Abstract

In this paper it is demonstrated that laser sintering technology combined with fiber fabrication by the stack and draw method can be used to realize efficient fiber lasers. More precisely, a ytterbium-doped large-mode-area photonic crystal fiber with a core obtained by laser sintering technology is studied. Electron probe micro-analysis (EPMA) mapping reveals that the elements Yb, Al and Si are distributed throughout the fiber core with an excellent homogeneity. The laser performance demonstrates a high laser slope efficiency of 81.03 % for a laser emission at 1035 nm and a low power threshold of 3.04 W within only 1 m of fiber. The optical and spectroscopic properties of the fiber are studied, together with the sensitivity of the fiber to photodarkening (PD). The results make laser sintering technology interesting for the realization of fibers with large core and complex designs toward high-power fiber lasers.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology

Yingbo Chu, Yu Yang, Xiongwei Hu, Zhangru Chen, Yunxiu Ma, Yongguang Liu, Yibo Wang, Lei Liao, Yinbin Xing, Haiqing Li, Jinggagn Peng, Nengli Dai, Jinyan Li, and Luyun Yang
Opt. Express 25(20) 24061-24067 (2017)

Manipulating refractive index, homogeneity and spectroscopy of Yb3+-doped silica-core glass towards high-power large mode area photonic crystal fiber lasers

Fan Wang, Lili Hu, Wenbin Xu, Meng Wang, Suya Feng, Jinjun Ren, Lei Zhang, Danping Chen, Nadège Ollier, Guojun Gao, Chunlei Yu, and Shikai Wang
Opt. Express 25(21) 25960-25969 (2017)

Yb3+-doped silica glass rod with high optical quality and low optical attenuation prepared by modified sol-gel technology for large mode area fiber

Shikai Wang, Wenbin Xu, Fan Wang, Fengguang Lou, Lei Zhang, Qinling Zhou, Danping Chen, Suya Feng, Meng Wang, Chunlei Yu, and Lili Hu
Opt. Mater. Express 7(6) 2012-2022 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
    [Crossref]
  2. C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
    [Crossref]
  3. J. Nilsson and D. N. Payne, “Physics. High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
    [Crossref] [PubMed]
  4. T. Liu, Z. M. Yang, and S. H. Xu, “3-Dimensional heat analysis in short-length Er3+ /Yb3+ co-doped phosphate fiber laser with upconversion,” Opt. Express 17(1), 235–247 (2009).
    [Crossref] [PubMed]
  5. H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).
  6. A. Shirakawa, J. Ota, M. Musha, K. Nakagawa, K. Ueda, J. R. Folkenberg, and J. Broeng, “Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55 um,” Opt. Express 13(4), 1221–1227 (2005).
    [Crossref] [PubMed]
  7. W. Xu, Z. Lin, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “50 um core diameter Yb 3+ Al 3+ /F − codoped silica fiber with M 2<1.1 beam quality,” Opt. Lett. 41(3), 504–507 (2016).
    [Crossref] [PubMed]
  8. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  9. N. A. Mortensen, “Effective area of photonic crystal fibers,” Opt. Express 10(7), 341–348 (2002).
    [Crossref] [PubMed]
  10. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, “High-power air-clad large-mode-area photonic crystal fiber laser,” Opt. Express 11(7), 818–823 (2003).
    [Crossref] [PubMed]
  11. A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).
  12. W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
    [Crossref]
  13. S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
    [Crossref]
  14. Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
    [Crossref] [PubMed]
  15. M. Devautour, P. Roy, S. Février, C. Pedrido, F. Sandoz, and V. Romano, “Nonchemical-vapor-deposition process for fabrication of highly efficient Yb-doped large core fibers,” Appl. Opt. 48(31), G139–G142 (2009).
    [Crossref] [PubMed]
  16. W. Zhang, J. T. Liu, G. Y. Zhou, C. M. Xia, S. J. Liang, Y. Chen, and Z. Y. Hou, “Optical properties of the Yb/Er co-doped silica glass prepared by laser sintering technology,” Opt. Mater. Express 7(5), 1708–1715 (2017).
    [Crossref]
  17. J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)
  18. D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Physical Review 136(4A), A954–A957 (1964).
    [Crossref]
  19. N. Dai, L. Hu, J. Yang, S. Dai, and A. Lin, “Spectroscopic properties of Yb3+-doped silicate glasses, ” Journal of Alloys and Compounds 363(1), 1–5 (2004).
    [Crossref]
  20. Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
    [Crossref]
  21. R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
    [Crossref]
  22. U. Pedrazza, V. Romano, and W. Lüthy, “Yb3+:Al3+:sol-gel silica glass fiber laser,” Optical Materials 29(7), 905–907 (2007).
    [Crossref]
  23. A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
    [Crossref]
  24. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, S. Ermeneux, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007).
    [Crossref] [PubMed]
  25. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
    [Crossref] [PubMed]

