
    [Crossref]
  2. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
    [Crossref] [PubMed]
  3. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  4. R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
    [Crossref] [PubMed]
  5. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
    [Crossref]
  6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
    [Crossref] [PubMed]
  7. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  8. J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
    [Crossref]
  9. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  10. S. Maslovski and S. Tretyakov, “Phase conjugation and perfect lensing,” J. Appl. Phys. 94(7), 4241–4243 (2003).
    [Crossref]
  11. J. B. Pendry, “Time reversal and negative refraction,” Science 322(5898), 71–73 (2008).
    [Crossref] [PubMed]
  12. H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
    [Crossref] [PubMed]
  13. L. L. Wang, S. B. Liu, H. F. Zhang, X. K. Kong, and L. L. Liu, “High-impedance surface-based flexible broadband absorber,” J. Electromagn. Waves Appl. 31(13), 1216–1231 (2017).
    [Crossref]
  14. C. He, M. H. Lu, X. Heng, L. Feng, and Y. F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 83(7), 210–216 (2011).
    [Crossref]
  15. H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
    [Crossref] [PubMed]
  16. R. Takei and T. Mizumoto, “Design and simulation of silicon waveguide optical circulator employing nonreciprocal phase shift,” Jpn. J. Appl. Phys. 49(55R), 052203 (2010).
    [Crossref]
  17. T. Kodera, D. L. Sounas, and C. Caloz, “Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components,” IEEE Trans. Microw. Theory Tech. 61(3), 1030–1042 (2013).
    [Crossref]
  18. T. Kodera, D. L. Sounas, and C. Caloz, “Nonreciprocal magnetless CRLH leaky-wave antenna based on a ring metamaterial structure,” IEEE Antennas Wirel. Propag. Lett. 10, 1551–1554 (2011).
    [Crossref]
  19. T. Kodera, D. L. Sounas, and C. Caloz, “Tunable magnet-less non-reciprocal metamaterial (MNM) and its application to an isolator,” Microwave Conference Proceedings (APMC), Asia-Pacific (IEEE, 2012).
    [Crossref]
  20. Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
    [Crossref] [PubMed]
  21. Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
    [Crossref]
  22. S. Taravati, B. A. Khan, S. Gupta, K. Achouri, and C. Caloz, “Nonreciprocal nongyrotropic magnetless metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3589–3597 (2017).
    [Crossref]
  23. Y. T. Fang and Y. C. Zhang, “Perfect Nonreciprocal Absorption Based on Metamaterial Slab,” Plasmonics 13(2), 661–667 (2018).
    [Crossref]
  24. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
    [Crossref] [PubMed]
  25. K. Liu and S. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
    [Crossref] [PubMed]
  26. C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
    [Crossref]
  27. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  28. M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
    [Crossref] [PubMed]
  29. Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
    [Crossref]
  30. Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
    [Crossref]
  31. A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6(1), 8359 (2015).
    [Crossref] [PubMed]
  32. Y. Shi and S. Fan, “Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms,” Appl. Phys. Lett. 108(2), 021110 (2016).
    [Crossref]
  33. N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
    [Crossref]
  34. Q. Shihan, X. Qiang, and Y. E. Wang, “Nonreciprocal components with distributedly modulated capacitors,” IEEE Trans. Microw. Theory Tech. 62(10), 2260–2272 (2014).
    [Crossref]
  35. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
    [Crossref] [PubMed]
  36. T. Kodera, D. L. Sounas, and C. Caloz, “Artificial Faraday rotation using a ring metamaterial structure without static magnetic field,” Appl. Phys. Lett. 99(3), 031114 (2011).
    [Crossref]
  37. C. Pfeiffer and A. Grbic, “Emulating nonreciprocity with spatially dispersive metasurfaces excited at oblique incidence,” Phys. Rev. Lett. 117(7), 077401 (2016).
    [Crossref] [PubMed]
  38. D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
    [Crossref] [PubMed]
  39. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
    [Crossref] [PubMed]
  40. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
    [Crossref] [PubMed]
  41. M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
    [Crossref] [PubMed]
  42. D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
    [Crossref]

2018 (1)

Y. T. Fang and Y. C. Zhang, “Perfect Nonreciprocal Absorption Based on Metamaterial Slab,” Plasmonics 13(2), 661–667 (2018).
[Crossref]

2017 (2)

