Abstract

In this paper, a comprehensive scheme of plasmonic absorbing structure (PAS) based on multistage dispersion engineering is proposed which can effectively integrate more multiple adjacent resonances for outstanding low-frequency absorption enhancement. Our investigation shows that the multi-absorption peaks with the controllable intervals can be flexibly gained at the lower frequency by extending the bent wire to three-dimensional (3D) space. Based on this, PAS consisting of 3D bent wire arrays with gradually varied length is proposed which directly assembles the multiple adjacent absorptions via dispersion engineering of spoof surface plasmon polariton (SSPP). Then, with the spatial dispersion optimization, multi-bent wire arrays with deliberately regulated periods are combined again on the same plane which further fills up the discontinuity of the absorption spectrum. Simulation and experimental measurements show that our proposed combined 3D PAS can achieve broadband absorption with the efficiency more than 90% in the frequency band of 6.7-35.3GHz, contributing to a low figure of merit compared to others. Our proposal provides an efficient and flexible design capable of enhancing the operating bandwidth and absorbing efficiency simultaneously in PAS, enabling a wide range of applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Three-dimensional ultra-broadband absorber based on novel zigzag-shaped structure

Wenye Ji, Tong Cai, Guangming Wang, Yong Sun, Haipeng Li, Canyu Wang, Chiben Zhang, and Qing Zhang
Opt. Express 27(22) 32835-32845 (2019)

High-efficiency broadband excitation and propagation of second-mode spoof surface plasmon polaritons by a complementary structure

Dawei Zhang, Kuang Zhang, Qun Wu, Guohui Yang, and Xuejun Sha
Opt. Lett. 42(14) 2766-2769 (2017)

Broadband high-order mode of spoof surface plasmon polaritons supported by compact complementary structure with high efficiency

Dawei Zhang, Kuang Zhang, Qun Wu, Ruiwei Dai, and Xuejun Sha
Opt. Lett. 43(13) 3176-3179 (2018)

References

  • View by:
  • |
  • |
  • |

  1. C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17(10), 8467–8475 (2009).
    [Crossref] [PubMed]
  2. H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
    [Crossref] [PubMed]
  3. S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
    [Crossref]
  4. K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
    [Crossref] [PubMed]
  5. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  6. M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
    [Crossref] [PubMed]
  7. J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
    [Crossref] [PubMed]
  8. N. Xu, W. Zhang, R. Singh, and W. Zhang, “High-q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
    [Crossref]
  9. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
    [Crossref] [PubMed]
  10. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
    [Crossref] [PubMed]
  11. T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
    [Crossref]
  12. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
    [Crossref] [PubMed]
  13. X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
    [Crossref]
  14. J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
    [Crossref] [PubMed]
  15. W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
    [Crossref]
  16. J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19(22), 21155–21162 (2011).
    [Crossref] [PubMed]
  17. F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
    [Crossref]
  18. S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
    [Crossref]
  19. C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
    [Crossref] [PubMed]
  20. Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
    [Crossref]
  21. Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces,” J. Phys. D Appl. Phys. 45(21), 428–437 (2012).
    [Crossref]
  22. D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
    [Crossref]
  23. C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
    [Crossref]
  24. Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
    [Crossref] [PubMed]
  25. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
    [Crossref] [PubMed]
  26. Q. Chen, S. Yang, J. Bai, and Y. Fu, “Design of absorptive/transmissive frequency-selective surface based on parallel resonance,” IEEE Trans. Antenn. Propag. 65(9), 4897–4902 (2017).
    [Crossref]
  27. Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
    [Crossref]
  28. R. Huang and Z. W. Li, “Broadband and ultrathin screen with magnetic substrate for microwave reflectivity reduction,” Appl. Phys. Lett. 101(15), 154101 (2012).
    [Crossref]
  29. Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
    [Crossref] [PubMed]
  30. X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
    [Crossref]
  31. X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
    [Crossref] [PubMed]
  32. X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
    [Crossref]
  33. Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
    [Crossref]
  34. Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
    [Crossref] [PubMed]
  35. Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
    [Crossref] [PubMed]
  36. Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
    [Crossref]
  37. K. N. Rozanov and S. N. Starostenko, “Numerical study of bandwidth of radar absorbers,” Eur. Phys. J. Appl. Phys. 8(2), 147–151 (1999).
    [Crossref]
  38. K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
    [Crossref]

2018 (5)

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

2017 (5)

Q. Chen, S. Yang, J. Bai, and Y. Fu, “Design of absorptive/transmissive frequency-selective surface based on parallel resonance,” IEEE Trans. Antenn. Propag. 65(9), 4897–4902 (2017).
[Crossref]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

