Abstract

For investigating the effect of exceeding Mg2+ doping on optical properties and luminescent mechanism, detailed spectroscopic characterizations of Pr3+ (1 mol%) and Mg2+ (0 and 5mol%) doped congruent LiNbO3 (CLN) single crystals were studied. The exceeding Mg2+ doping of 5mol% was found to enhance the dominant red emissions (1D23H4) under 360nm excitation with a larger population of 1D2 via the Pr3+-Nb5+ intervalence charge transfer (IVCT). Quenching of blue-green emissions in Pr3+ doped CLNs was ascribed to the depopulation of 3P0 via IVCT state. The lifetimes related to 1D23H4 were significantly increased with Mg2+ incorporation at a temperature range from 20K to 430K. As the temperature rises, the progressively thermal quenching of the red emission and lifetime was observed, which was interpreted with the thermally activated energy transfer from the IVCT state to ground level 3H4. More importantly, exceeding Mg2+ doping led to a displacement of the IVCT state in the configuration coordinate diagram, resulting in larger quenching activation energy and higher quenching temperature (310K→370K) in Pr:Mg:CLN. The emission enhancement and quenching temperature increase at exceeding Mg2+ concentration were considered to be of practical value in luminescent and laser applications.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Energy transfer induced improvement of luminescent efficiency and thermal stability in phosphate phosphor

Yun Zhao, Chun Che Lin, Yi Wei, Ting-Shan Chan, and Guogang Li
Opt. Express 24(4) 4316-4330 (2016)

Infrared to visible upconversion of Nd3+ ions in KPb2Br5 low phonon crystal

Rolindes Balda, Joaquín Fernändez, Ei Ei Nyein, and Uwe Hömmerich
Opt. Express 14(9) 3993-4004 (2006)

Optical spectroscopy of Cr4+:Y2SiO5

C. Deka, M. Bass, B. H. T. Chai, and Y. Shimony
J. Opt. Soc. Am. B 10(9) 1499-1507 (1993)

References

  • View by:
  • |
  • |
  • |

  1. Y. S. Bai, R. R. Neurgaonkar, and R. Kachru, “High-efficiency nonvolatile holographic storage with two-step recording in praseodymium-doped lithium niobate by use of continuous-wave lasers,” Opt. Lett. 22(5), 334–336 (1997).
    [Crossref] [PubMed]
  2. P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
    [Crossref] [PubMed]
  3. J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
    [Crossref]
  4. T. Yanagida, “Ionizing radiation induced emission: Scintillation and storage-type luminescence,” J. Lumin. 169, 544–548 (2016).
    [Crossref]
  5. L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
    [Crossref]
  6. P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1–2), 69–80 (2005).
    [Crossref]
  7. S. Zhang, H. Liang, C. Liu, Z. Qi, T. Shao, and Y. Wang, “High color purity red-emission of NaGdTiO4:Pr3+ via quenching of 3P0 emission under low-voltage cathode ray excitation,” Opt. Lett. 38(5), 612–614 (2013).
    [Crossref] [PubMed]
  8. C. W. Struck and W. H. Fonger, “Thermal quenching of Tb3+, Tm3+, Pr3+, and Dy3+ 4fn emitting states in La2O2S,” J. Appl. Phys. 42(11), 4515–4516 (1971).
    [Crossref]
  9. K. Fiaczyk, S. Omagari, A. Meijerink, and E. Zych, “Temperature dependence of 4fn-15d1-> 4fn luminescence of Ce3+ and Pr3+ ions in Sr2GeO4 host,” J. Lumin. 198, 163–170 (2018).
    [Crossref]
  10. F. B. Xiong, H. F. Lin, Y. C. Xu, H. X. Shen, and W. Z. Zhu, “New thermally stable red-emitting phosphors Pr3+, M+:SrB4O7 (M=Li, Na, K),” J. Lumin. 177, 99–103 (2016).
    [Crossref]
  11. W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
    [Crossref]
  12. P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
    [Crossref]
  13. B. T. Matthias and J. P. Remeika, “Ferroelectricity in the Ilmenite Structure,” Phys. Rev. 76(12), 1886–1887 (1949).
    [Crossref]
  14. A. Lorenzo, L. E. Bausá, and J. Garcia Sole, “Optical spectroscopy of Pr3+ ions in LiNbO3.,” Phys. Rev. B Condens. Matter 51(23), 16643–16650 (1995).
    [Crossref] [PubMed]
  15. D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
    [Crossref] [PubMed]
  16. D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
    [Crossref]
  17. P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
    [Crossref]
  18. L. Xing, W. Yang, J. Lin, M. Huang, and Y. Xue, “Enhanced and Stable Upconverted White-light Emission in Ho3+/Yb3+/Tm3+-doped LiNbO3 Single Crystal via Mg2+ Ion Doping,” Sci. Rep. 7(1), 14725 (2017).
    [Crossref] [PubMed]
  19. P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
    [Crossref]
  20. P. Lerner, C. Legras, and J. P. Dumas, “Stoechiométrie des monocristaux de métaniobate de lithium,” J. Cryst. Growth 3–4, 231–235 (1968).
    [Crossref]
  21. R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
    [Crossref]
  22. V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter Mater. Phys. 61(13), 8806–8813 (2000).
    [Crossref]
  23. P. Hermet, M. Veithen, and P. Ghosez, “First-principles calculations of the nonlinear optical susceptibilities and Raman scattering spectra of lithium niobate,” J. Phys. Condens. Matter 19(45), 456202 (2007).
    [Crossref]
  24. Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
    [Crossref]
  25. A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
    [Crossref]
  26. C. Y. Shang, X. H. Shang, Y. Q. Qu, and M. C. Li, “Quenching mechanisms of the optical centers in Eu3+-doped nanophosphors under charge transfer excitation,” J. Appl. Phys. 108(9), 094328 (2010).
    [Crossref]
  27. M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
    [Crossref]
  28. Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
    [Crossref]