S. Taravati, B. A. Khan, S. Gupta, K. Achouri, and C. Caloz, “Nonreciprocal nongyrotropic magnetless metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3589–3597 (2017).
[Crossref]

L. L. Wang, S. B. Liu, H. F. Zhang, X. K. Kong, and L. L. Liu, “High-impedance surface-based flexible broadband absorber,” J. Electromagn. Waves Appl. 31(13), 1216–1231 (2017).
[Crossref]

2016 (3)

Y. Shi and S. Fan, “Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms,” Appl. Phys. Lett. 108(2), 021110 (2016).
[Crossref]

K. Liu and S. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Emulating nonreciprocity with spatially dispersive metasurfaces excited at oblique incidence,” Phys. Rev. Lett. 117(7), 077401 (2016).
[Crossref] [PubMed]

2015 (1)

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6(1), 8359 (2015).
[Crossref] [PubMed]

2014 (2)

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]

Q. Shihan, X. Qiang, and Y. E. Wang, “Nonreciprocal components with distributedly modulated capacitors,” IEEE Trans. Microw. Theory Tech. 62(10), 2260–2272 (2014).
[Crossref]

2013 (3)

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components,” IEEE Trans. Microw. Theory Tech. 61(3), 1030–1042 (2013).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

2012 (2)

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

2011 (5)

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Nonreciprocal magnetless CRLH leaky-wave antenna based on a ring metamaterial structure,” IEEE Antennas Wirel. Propag. Lett. 10, 1551–1554 (2011).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Artificial Faraday rotation using a ring metamaterial structure without static magnetic field,” Appl. Phys. Lett. 99(3), 031114 (2011).
[Crossref]

C. He, M. H. Lu, X. Heng, L. Feng, and Y. F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 83(7), 210–216 (2011).
[Crossref]

M. Kang, J. Chen, H. X. Cui, Y. Li, and H. T. Wang, “Asymmetric transmission for linearly polarized electromagnetic radiation,” Opt. Express 19(9), 8347–8356 (2011).
[Crossref] [PubMed]

2010 (3)

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

R. Takei and T. Mizumoto, “Design and simulation of silicon waveguide optical circulator employing nonreciprocal phase shift,” Jpn. J. Appl. Phys. 49(55R), 052203 (2010).
[Crossref]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

2009 (3)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

2008 (4)

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

J. B. Pendry, “Time reversal and negative refraction,” Science 322(5898), 71–73 (2008).
[Crossref] [PubMed]

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

2007 (1)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

2006 (2)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

2004 (1)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

2003 (2)

S. Maslovski and S. Tretyakov, “Phase conjugation and perfect lensing,” J. Appl. Phys. 94(7), 4241–4243 (2003).
[Crossref]

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[Crossref]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

2000 (2)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

H. Yokoi, T. Mizumoto, N. Shinjo, N. Futakuchi, and Y. Nakano, “Demonstration of an optical isolator with a semiconductor guiding layer that was obtained by use of a nonreciprocal phase shift,” Appl. Opt. 39(33), 6158–6164 (2000).
[Crossref] [PubMed]

1968 (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Sov. Phys. Usp. 10(4), 509 (1968).
[Crossref]

Achouri, K.

S. Taravati, B. A. Khan, S. Gupta, K. Achouri, and C. Caloz, “Nonreciprocal nongyrotropic magnetless metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3589–3597 (2017).
[Crossref]

Akosman, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Alù, A.

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]

Averitt, R. D.

Baets, R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Barnakov, Y. A.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Bingham, C. M.

Caloz, C.

S. Taravati, B. A. Khan, S. Gupta, K. Achouri, and C. Caloz, “Nonreciprocal nongyrotropic magnetless metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3589–3597 (2017).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components,” IEEE Trans. Microw. Theory Tech. 61(3), 1030–1042 (2013).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Nonreciprocal magnetless CRLH leaky-wave antenna based on a ring metamaterial structure,” IEEE Antennas Wirel. Propag. Lett. 10, 1551–1554 (2011).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Artificial Faraday rotation using a ring metamaterial structure without static magnetic field,” Appl. Phys. Lett. 99(3), 031114 (2011).
[Crossref]

Cao, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Chen, J.

Chen, Y.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Chen, Y. F.

C. He, M. H. Lu, X. Heng, L. Feng, and Y. F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 83(7), 210–216 (2011).
[Crossref]

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Cui, H. X.