2016 (7)

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

N. Xu, W. Zhang, R. Singh, and W. Zhang, “High-q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
[Crossref] [PubMed]

J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
[Crossref] [PubMed]

2015 (2)

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

2013 (4)

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

2012 (6)

R. Huang and Z. W. Li, “Broadband and ultrathin screen with magnetic substrate for microwave reflectivity reduction,” Appl. Phys. Lett. 101(15), 154101 (2012).
[Crossref]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012).
[Crossref] [PubMed]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces,” J. Phys. D Appl. Phys. 45(21), 428–437 (2012).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

2011 (1)

2010 (3)

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (2)

2000 (1)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

1999 (1)

K. N. Rozanov and S. N. Starostenko, “Numerical study of bandwidth of radar absorbers,” Eur. Phys. J. Appl. Phys. 8(2), 147–151 (1999).
[Crossref]

Argyropoulos, C.

Atwater, H. A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Averitt, R. D.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Bai, J.

Q. Chen, S. Yang, J. Bai, and Y. Fu, “Design of absorptive/transmissive frequency-selective surface based on parallel resonance,” IEEE Trans. Antenn. Propag. 65(9), 4897–4902 (2017).
[Crossref]

Barange, N.

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

Bingham, C.

Bingham, C. M.

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Cao, J.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Cao, W. K.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Chen, H.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Chen, H. T.

Chen, L. Y.

Chen, P.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Chen, Q.

Q. Chen, S. Yang, J. Bai, and Y. Fu, “Design of absorptive/transmissive frequency-selective surface based on parallel resonance,” IEEE Trans. Antenn. Propag. 65(9), 4897–4902 (2017).
[Crossref]

Chen, X.

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Chen, Z.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Cheng, H.

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces,” J. Phys. D Appl. Phys. 45(21), 428–437 (2012).
[Crossref]

Cheng, Q.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Choi, E. H.

Choi, M.

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

Chowdhury, D. R.

Cui, T.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Cui, T. J.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Cui, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Cummer, S. A.

Cumming, D. R. S.

Ding, F.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Dong, G.

Fan, K.

Feng, M.

Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
[Crossref] [PubMed]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Fu, Y.

Q. Chen, S. Yang, J. Bai, and Y. Fu, “Design of absorptive/transmissive frequency-selective surface based on parallel resonance,” IEEE Trans. Antenn. Propag. 65(9), 4897–4902 (2017).
[Crossref]

Garcia-Vidal, F. J.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Ge, X.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Grant, J.

Gu, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Guan, J.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Han, J.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Hand, T. H.

Hao, Y.

Hashemi, H.

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

He, S.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Heng, L.

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Hu, D.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Hu, T.

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Huang, J.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Huang, L.

Huang, R.

R. Huang and Z. W. Li, “Broadband and ultrathin screen with magnetic substrate for microwave reflectivity reduction,” Appl. Phys. Lett. 101(15), 154101 (2012).
[Crossref]

Huangfu, J.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Hwang, J. S.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Iwaszczuk, K.

Jang, W. H.

Jepsen, P. U.

Jiang, W.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Jin, Y.

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

Joannopoulos, J. D.

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

Johnson, S. G.

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

Jokerst, N. M.

Kallos, E.

Kang, G.

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

Kebin, F.

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Khuyen, B. X.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Kim, K.

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

Kim, K. W.

Kim, Y. J.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Ko, D. H.

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

Landy, N. I.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Lee, C. W.

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

Lee, Y.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Li, H.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Li, Q.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Li, W.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
[Crossref] [PubMed]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

Li, Z. W.

R. Huang and Z. W. Li, “Broadband and ultrathin screen with magnetic substrate for microwave reflectivity reduction,” Appl. Phys. Lett. 101(15), 154101 (2012).
[Crossref]

Liu, L.

Liu, S.

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Liu, T.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Long, C.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Luo, S. N.

Ma, H.

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Ma, H. F.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Ma, Y.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Martin-Cano, D.

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

McCrindle, I. J. H.

Meng, Y.

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

Mock, J. J.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Padilla, W. J.

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

Palit, S.

Pang, Y.

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces,” J. Phys. D Appl. Phys. 45(21), 428–437 (2012).
[Crossref]

Park, J. W.

Polman, A.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Qo, S.

Qu, S.

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
[Crossref] [PubMed]

Qua, S.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Ramani, S.

Ran, L.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Reiten, M. T.