2018 (2)

K. Fiaczyk, S. Omagari, A. Meijerink, and E. Zych, “Temperature dependence of 4fn-15d1-> 4fn luminescence of Ce3+ and Pr3+ ions in Sr2GeO4 host,” J. Lumin. 198, 163–170 (2018).
[Crossref]

P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
[Crossref]

2017 (2)

L. Xing, W. Yang, J. Lin, M. Huang, and Y. Xue, “Enhanced and Stable Upconverted White-light Emission in Ho3+/Yb3+/Tm3+-doped LiNbO3 Single Crystal via Mg2+ Ion Doping,” Sci. Rep. 7(1), 14725 (2017).
[Crossref] [PubMed]

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

2016 (4)

F. B. Xiong, H. F. Lin, Y. C. Xu, H. X. Shen, and W. Z. Zhu, “New thermally stable red-emitting phosphors Pr3+, M+:SrB4O7 (M=Li, Na, K),” J. Lumin. 177, 99–103 (2016).
[Crossref]

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

T. Yanagida, “Ionizing radiation induced emission: Scintillation and storage-type luminescence,” J. Lumin. 169, 544–548 (2016).
[Crossref]

L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
[Crossref]

2014 (2)

P. W. Metz, F. Reichert, F. Moglia, S. Müller, D. T. Marzahl, C. Kränkel, and G. Huber, “High-power red, orange, and green Pr3+:LiYF4 lasers,” Opt. Lett. 39(11), 3193–3196 (2014).
[Crossref] [PubMed]

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

2013 (1)

2012 (1)

Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
[Crossref]

2010 (1)

C. Y. Shang, X. H. Shang, Y. Q. Qu, and M. C. Li, “Quenching mechanisms of the optical centers in Eu3+-doped nanophosphors under charge transfer excitation,” J. Appl. Phys. 108(9), 094328 (2010).
[Crossref]

2009 (2)

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[Crossref]

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

2008 (1)

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

2007 (1)

P. Hermet, M. Veithen, and P. Ghosez, “First-principles calculations of the nonlinear optical susceptibilities and Raman scattering spectra of lithium niobate,” J. Phys. Condens. Matter 19(45), 456202 (2007).
[Crossref]

2006 (2)

W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
[Crossref]

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
[Crossref]

2005 (1)

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1–2), 69–80 (2005).
[Crossref]

2000 (2)

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter Mater. Phys. 61(13), 8806–8813 (2000).
[Crossref]

1997 (1)

1995 (1)

A. Lorenzo, L. E. Bausá, and J. Garcia Sole, “Optical spectroscopy of Pr3+ ions in LiNbO3.,” Phys. Rev. B Condens. Matter 51(23), 16643–16650 (1995).
[Crossref] [PubMed]

1984 (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

1971 (1)

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb3+, Tm3+, Pr3+, and Dy3+ 4fn emitting states in La2O2S,” J. Appl. Phys. 42(11), 4515–4516 (1971).
[Crossref]

1968 (1)

P. Lerner, C. Legras, and J. P. Dumas, “Stoechiométrie des monocristaux de métaniobate de lithium,” J. Cryst. Growth 3–4, 231–235 (1968).
[Crossref]

1949 (1)

B. T. Matthias and J. P. Remeika, “Ferroelectricity in the Ilmenite Structure,” Phys. Rev. 76(12), 1886–1887 (1949).
[Crossref]

Bai, Y. S.