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Davoyan, A. R.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6(1), 8359 (2015).
[Crossref] [PubMed]

Doerr, C. R.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Eich, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Engheta, N.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6(1), 8359 (2015).
[Crossref] [PubMed]

Estep, N. A.

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]

Fan, S.

Y. Shi and S. Fan, “Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms,” Appl. Phys. Lett. 108(2), 021110 (2016).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Fan, Y.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Fang, Y. T.

Y. T. Fang and Y. C. Zhang, “Perfect Nonreciprocal Absorption Based on Metamaterial Slab,” Plasmonics 13(2), 661–667 (2018).
[Crossref]

Fedotov, V. A.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Feng, L.

C. He, M. H. Lu, X. Heng, L. Feng, and Y. F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 83(7), 210–216 (2011).
[Crossref]

Feng, Y.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Freude, W.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Futakuchi, N.

Grbic, A.

C. Pfeiffer and A. Grbic, “Emulating nonreciprocity with spatially dispersive metasurfaces excited at oblique incidence,” Phys. Rev. Lett. 117(7), 077401 (2016).
[Crossref] [PubMed]

Gupta, S.

S. Taravati, B. A. Khan, S. Gupta, K. Achouri, and C. Caloz, “Nonreciprocal nongyrotropic magnetless metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3589–3597 (2017).
[Crossref]

Haldane, F. D. M.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

He, C.

C. He, M. H. Lu, X. Heng, L. Feng, and Y. F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 83(7), 210–216 (2011).
[Crossref]

He, S.

K. Liu and S. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
[Crossref] [PubMed]

Helgert, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Heng, X.

C. He, M. H. Lu, X. Heng, L. Feng, and Y. F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 83(7), 210–216 (2011).
[Crossref]

Huang, C.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Jalas, D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Jiang, T.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Joannopoulos, J. D.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Kang, M.

Khan, B. A.

S. Taravati, B. A. Khan, S. Gupta, K. Achouri, and C. Caloz, “Nonreciprocal nongyrotropic magnetless metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3589–3597 (2017).
[Crossref]

Kley, E. B.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Kodera, T.

T. Kodera, D. L. Sounas, and C. Caloz, “Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components,” IEEE Trans. Microw. Theory Tech. 61(3), 1030–1042 (2013).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Nonreciprocal magnetless CRLH leaky-wave antenna based on a ring metamaterial structure,” IEEE Antennas Wirel. Propag. Lett. 10, 1551–1554 (2011).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Artificial Faraday rotation using a ring metamaterial structure without static magnetic field,” Appl. Phys. Lett. 99(3), 031114 (2011).
[Crossref]

Kong, X. K.

L. L. Wang, S. B. Liu, H. F. Zhang, X. K. Kong, and L. L. Liu, “High-impedance surface-based flexible broadband absorber,” J. Electromagn. Waves Appl. 31(13), 1216–1231 (2017).
[Crossref]

Koschny, T.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Landy, N. I.

Lederer, F.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Lee, H.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Li, H.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Li, Y.

Li, Z.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

Liu, K.

K. Liu and S. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
[Crossref] [PubMed]

Liu, L. L.

L. L. Wang, S. B. Liu, H. F. Zhang, X. K. Kong, and L. L. Liu, “High-impedance surface-based flexible broadband absorber,” J. Electromagn. Waves Appl. 31(13), 1216–1231 (2017).
[Crossref]

Liu, S. B.

L. L. Wang, S. B. Liu, H. F. Zhang, X. K. Kong, and L. L. Liu, “High-impedance surface-based flexible broadband absorber,” J. Electromagn. Waves Appl. 31(13), 1216–1231 (2017).
[Crossref]

Liu, Z.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Lu, M. H.

C. He, M. H. Lu, X. Heng, L. Feng, and Y. F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 83(7), 210–216 (2011).
[Crossref]

Mahmoud, A. M.

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6(1), 8359 (2015).
[Crossref] [PubMed]

Maslovski, S.

S. Maslovski and S. Tretyakov, “Phase conjugation and perfect lensing,” J. Appl. Phys. 94(7), 4241–4243 (2003).
[Crossref]

Melloni, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Menzel, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Mizumoto, T.

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Mutlu, M.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Nakano, Y.