2017 (2)

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

W. Zhang, J. T. Liu, G. Y. Zhou, C. M. Xia, S. J. Liang, Y. Chen, and Z. Y. Hou, “Optical properties of the Yb/Er co-doped silica glass prepared by laser sintering technology,” Opt. Mater. Express 7(5), 1708–1715 (2017).
[Crossref]

2016 (1)

2015 (1)

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

2013 (2)

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

2011 (1)

J. Nilsson and D. N. Payne, “Physics. High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

2009 (3)

2008 (2)

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
[Crossref]

2007 (2)

2006 (1)

A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
[Crossref]

2005 (1)

2004 (1)

N. Dai, L. Hu, J. Yang, S. Dai, and A. Lin, “Spectroscopic properties of Yb3+-doped silicate glasses, ” Journal of Alloys and Compounds 363(1), 1–5 (2004).
[Crossref]

2003 (2)

2002 (1)

1997 (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
[Crossref]

1964 (1)

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Physical Review 136(4A), A954–A957 (1964).
[Crossref]

Barber, P. R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
[Crossref]

Bartelt, H.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

Baz, A.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Bello Doua, R.

Bigot, L.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Bouazaoui, M.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Boullet, J.

Bouwmans, G.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Broeng, J.

Caplen, J. E.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
[Crossref]

Cardinal, T.

Carlson, C.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Carter, A.

A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
[Crossref]

Chen, D.

W. Xu, Z. Lin, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “50 um core diameter Yb 3+ Al 3+ /F − codoped silica fiber with M 2<1.1 beam quality,” Opt. Lett. 41(3), 504–507 (2016).
[Crossref] [PubMed]

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
[Crossref]

Chen, D. P.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Chen, Y.

Chen, Z.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Chu, Y.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Coleman, J.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Dai, N.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

N. Dai, L. Hu, J. Yang, S. Dai, and A. Lin, “Spectroscopic properties of Yb3+-doped silicate glasses, ” Journal of Alloys and Compounds 363(1), 1–5 (2004).
[Crossref]

Dai, S.

N. Dai, L. Hu, J. Yang, S. Dai, and A. Lin, “Spectroscopic properties of Yb3+-doped silicate glasses, ” Journal of Alloys and Compounds 363(1), 1–5 (2004).
[Crossref]

Devautour, M.

Dragic, P.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

El Hamzaoui, H.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Ermeneux, S.

Feng, S.

Feng, S. Y.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Feurer, T.

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Février, S.

Folkenberg, J. R.

Fsaifes, I.

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Graf, B.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Grimm, S.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Guillen, F.

Hanna, D. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
[Crossref]

He, W.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

Heidt, A. M.

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Hou, Z. Y.

Hu, L.

Hu, L. L.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Hu, X.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Iliew, R.

Jakobsen, C.

Jetschke, S.

Jöger, M.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

Just, F.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Kirchhof, J.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Kobelke, J.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

Kohler, G.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Krause, V.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Kubota, H.

H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).

Langner, A.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Lederer, F.

Leich, M.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Li, E.

A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
[Crossref]

Li, H.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Li, J.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Li, Z. L.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Liang, S. J.

Liao, L.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Limpert, J.

Lin, A.

N. Dai, L. Hu, J. Yang, S. Dai, and A. Lin, “Spectroscopic properties of Yb3+-doped silicate glasses, ” Journal of Alloys and Compounds 363(1), 1–5 (2004).
[Crossref]

Lin, Z.

Liu, J. T.

Liu, T.

Liu, Y.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Lüthy, W.

U. Pedrazza, V. Romano, and W. Lüthy, “Yb3+:Al3+:sol-gel silica glass fiber laser,” Optical Materials 29(7), 905–907 (2007).
[Crossref]

Ma, Y.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Manek-Hönninger,

McCumber, D. E.

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Physical Review 136(4A), A954–A957 (1964).
[Crossref]

Mehl, O.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Mortensen, N. A.

Musha, M.

Najafi, H.

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Nakagawa, K.

Nakazawa, M.

H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).

Nilsson, J.

J. Nilsson and D. N. Payne, “Physics. High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
[Crossref]

Nolte, S.