Bausá, L. E.

A. Lorenzo, L. E. Bausá, and J. Garcia Sole, “Optical spectroscopy of Pr3+ ions in LiNbO3.,” Phys. Rev. B Condens. Matter 51(23), 16643–16650 (1995).
[Crossref] [PubMed]

Bettinelli, M.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
[Crossref]

Borstel, G.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter Mater. Phys. 61(13), 8806–8813 (2000).
[Crossref]

Bourson, P.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

Boutinaud, P.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
[Crossref]

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1–2), 69–80 (2005).
[Crossref]

Bryan, D. A.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Caciuc, V.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter Mater. Phys. 61(13), 8806–8813 (2000).
[Crossref]

Cavalli, E.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
[Crossref]

Chambers, M. D.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[Crossref]

Chen, W. X.

P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
[Crossref]

Chen, Z.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Clarke, D. R.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[Crossref]

Dubois, M.

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1–2), 69–80 (2005).
[Crossref]

Dujardin, C.

W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
[Crossref]

Dumas, J. P.

P. Lerner, C. Legras, and J. P. Dumas, “Stoechiométrie des monocristaux de métaniobate de lithium,” J. Cryst. Growth 3–4, 231–235 (1968).
[Crossref]

Fiaczyk, K.

K. Fiaczyk, S. Omagari, A. Meijerink, and E. Zych, “Temperature dependence of 4fn-15d1-> 4fn luminescence of Ce3+ and Pr3+ ions in Sr2GeO4 host,” J. Lumin. 198, 163–170 (2018).
[Crossref]

Fonger, W. H.

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb3+, Tm3+, Pr3+, and Dy3+ 4fn emitting states in La2O2S,” J. Appl. Phys. 42(11), 4515–4516 (1971).
[Crossref]

Fontana, M. D.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

Fujihala, M.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Gao, Y.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Garcia Sole, J.

A. Lorenzo, L. E. Bausá, and J. Garcia Sole, “Optical spectroscopy of Pr3+ ions in LiNbO3.,” Phys. Rev. B Condens. Matter 51(23), 16643–16650 (1995).
[Crossref] [PubMed]

Gerson, R.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Ghosez, P.

P. Hermet, M. Veithen, and P. Ghosez, “First-principles calculations of the nonlinear optical susceptibilities and Raman scattering spectra of lithium niobate,” J. Phys. Condens. Matter 19(45), 456202 (2007).
[Crossref]

Grinberg, M.

W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
[Crossref]

Gryk, W.

W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
[Crossref]

Hang, Y.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Hao, Z. D.

L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
[Crossref]

Hermet, P.

P. Hermet, M. Veithen, and P. Ghosez, “First-principles calculations of the nonlinear optical susceptibilities and Raman scattering spectra of lithium niobate,” J. Phys. Condens. Matter 19(45), 456202 (2007).
[Crossref]

Hirotsu, J.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Hong, J. Q.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Hua, S. L.

P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
[Crossref]

Huang, F.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Huang, M.

L. Xing, W. Yang, J. Lin, M. Huang, and Y. Xue, “Enhanced and Stable Upconverted White-light Emission in Ho3+/Yb3+/Tm3+-doped LiNbO3 Single Crystal via Mg2+ Ion Doping,” Sci. Rep. 7(1), 14725 (2017).
[Crossref] [PubMed]

Huber, G.

Joubert, M. F.

W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
[Crossref]

Kachru, R.

Kränkel, C.

Krasnikov, A.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Legras, C.

P. Lerner, C. Legras, and J. P. Dumas, “Stoechiométrie des monocristaux de métaniobate de lithium,” J. Cryst. Growth 3–4, 231–235 (1968).
[Crossref]

Lerner, P.