Narimanov, E. E.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Noginov, M. A.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Ozbay, E.

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Padilla, W. J.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, “Time reversal and negative refraction,” Science 322(5898), 71–73 (2008).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[Crossref]

Pertsch, T.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Petrov, A.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Pfeiffer, C.

C. Pfeiffer and A. Grbic, “Emulating nonreciprocity with spatially dispersive metasurfaces excited at oblique incidence,” Phys. Rev. Lett. 117(7), 077401 (2016).
[Crossref] [PubMed]

Popovic, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Qiang, X.

Q. Shihan, X. Qiang, and Y. E. Wang, “Nonreciprocal components with distributedly modulated capacitors,” IEEE Trans. Microw. Theory Tech. 62(10), 2260–2272 (2014).
[Crossref]

Raghu, S.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Ramakrishna, S. A.

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[Crossref]

Renner, H.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Rockstuhl, C.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Schurig, D.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Serebryannikov, A. E.

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Shi, Y.

Y. Shi and S. Fan, “Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms,” Appl. Phys. Lett. 108(2), 021110 (2016).
[Crossref]

Shihan, Q.

Q. Shihan, X. Qiang, and Y. E. Wang, “Nonreciprocal components with distributedly modulated capacitors,” IEEE Trans. Microw. Theory Tech. 62(10), 2260–2272 (2014).
[Crossref]

Shinjo, N.

Smith, D. R.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Soljacic, M.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Soric, J.

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]

Soukoulis, C. M.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Sounas, D. L.

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components,” IEEE Trans. Microw. Theory Tech. 61(3), 1030–1042 (2013).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Nonreciprocal magnetless CRLH leaky-wave antenna based on a ring metamaterial structure,” IEEE Antennas Wirel. Propag. Lett. 10, 1551–1554 (2011).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Artificial Faraday rotation using a ring metamaterial structure without static magnetic field,” Appl. Phys. Lett. 99(3), 031114 (2011).
[Crossref]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Takei, R.

R. Takei and T. Mizumoto, “Design and simulation of silicon waveguide optical circulator employing nonreciprocal phase shift,” Jpn. J. Appl. Phys. 49(55R), 052203 (2010).
[Crossref]

Tao, H.

Taravati, S.

S. Taravati, B. A. Khan, S. Gupta, K. Achouri, and C. Caloz, “Nonreciprocal nongyrotropic magnetless metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3589–3597 (2017).
[Crossref]

Tretyakov, S.

S. Maslovski and S. Tretyakov, “Phase conjugation and perfect lensing,” J. Appl. Phys. 94(7), 4241–4243 (2003).
[Crossref]

Tumkur, T.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Tünnermann, A.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

Vanwolleghem, M.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Veronis, G.

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Veselago, V. G.

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Sov. Phys. Usp. 10(4), 509 (1968).
[Crossref]

Vier, D. C.

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, H. T.

Wang, L. L.

L. L. Wang, S. B. Liu, H. F. Zhang, X. K. Kong, and L. L. Liu, “High-impedance surface-based flexible broadband absorber,” J. Electromagn. Waves Appl. 31(13), 1216–1231 (2017).
[Crossref]

Wang, Y. E.

Q. Shihan, X. Qiang, and Y. E. Wang, “Nonreciprocal components with distributedly modulated capacitors,” IEEE Trans. Microw. Theory Tech. 62(10), 2260–2272 (2014).
[Crossref]

Wang, Z.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Wei, Z.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Xiong, Y.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Yokoi, H.

Yu, X.

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Yu, Z.

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

Zhang, H. F.

L. L. Wang, S. B. Liu, H. F. Zhang, X. K. Kong, and L. L. Liu, “High-impedance surface-based flexible broadband absorber,” J. Electromagn. Waves Appl. 31(13), 1216–1231 (2017).
[Crossref]

Zhang, X.

H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, and W. J. Padilla, “A metamaterial absorber for the terahertz regime: Design, fabrication and characterization,” Opt. Express 16(10), 7181–7188 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhang, Y. C.

Y. T. Fang and Y. C. Zhang, “Perfect Nonreciprocal Absorption Based on Metamaterial Slab,” Plasmonics 13(2), 661–667 (2018).
[Crossref]

Zhao, J.

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Zheludev, N. I.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

Zhu, G.

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Ziolkowski, R. W.