Ota, J.

Paschotta, R.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
[Crossref]

Payne, D. N.

J. Nilsson and D. N. Payne, “Physics. High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

Pedrazza, U.

U. Pedrazza, V. Romano, and W. Lüthy, “Yb3+:Al3+:sol-gel silica glass fiber laser,” Optical Materials 29(7), 905–907 (2007).
[Crossref]

Pedrido, C.

Peng, J.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Petersson, A.

Pilz, S.

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Podgorski, M.

Price, R.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Qiao, Y.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
[Crossref]

Qiu, J.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
[Crossref]

Raisin, P.

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Rehmann, G.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Reichel, V.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Ren, J.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
[Crossref]

Romano, V.

M. Devautour, P. Roy, S. Février, C. Pedrido, F. Sandoz, and V. Romano, “Nonchemical-vapor-deposition process for fabrication of highly efficient Yb-doped large core fibers,” Appl. Opt. 48(31), G139–G142 (2009).
[Crossref] [PubMed]

U. Pedrazza, V. Romano, and W. Lüthy, “Yb3+:Al3+:sol-gel silica glass fiber laser,” Optical Materials 29(7), 905–907 (2007).
[Crossref]

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Röpke, U.

Roy, P.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Ryser, M.

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Salin, F.

Sandoz, F.

Sayed, A. E.

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Scheuner, J.

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Schotz, G.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Schreiber, T.

Shirakawa, A.

Strauch, O.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Such, M.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Swenson, G.

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Tropper, A. C.

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
[Crossref]

Tunnermann, T.

Ueda, K.

Vienne, G.

Wang, M.

W. Xu, Z. Lin, M. Wang, S. Feng, L. Zhang, Q. Zhou, D. Chen, L. Zhang, S. Wang, C. Yu, and L. Hu, “50 um core diameter Yb 3+ Al 3+ /F − codoped silica fiber with M 2<1.1 beam quality,” Opt. Lett. 41(3), 504–507 (2016).
[Crossref] [PubMed]

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Wang, S.

Wang, S. K.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Wang, Y.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Wedel, B.

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

Wen, L.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
[Crossref]

Wu, B.

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
[Crossref]

Xia, C. M.

Xing, Y.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Xu, S. H.

Xu, W.

Yang, J.

N. Dai, L. Hu, J. Yang, S. Dai, and A. Lin, “Spectroscopic properties of Yb3+-doped silicate glasses, ” Journal of Alloys and Compounds 363(1), 1–5 (2004).
[Crossref]

Yang, L.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Yang, Y.

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Yang, Z. M.

Yu, C.

Yu, C. L.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Zellmer, H.

Zhang, L.

Zhang, W.

Zhou, G. Y.

Zhou, Q.

Zhou, Q. L.

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Zhu, Y.

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

Appl. Opt. (1)

Journal of Alloys and Compounds (1)

N. Dai, L. Hu, J. Yang, S. Dai, and A. Lin, “Spectroscopic properties of Yb3+-doped silicate glasses, ” Journal of Alloys and Compounds 363(1), 1–5 (2004).
[Crossref]

Laser Phys. Lett. (2)

W. He, M. Leich, S. Grimm, J. Kobelke, Y. Zhu, H. Bartelt, and M. Jöger, “Very large mode area ytterbium fiber amplifier with aluminum-doped pump cladding made by powder sinter technology,” Laser Phys. Lett. 12(1), 015103 (2015)
[Crossref]

A. Baz, H. El Hamzaoui, I. Fsaifes, G. Bouwmans, M. Bouazaoui, and L. Bigot, “A pure silica ytterbium-doped sol-gel-based fiber laser,” Laser Phys. Lett. 10(5), 055106 (2013).
[Crossref]

Materials Chemistry and Physics (1)

Y. Qiao, L. Wen, B. Wu, J. Ren, D. Chen, and J. Qiu, “Preparation and spectroscopic properties of Yb-doped and Yb-Al-codoped high silica glasses, ” Materials Chemistry and Physics 107(2), 488–491 (2008).
[Crossref]

Opt Express (1)

Y. Chu, Y. Yang, X. Hu, Z. Chen, Y. Ma, Y. Liu, Y. Wang, L. Liao, Y. Xing, H. Li, J. Peng, N. Dai, J. Li, and L. Yang, “Yb3+ heavily doped photonic crystal fiber lasers prepared by the glass phase-separation technology,” Opt Express 25(20), 24061–24067 (2017).
[Crossref] [PubMed]