P. Lerner, C. Legras, and J. P. Dumas, “Stoechiométrie des monocristaux de métaniobate de lithium,” J. Cryst. Growth 3–4, 231–235 (1968).
[Crossref]

Li, A.

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

Li, M. C.

C. Y. Shang, X. H. Shang, Y. Q. Qu, and M. C. Li, “Quenching mechanisms of the optical centers in Eu3+-doped nanophosphors under charge transfer excitation,” J. Appl. Phys. 108(9), 094328 (2010).
[Crossref]

Liang, H.

Lin, H.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Lin, H. F.

F. B. Xiong, H. F. Lin, Y. C. Xu, H. X. Shen, and W. Z. Zhu, “New thermally stable red-emitting phosphors Pr3+, M+:SrB4O7 (M=Li, Na, K),” J. Lumin. 177, 99–103 (2016).
[Crossref]

Lin, J.

L. Xing, W. Yang, J. Lin, M. Huang, and Y. Xue, “Enhanced and Stable Upconverted White-light Emission in Ho3+/Yb3+/Tm3+-doped LiNbO3 Single Crystal via Mg2+ Ion Doping,” Sci. Rep. 7(1), 14725 (2017).
[Crossref] [PubMed]

Liu, C.

Liu, W.

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

Liu, Y. C.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Long, S. W.

P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
[Crossref]

Lorenzo, A.

A. Lorenzo, L. E. Bausá, and J. Garcia Sole, “Optical spectroscopy of Pr3+ ions in LiNbO3.,” Phys. Rev. B Condens. Matter 51(23), 16643–16650 (1995).
[Crossref] [PubMed]

Lu, T.

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

Ma, D. C.

P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
[Crossref]

Mahiou, R.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
[Crossref]

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1–2), 69–80 (2005).
[Crossref]

Malinowski, M.

W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
[Crossref]

Mares, J. A.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Marzahl, D. T.

Matthias, B. T.

B. T. Matthias and J. P. Remeika, “Ferroelectricity in the Ilmenite Structure,” Phys. Rev. 76(12), 1886–1887 (1949).
[Crossref]

Meijerink, A.

K. Fiaczyk, S. Omagari, A. Meijerink, and E. Zych, “Temperature dependence of 4fn-15d1-> 4fn luminescence of Ce3+ and Pr3+ ions in Sr2GeO4 host,” J. Lumin. 198, 163–170 (2018).
[Crossref]

Metz, P. W.

Mihokova, E.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Moglia, F.

Mouras, R.

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

Mucka, V.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Müller, S.

Nejezchleb, K.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Neurgaonkar, R. R.

Nikl, M.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Ning, K. J.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Ogino, H.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Omagari, S.

K. Fiaczyk, S. Omagari, A. Meijerink, and E. Zych, “Temperature dependence of 4fn-15d1-> 4fn luminescence of Ce3+ and Pr3+ ions in Sr2GeO4 host,” J. Lumin. 198, 163–170 (2018).
[Crossref]

Oubaha, M.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
[Crossref]

Pan, G. H.

L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
[Crossref]

Pejchal, J.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Pinel, E.

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
[Crossref]

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1–2), 69–80 (2005).
[Crossref]

Postnikov, A. V.

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter Mater. Phys. 61(13), 8806–8813 (2000).
[Crossref]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

Qi, Z.

Qian, Y. N.

Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
[Crossref]

Qu, Y. Q.

C. Y. Shang, X. H. Shang, Y. Q. Qu, and M. C. Li, “Quenching mechanisms of the optical centers in Eu3+-doped nanophosphors under charge transfer excitation,” J. Appl. Phys. 108(9), 094328 (2010).
[Crossref]

Reichert, F.

Remeika, J. P.

B. T. Matthias and J. P. Remeika, “Ferroelectricity in the Ilmenite Structure,” Phys. Rev. 76(12), 1886–1887 (1949).
[Crossref]

Rousseve, P. A.

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[Crossref]

Ryba-Romanowski, W.

W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
[Crossref]

Schillemat, K. M.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Shang, C. Y.

C. Y. Shang, X. H. Shang, Y. Q. Qu, and M. C. Li, “Quenching mechanisms of the optical centers in Eu3+-doped nanophosphors under charge transfer excitation,” J. Appl. Phys. 108(9), 094328 (2010).
[Crossref]

Shang, X. H.