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett. 94(15), 151105 (2009).
[Crossref]

Z. Wei, Y. Cao, Y. Fan, X. Yu, and H. Li, “Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators,” Appl. Phys. Lett. 99(22), 221907 (2011).
[Crossref]

Y. Shi and S. Fan, “Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms,” Appl. Phys. Lett. 108(2), 021110 (2016).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Artificial Faraday rotation using a ring metamaterial structure without static magnetic field,” Appl. Phys. Lett. 99(3), 031114 (2011).
[Crossref]

IEEE Antennas Wirel. Propag. Lett. (1)

T. Kodera, D. L. Sounas, and C. Caloz, “Nonreciprocal magnetless CRLH leaky-wave antenna based on a ring metamaterial structure,” IEEE Antennas Wirel. Propag. Lett. 10, 1551–1554 (2011).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

S. Taravati, B. A. Khan, S. Gupta, K. Achouri, and C. Caloz, “Nonreciprocal nongyrotropic magnetless metasurface,” IEEE Trans. Antenn. Propag. 65(7), 3589–3597 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

Q. Shihan, X. Qiang, and Y. E. Wang, “Nonreciprocal components with distributedly modulated capacitors,” IEEE Trans. Microw. Theory Tech. 62(10), 2260–2272 (2014).
[Crossref]

T. Kodera, D. L. Sounas, and C. Caloz, “Magnetless nonreciprocal metamaterial (MNM) technology: application to microwave components,” IEEE Trans. Microw. Theory Tech. 61(3), 1030–1042 (2013).
[Crossref]

J. Appl. Phys. (1)

S. Maslovski and S. Tretyakov, “Phase conjugation and perfect lensing,” J. Appl. Phys. 94(7), 4241–4243 (2003).
[Crossref]

J. Electromagn. Waves Appl. (1)

L. L. Wang, S. B. Liu, H. F. Zhang, X. K. Kong, and L. L. Liu, “High-impedance surface-based flexible broadband absorber,” J. Electromagn. Waves Appl. 31(13), 1216–1231 (2017).
[Crossref]

J. Opt. (1)

Z. Li, M. Mutlu, and E. Ozbay, “Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission,” J. Opt. 15(2), 023001 (2013).
[Crossref]

J. Phys. Condens. Matter (1)

J. B. Pendry and S. A. Ramakrishna, “Focusing light using negative refraction,” J. Phys. Condens. Matter 15(37), 6345–6364 (2003).
[Crossref]

Jpn. J. Appl. Phys. (1)

R. Takei and T. Mizumoto, “Design and simulation of silicon waveguide optical circulator employing nonreciprocal phase shift,” Jpn. J. Appl. Phys. 49(55R), 052203 (2010).
[Crossref]

Nat. Commun. (1)

A. M. Mahmoud, A. R. Davoyan, and N. Engheta, “All-passive nonreciprocal metastructure,” Nat. Commun. 6(1), 8359 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

Z. Yu and S. Fan, “Complete optical isolation created by indirect interband photonic transitions,” Nat. Photonics 3(2), 91–94 (2009).
[Crossref]

D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, “What is - and what is not - an optical isolator,” Nat. Photonics 7(8), 579–582 (2013).
[Crossref]

Nat. Phys. (1)

N. A. Estep, D. L. Sounas, J. Soric, and A. Alù, “Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops,” Nat. Phys. 10(12), 923–927 (2014).
[Crossref]

Nature (1)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Opt. Express (2)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

C. He, M. H. Lu, X. Heng, L. Feng, and Y. F. Chen, “Parity-time electromagnetic diodes in a two-dimensional nonreciprocal photonic crystal,” Phys. Rev. B Condens. Matter Mater. Phys. 83(7), 210–216 (2011).
[Crossref]

C. Huang, Y. Feng, J. Zhao, Z. Wang, and T. Jiang, “Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures,” Phys. Rev. B Condens. Matter Mater. Phys. 85(19), 195131 (2012).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (2)

R. W. Ziolkowski, “Propagation in and scattering from a matched metamaterial having a zero index of refraction,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 70(4), 046608 (2004).
[Crossref] [PubMed]

D. R. Smith, D. C. Vier, T. Koschny, and C. M. Soukoulis, “Electromagnetic parameter retrieval from inhomogeneous metamaterials,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(3), 036617 (2005).
[Crossref] [PubMed]