Rhee, J. Y.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Rozanov, K. N.

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

K. N. Rozanov and S. N. Starostenko, “Numerical study of bandwidth of radar absorbers,” Eur. Phys. J. Appl. Phys. 8(2), 147–151 (1999).
[Crossref]

Sajuyigbe, S.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

Shen, L.

Shen, X.

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Shen, Y.

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Shin, D.

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

Shrekenhamer, D.

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Singh, R.

N. Xu, W. Zhang, R. Singh, and W. Zhang, “High-q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

Smith, D. R.

Song, G. Y.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Starostenko, S. N.

K. N. Rozanov and S. N. Starostenko, “Numerical study of bandwidth of radar absorbers,” Eur. Phys. J. Appl. Phys. 8(2), 147–151 (1999).
[Crossref]

Strikwerda, A. C.

Sui, S.

Sun, J.

Tang, Z.

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Taylor, A. J.

Tuong, P. V.

Tyler, T.

Wang, J.

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
[Crossref] [PubMed]

Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
[Crossref] [PubMed]

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces,” J. Phys. D Appl. Phys. 45(21), 428–437 (2012).
[Crossref]

Wang, S.

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Wang, W.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Wang, Y.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Wang, Z.

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Wu, L. T.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Wu, T.

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Wu, Z.

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Xia, S.

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

Xie, X. Y.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Xin, Z.

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Xu, C.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Xu, K.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Xu, N.

N. Xu, W. Zhang, R. Singh, and W. Zhang, “High-q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

Xu, P.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Xu, Z.

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
[Crossref] [PubMed]

Yan, M.

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Yang, J.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Yang, S.

Q. Chen, S. Yang, J. Bai, and Y. Fu, “Design of absorptive/transmissive frequency-selective surface based on parallel resonance,” IEEE Trans. Antenn. Propag. 65(9), 4897–4902 (2017).
[Crossref]

Yang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Ye, D.

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Yin, S.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Yoo, Y. J.

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Yuan, Y.

Zang, Y.

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, B.

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

Zhang, C.

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Zhang, J.

Zhang, W.

N. Xu, W. Zhang, R. Singh, and W. Zhang, “High-q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

N. Xu, W. Zhang, R. Singh, and W. Zhang, “High-q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

Zhang, X.

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

Zhang, Z.

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Zhao, Y.

Zheng, Q. Q.

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Zhong, S.

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

Zhou, J.

Zhou, Y.

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces,” J. Phys. D Appl. Phys. 45(21), 428–437 (2012).
[Crossref]

Zhu, J.

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Zou, Y.

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

ACS Appl. Mater. Interfaces (1)

M. Choi, G. Kang, D. Shin, N. Barange, C. W. Lee, D. H. Ko, and K. Kim, “Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics,” ACS Appl. Mater. Interfaces 8(20), 12997–13008 (2016).
[Crossref] [PubMed]

Adv. Mater. Technol. (1)

C. Zhang, G. Y. Song, H. F. Ma, J. Yang, W. K. Cao, X. Y. Xie, P. Chen, Q. Cheng, L. T. Wu, and T. J. Cui, “A metamaterial route to realize acoustic insulation and anisotropic electromagnetic manipulation simultaneously,” Adv. Mater. Technol. 3(8), 1800161 (2018).
[Crossref]

Adv. Opt. Mater. (1)

D. Hu, J. Cao, W. Li, C. Zhang, T. Wu, Q. Li, Z. Chen, Y. Wang, and J. Guan, “Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators,” Adv. Opt. Mater. 5(13), 1700109 (2017).
[Crossref]

Appl. Phys. Lett. (9)

X. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, and T. Cui, “Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation,” Appl. Phys. Lett. 101(15), 154102 (2012).
[Crossref]

N. Xu, W. Zhang, R. Singh, and W. Zhang, “High-q lattice mode matched structural resonances in terahertz metasurfaces,” Appl. Phys. Lett. 109(2), 021108 (2016).
[Crossref]

S. Zhong, W. Jiang, P. Xu, T. Liu, J. Huang, and Y. Ma, “A radar-infrared bi-stealth structure based on metasurfaces,” Appl. Phys. Lett. 110(6), 063502 (2017).
[Crossref]

F. Ding, Y. Cui, X. Ge, Y. Jin, and S. He, “Ultra-broadband microwave metamaterial absorber,” Appl. Phys. Lett. 100(10), 103506 (2012).
[Crossref]

S. Liu, H. Chen, and T. J. Cui, “A broadband terahertz absorber using multi-layer stacked bars,” Appl. Phys. Lett. 106(15), 151601 (2015).
[Crossref]