C. Y. Shang, X. H. Shang, Y. Q. Qu, and M. C. Li, “Quenching mechanisms of the optical centers in Eu3+-doped nanophosphors under charge transfer excitation,” J. Appl. Phys. 108(9), 094328 (2010).
[Crossref]

Shao, P. L.

P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
[Crossref]

Shao, T.

Shen, H. X.

F. B. Xiong, H. F. Lin, Y. C. Xu, H. X. Shen, and W. Z. Zhu, “New thermally stable red-emitting phosphors Pr3+, M+:SrB4O7 (M=Li, Na, K),” J. Lumin. 177, 99–103 (2016).
[Crossref]

Shi, C. J.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Struck, C. W.

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb3+, Tm3+, Pr3+, and Dy3+ 4fn emitting states in La2O2S,” J. Appl. Phys. 42(11), 4515–4516 (1971).
[Crossref]

Su, W.

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

Sun, L.

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

Tomaschke, H. E.

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

Tu, D.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Vedda, A.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Veithen, M.

P. Hermet, M. Veithen, and P. Ghosez, “First-principles calculations of the nonlinear optical susceptibilities and Raman scattering spectra of lithium niobate,” J. Phys. Condens. Matter 19(45), 456202 (2007).
[Crossref]

Vink, A. P.

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1–2), 69–80 (2005).
[Crossref]

Wang, B.

P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
[Crossref]

Wang, R.

Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
[Crossref]

Wang, X. Y.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Wang, Y.

Wang, Y. S.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Wu, H. J.

L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
[Crossref]

Wu, W.

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

Wu, X. H.

Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
[Crossref]

Xing, L.

L. Xing, W. Yang, J. Lin, M. Huang, and Y. Xue, “Enhanced and Stable Upconverted White-light Emission in Ho3+/Yb3+/Tm3+-doped LiNbO3 Single Crystal via Mg2+ Ion Doping,” Sci. Rep. 7(1), 14725 (2017).
[Crossref] [PubMed]

Xing, L. L.

Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
[Crossref]

Xiong, F. B.

F. B. Xiong, H. F. Lin, Y. C. Xu, H. X. Shen, and W. Z. Zhu, “New thermally stable red-emitting phosphors Pr3+, M+:SrB4O7 (M=Li, Na, K),” J. Lumin. 177, 99–103 (2016).
[Crossref]

Xu, C.

Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
[Crossref]

Xu, C. N.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Xu, J.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Xu, Y. C.

F. B. Xiong, H. F. Lin, Y. C. Xu, H. X. Shen, and W. Z. Zhu, “New thermally stable red-emitting phosphors Pr3+, M+:SrB4O7 (M=Li, Na, K),” J. Lumin. 177, 99–103 (2016).
[Crossref]

Xu, Y. L.

Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
[Crossref]

Xue, Y.

L. Xing, W. Yang, J. Lin, M. Huang, and Y. Xue, “Enhanced and Stable Upconverted White-light Emission in Ho3+/Yb3+/Tm3+-doped LiNbO3 Single Crystal via Mg2+ Ion Doping,” Sci. Rep. 7(1), 14725 (2017).
[Crossref] [PubMed]

Yanagida, T.

T. Yanagida, “Ionizing radiation induced emission: Scintillation and storage-type luminescence,” J. Lumin. 169, 544–548 (2016).
[Crossref]

Yang, W.

L. Xing, W. Yang, J. Lin, M. Huang, and Y. Xue, “Enhanced and Stable Upconverted White-light Emission in Ho3+/Yb3+/Tm3+-doped LiNbO3 Single Crystal via Mg2+ Ion Doping,” Sci. Rep. 7(1), 14725 (2017).
[Crossref] [PubMed]

Yang, Y.

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

Yin, J. G.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Yoshida, A.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Yoshikawa, A.

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Zhang, J. H.

L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
[Crossref]

Zhang, L. H.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Zhang, L. L.

L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
[Crossref]

Zhang, P. X.

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Zhang, S.

Zhang, X.

L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
[Crossref]

Zheng, X. G.

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Zheng, Z.

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

Zhou, J. C.

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Zhu, W. Z.

F. B. Xiong, H. F. Lin, Y. C. Xu, H. X. Shen, and W. Z. Zhu, “New thermally stable red-emitting phosphors Pr3+, M+:SrB4O7 (M=Li, Na, K),” J. Lumin. 177, 99–103 (2016).
[Crossref]

Zych, E.