Phys. Rev. Lett. (8)

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

C. Pfeiffer and A. Grbic, “Emulating nonreciprocity with spatially dispersive metasurfaces excited at oblique incidence,” Phys. Rev. Lett. 117(7), 077401 (2016).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric transmission of linearly polarized light at optical metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010).
[Crossref] [PubMed]

M. Mutlu, A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, “Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling,” Phys. Rev. Lett. 108(21), 213905 (2012).
[Crossref] [PubMed]

Z. Yu, G. Veronis, Z. Wang, and S. Fan, “One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal,” Phys. Rev. Lett. 100(2), 023902 (2008).
[Crossref] [PubMed]

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008).
[Crossref] [PubMed]

Plasmonics (1)

Y. T. Fang and Y. C. Zhang, “Perfect Nonreciprocal Absorption Based on Metamaterial Slab,” Plasmonics 13(2), 661–667 (2018).
[Crossref]

Sci. Rep. (1)

K. Liu and S. He, “Truly trapped rainbow by utilizing nonreciprocal waveguides,” Sci. Rep. 6(1), 30206 (2016).
[Crossref] [PubMed]

Science (5)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science 314(5801), 977–980 (2006).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

J. B. Pendry, “Time reversal and negative refraction,” Science 322(5898), 71–73 (2008).
[Crossref] [PubMed]

Sov. Phys. Usp. (1)

V. G. Veselago, “The electrodynamics of substances with simultaneously negative values of and μ,” Sov. Phys. Usp. 10(4), 509 (1968).
[Crossref]

Other (1)

T. Kodera, D. L. Sounas, and C. Caloz, “Tunable magnet-less non-reciprocal metamaterial (MNM) and its application to an isolator,” Microwave Conference Proceedings (APMC), Asia-Pacific (IEEE, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Relevant scattering parameters when a TE polarized plane wave is obliquely incident from the region z < 0.
Fig. 2
Fig. 2 (a) The front side of one of the metamaterial layers of the device. (b) The back side of one of the metamaterial layers. (c) The thickness of one of the metamaterial layers.
Fig. 3
Fig. 3 (a) The unit cell of the device. (b) The top view of the device. (c) Fabricated prototype.
Fig. 4
Fig. 4 (a) Simulated model with full-wave simulation. (b) unidirectional high transmission for obliquely incident plane waves propagating in the + z direction but absorbs radiation propagating in the –z direction.
Fig. 5
Fig. 5 Simulated transmission, reflection and absorption of the metamaterial device. (a) Transmission (b) Reflection (c) Absorption for TE mode at θ = 30ο. (d) Transmission (e) Reflection (f) Absorption for TE mode at θ = 0ο. (g) Transmission (h) Reflection (i) Absorption for TM mode at θ = 30ο.
Fig. 6
Fig. 6 S-parameters of the metamaterial device. (a) Transmission when illuminated at θ = 30ο (b) Reflection when illuminated at θ = 30ο (c) Transmission as a function of incident angle at f1, f2 and f3.
Fig. 7
Fig. 7 The experimental setup for measurements and test configurations. (a) is to test transmission. (b) is to test reflection.
Fig. 8
Fig. 8 Experimental results compared with simulation results for two modes in TE wave at f3 = 3.5GHz. (a), (b) and (c) are S21, S11 and absorption for mode 1. (d), (e) and (f) are S21, S11 and absorption for mode 2.
Fig. 9
Fig. 9 Power flow when illuminated with TE polarized plane waves at θ = 30ο. (a), (b) and (c) when the device operates in mode 1(illuminated from the region z>0). (d), (e) and (f) when the device operates in mode 2 (illuminated from the region z<0).
Fig. 10
Fig. 10 The simulated surface current distributions of the device. (a) TE incident wave at θ = 30ο, (b) TE incident wave at θ = 0ο, (c) TM incident wave at θ = 30ο.

Tables (1)

Tables Icon

Table 1 The parameters of the proposed device

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S nm =( S nm TE,TE S nm TE,TM S nm TM,TE S nm TM,TM )
η 0 Y xx = Z xx / η 0 = k 0 / k z , η 0 Y zz = Z xx / η 0 = k 0 k z / k x 2 , η 0 Y xz = η 0 Y zx = Z xz / η 0 = Z zx / η 0 = k 0 / k x ,