Y. Shen, J. Zhang, Y. Meng, Z. Wang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Merging absorption bands of plasmonic structures via dispersion engineering,” Appl. Phys. Lett. 112(25), 254103 (2018).
[Crossref]

R. Huang and Z. W. Li, “Broadband and ultrathin screen with magnetic substrate for microwave reflectivity reduction,” Appl. Phys. Lett. 101(15), 154101 (2012).
[Crossref]

X. Shen and T. J. Cui, “Planar plasmonic metamaterial on a thin film with nearly zero thickness,” Appl. Phys. Lett. 102(21), 211909 (2013).
[Crossref]

Y. Pang, J. Wang, H. Ma, M. Feng, S. Xia, Z. Xu, and S. Qu, “Extraordinary transmission of electromagnetic waves through sub-wavelength slot arrays mediated by spoof surface plasmon polaritons,” Appl. Phys. Lett. 108(19), 194101 (2016).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (2)

W. Wang, M. Yan, Y. Pang, J. Wang, H. Ma, S. Qua, H. Chen, C. Xu, and M. Feng, “Ultra-thin quadri-band metamaterial absorber based on spiral structure,” Appl. Phys., A Mater. Sci. Process. 118(2), 443–447 (2015).
[Crossref]

Y. Shen, J. Zhang, Y. Pang, Y. Li, Q. Q. Zheng, J. Wang, H. Ma, and S. Qu, “Broadband reflectionless metamaterials with customizable absorption-transmission-integrated performance,” Appl. Phys., A Mater. Sci. Process. 123(8), 530 (2017).
[Crossref]

Eur. Phys. J. Appl. Phys. (1)

K. N. Rozanov and S. N. Starostenko, “Numerical study of bandwidth of radar absorbers,” Eur. Phys. J. Appl. Phys. 8(2), 147–151 (1999).
[Crossref]

IEEE Trans. Antenn. Propag. (2)

K. N. Rozanov, “Ultimate thickness to bandwidth ratio of radar absorbers,” IEEE Trans. Antenn. Propag. 48(8), 1230–1234 (2000).
[Crossref]

Q. Chen, S. Yang, J. Bai, and Y. Fu, “Design of absorptive/transmissive frequency-selective surface based on parallel resonance,” IEEE Trans. Antenn. Propag. 65(9), 4897–4902 (2017).
[Crossref]

J. Phys. D Appl. Phys. (4)

Y. J. Kim, J. S. Hwang, Y. J. Yoo, B. X. Khuyen, J. Y. Rhee, X. Chen, and Y. Lee, “Ultrathin microwave metamaterial absorber utilizing embedded resistors,” J. Phys. D Appl. Phys. 50(40), 405110 (2017).
[Crossref]

Y. Pang, H. Cheng, Y. Zhou, and J. Wang, “Analysis and enhancement of the bandwidth of ultrathin absorbers based on high-impedance surfaces,” J. Phys. D Appl. Phys. 45(21), 428–437 (2012).
[Crossref]

T. Hu, F. Kebin, Z. Xin, C. M. Bingham, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, “A dual band terahertz metamaterial absorber,” J. Phys. D Appl. Phys. 43(22), 225102 (2010).
[Crossref]

X. Chen, X. Chen, Z. Wu, Z. Zhang, Z. Wang, L. Heng, S. Wang, Y. Zou, and Z. Tang, “An ultra-broadband and lightweight fishnet-like absorber in microwave region,” J. Phys. D Appl. Phys. 51(28), 285002 (2018).
[Crossref]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (9)

J. W. Park, P. V. Tuong, J. Y. Rhee, K. W. Kim, W. H. Jang, E. H. Choi, L. Y. Chen, and Y. Lee, “Multi-band metamaterial absorber based on the arrangement of donut-type resonators,” Opt. Express 21(8), 9691–9702 (2013).
[Crossref] [PubMed]

Y. Li, J. Zhang, S. Qu, J. Wang, M. Feng, J. Wang, and Z. Xu, “K-dispersion engineering of spoof surface plasmon polaritons for beam steering,” Opt. Express 24(2), 842–852 (2016).
[Crossref] [PubMed]

J. Grant, I. J. H. McCrindle, and D. R. S. Cumming, “Multi-spectral materials: hybridisation of optical plasmonic filters, a mid infrared metamaterial absorber and a terahertz metamaterial absorber,” Opt. Express 24(4), 3451–3463 (2016).
[Crossref] [PubMed]