Opt. Commun (1)

R. Paschotta, J. Nilsson, P. R. Barber, J. E. Caplen, A. C. Tropper, and D. C. Hanna, “Lifetime quenching in Yb-doped fibres,” Opt. Commun 136(5–6), 375–378 (1997).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Opt. Mater. (1)

S. K. Wang, Z. L. Li, C. L. Yu, M. Wang, S. Y. Feng, Q. L. Zhou, D. P. Chen, and L. L. Hu, “Fabrication and laser behaviors of Yb3+ doped silica large mode area photonic crystal fiber prepared by sol-gel method,” Opt. Mater. 35(9), 1752–1755 (2013).
[Crossref]

Opt. Mater. Express (1)

Optical Materials (1)

U. Pedrazza, V. Romano, and W. Lüthy, “Yb3+:Al3+:sol-gel silica glass fiber laser,” Optical Materials 29(7), 905–907 (2007).
[Crossref]

Physical Review (1)

D. E. McCumber, “Einstein Relations Connecting Broadband Emission and Absorption Spectra,” Physical Review 136(4A), A954–A957 (1964).
[Crossref]

Proc. SPIE (2)

A. Carter and E. Li, “Recent progress in high-power fiber lasers for high-power and high-quality material processing applications,” Proc. SPIE 6344, 63440F (2006).
[Crossref]

C. Carlson, P. Dragic, B. Graf, R. Price, J. Coleman, and G. Swenson, “High power Yb-doped fiber laser-based LIDAR for space weather,” Proc. SPIE 6873, 68730K (2008).
[Crossref]

Science (2)

J. Nilsson and D. N. Payne, “Physics. High-Power Fiber Lasers,” Science 332(6032), 921–922 (2011).
[Crossref] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Other (3)

A. Langner, M. Such, G. Schotz, V. Reichel, S. Grimm, F. Just, M. Leich, J. Kirchhof, B. Wedel, G. Kohler, O. Strauch, O. Mehl, V. Krause, and G. Rehmann, “Development, manufacturing and lasing behavior of Yb-doped ultra large mode area fibers based on Yb-doped fused bulk silica,” Fiber Lasers Vii: Technology, Systems, And Applications 7580, 75802X (2010).

H. Kubota and M. Nakazawa, “Numerical analyses of ultrashort fiber laser with optical nonlinear effect,” Technical Report of IEICE. 100, 61–66 (2000).

J. Scheuner, A. M. Heidt, S. Pilz, P. Raisin, A. E. Sayed, H. Najafi, M. Ryser, T. Feurer, and V. Romano, “Advances in optical fibers fabricated with granulated silica, ” Optical Fiber Communications Conference and Exhibition (OFC), 1–3 (2017)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The Schematic diagram of the laser sintering process. (b) Cross-section of the drawn Yb3+-doped LMA PCF.
Fig. 2
Fig. 2 EPMA mapping of fiber cross section for elements silicon (left), aluminium (middle) and ytterbium (right).
Fig. 3
Fig. 3 EPMA radial line scanning analysis of fiber cross section for elements silicon, aluminium and ytterbium.
Fig. 4
Fig. 4 Measurement setup for luminescence decay lifetime.
Fig. 5
Fig. 5 Absorption and emission spectra measured on the Yb3+-doped LMA PCF.
Fig. 6
Fig. 6 Luminescence decay measured on the Yb3+-doped LMA PCF. The decay is recorded at 1025 nm whereas the excitation wavelength is 980 nm.
Fig. 7
Fig. 7 Experimental setup of fiber laser. HR is a high reflecting mirror around 1035 nm, DM is a dichroic mirror (HT@λ = 976 nm and HR@λ=1035 nm for i = 45°), Filter serves to eliminate the residual 976 nm pump light.
Fig. 8
Fig. 8 (a) Laser output power dependence on the launched pump power. (b) Laser spectrum of the Yb3+-doped PCF laser. Inset: Near field laser beam profile.
Fig. 9
Fig. 9 Experiment setup for photodarkening at 633 nm. DM is a dichroic mirror (HT@λ =976 nm and HR@λ =633 nm for i=45°). Filter1 and Filter2 serve to eliminate the residual 976 nm pump light.
Fig. 10
Fig. 10 Temporal evolution of photodarkening induced loss at 633 nm.

Tables (1)

Tables Icon

Table 1 The basic optical parameters and sizes of LMA PCF

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α ( t ) = α eq [ 1 exp ( ( t / τ ) β ) ] .

Metrics