Y. Shen, J. Zhang, Y. Pang, J. Wang, H. Ma, and S. Qu, “Transparent broadband metamaterial absorber enhanced by water-substrate incorporation,” Opt. Express 26(12), 15665–15674 (2018).
[Crossref] [PubMed]

Y. Shen, J. Zhang, L. Shen, S. Sui, Y. Pang, J. Wang, H. Ma, and S. Qo, “Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice,” Opt. Express 26(22), 28363–28375 (2018).
[Crossref] [PubMed]

Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, “Dual-band planar electric metamaterial in the terahertz regime,” Opt. Express 16(13), 9746–9752 (2008).
[Crossref] [PubMed]

C. Argyropoulos, E. Kallos, Y. Zhao, and Y. Hao, “Manipulating the loss in electromagnetic cloaks for perfect wave absorption,” Opt. Express 17(10), 8467–8475 (2009).
[Crossref] [PubMed]

J. Sun, L. Liu, G. Dong, and J. Zhou, “An extremely broad band metamaterial absorber based on destructive interference,” Opt. Express 19(22), 21155–21162 (2011).
[Crossref] [PubMed]

K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, and P. U. Jepsen, “Flexible metamaterial absorbers for stealth applications at terahertz frequencies,” Opt. Express 20(1), 635–643 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

Phys. Rev. Lett. (3)

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008).
[Crossref] [PubMed]

H. Hashemi, B. Zhang, J. D. Joannopoulos, and S. G. Johnson, “Delay-bandwidth and delay-loss limitations for cloaking of large objects,” Phys. Rev. Lett. 104(25), 253903 (2010).
[Crossref] [PubMed]

D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, and L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

X. Shen, T. J. Cui, D. Martin-Cano, and F. J. Garcia-Vidal, “Conformal surface plasmons propagating on ultrathin and flexible films,” Proc. Natl. Acad. Sci. U.S.A. 110(1), 40–45 (2013).
[Crossref] [PubMed]

Sci. Rep. (2)

Y. Pang, J. Wang, H. Ma, M. Feng, Y. Li, Z. Xu, S. Xia, and S. Qu, “Spatial k-dispersion engineering of spoof surface plasmon polaritons for customized absorption,” Sci. Rep. 6(1), 29429 (2016).
[Crossref] [PubMed]

C. Long, S. Yin, W. Wang, W. Li, J. Zhu, and J. Guan, “Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode,” Sci. Rep. 6(1), 21431 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the vertical bent-wire-shaped MA and (b) simulated absorption spectra with different length l1. (c) Calculated dispersion relationship of the vertical bent wire structure. (d) Schematic of the horizontal bent-wire-shaped MA and (e) simulated absorption spectra with different length l2. (f) Calculated dispersion relationship of the horizontal bent wire structure. (g) Schematic of 3D bent-wire-shaped MA and (h) simulated absorption spectra with different length l3. (i) Calculated dispersion relationship of the 3D bent wire structure.
Fig. 2
Fig. 2 Simulated absorption spectra of the proposed MA based on (a) two 3D bent wires, (b) three 3D bent wires, (c) four 3D bent wires and (d) five 3D bent wires with different length l3.
Fig. 3
Fig. 3 Surface current distributions of the 3D bent-wire-shaped MAs with the length of (a) l3 = 18.0mm, (b) l3 = 16.0mm, (c) l3 = 14.0mm and (d) l3 = 12.0mm at their corresponding absorption frequencies.
Fig. 4
Fig. 4 (a) Schematic of the 3D PAS unit cell. (b) Prospective view of the 3D PAS. (c) Simulated absorption spectra of the proposed 3D PAS with different period p. (d) Power loss distributions of the proposed 3D PAS at the highly effective absorption frequencies of 7.0, 13.0, 18.0 and 26.0GHz. (e) Power loss distributions of the proposed 3D PAS at the absorption frequencies of 11.0, 14.0, 15.0 and 16.0GHz.
Fig. 5
Fig. 5 (a) Schematic of the combined 3D PAS unit cell. (b) Overall view of the combined 3D PAS.
Fig. 6
Fig. 6 Power loss distributions of the combined 3D PAS at the absorption frequencies of 6.7, 12.0, 16.0 and 26.0GHz.
Fig. 7
Fig. 7 (a) Fabricated sample of the combined 3D PAS. (b) Photograph of the test environment. (c) Simulated and measured absorption spectra of the combined 3D PAS.

Tables (1)

Tables Icon

Table 1 Simulated results of our combined 3D PAS and recent works.

Metrics