K. Fiaczyk, S. Omagari, A. Meijerink, and E. Zych, “Temperature dependence of 4fn-15d1-> 4fn luminescence of Ce3+ and Pr3+ ions in Sr2GeO4 host,” J. Lumin. 198, 163–170 (2018).
[Crossref]

Adv. Funct. Mater. (1)

Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, and Y. S. Wang, “A Novel Optical Thermometry Strategy Based on Diverse Thermal Response from Two Intervalence Charge Transfer States,” Adv. Funct. Mater. 26(18), 3139–3145 (2016).
[Crossref]

Adv. Mater. (1)

D. Tu, C. N. Xu, A. Yoshida, M. Fujihala, J. Hirotsu, and X. G. Zheng, “LiNbO3 :Pr3+ : A Multipiezo Material with Simultaneous Piezoelectricity and Sensitive Piezoluminescence,” Adv. Mater. 29(22), 1606914 (2017).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

D. A. Bryan, R. Gerson, and H. E. Tomaschke, “Increased optical damage resistance in lithium niobate,” Appl. Phys. Lett. 44(9), 847–849 (1984).
[Crossref]

J. Appl. Phys. (2)

C. W. Struck and W. H. Fonger, “Thermal quenching of Tb3+, Tm3+, Pr3+, and Dy3+ 4fn emitting states in La2O2S,” J. Appl. Phys. 42(11), 4515–4516 (1971).
[Crossref]

C. Y. Shang, X. H. Shang, Y. Q. Qu, and M. C. Li, “Quenching mechanisms of the optical centers in Eu3+-doped nanophosphors under charge transfer excitation,” J. Appl. Phys. 108(9), 094328 (2010).
[Crossref]

J. Cryst. Growth (1)

P. Lerner, C. Legras, and J. P. Dumas, “Stoechiométrie des monocristaux de métaniobate de lithium,” J. Cryst. Growth 3–4, 231–235 (1968).
[Crossref]

J. Lumin. (8)

Y. N. Qian, R. Wang, C. Xu, X. H. Wu, L. L. Xing, and Y. L. Xu, “Optical spectroscopy and laser parameters of Zn2+/Er3+/Yb3+-tridoped LiNbO3 crystal,” J. Lumin. 132(8), 1976–1981 (2012).
[Crossref]

A. Li, L. Sun, Z. Zheng, W. Wu, W. Liu, Y. Yang, T. Lu, and W. Su, “Spectroscopic analysis of Er3+ transition in Mg/Er-codoped LiNbO3 crystal,” J. Lumin. 128(2), 239–244 (2008).
[Crossref]

M. D. Chambers, P. A. Rousseve, and D. R. Clarke, “Decay pathway and high-temperature luminescence of Eu3+ in Ca2Gd8Si6O26,” J. Lumin. 129(3), 263–269 (2009).
[Crossref]

K. Fiaczyk, S. Omagari, A. Meijerink, and E. Zych, “Temperature dependence of 4fn-15d1-> 4fn luminescence of Ce3+ and Pr3+ ions in Sr2GeO4 host,” J. Lumin. 198, 163–170 (2018).
[Crossref]

F. B. Xiong, H. F. Lin, Y. C. Xu, H. X. Shen, and W. Z. Zhu, “New thermally stable red-emitting phosphors Pr3+, M+:SrB4O7 (M=Li, Na, K),” J. Lumin. 177, 99–103 (2016).
[Crossref]

T. Yanagida, “Ionizing radiation induced emission: Scintillation and storage-type luminescence,” J. Lumin. 169, 544–548 (2016).
[Crossref]

L. L. Zhang, J. H. Zhang, X. Zhang, Z. D. Hao, G. H. Pan, and H. J. Wu, “Site distortion in Li2SrSiO4: Influence on Pr3+ emission and application in wLED,” J. Lumin. 180, 158–162 (2016).
[Crossref]

P. Boutinaud, E. Pinel, M. Dubois, A. P. Vink, and R. Mahiou, “UV-to-red relaxation pathways in CaTiO3: Pr3+,” J. Lumin. 111(1–2), 69–80 (2005).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

P. L. Shao, W. X. Chen, D. C. Ma, S. L. Hua, S. W. Long, and B. Wang, “Persistent luminescence found in Mg2+ and Pr3+ co-doped LiNbO3 single crystal,” J. Mater. Chem. C Mater. Opt. Electron. Devices 6(37), 10067–10072 (2018).
[Crossref]

J. Phys. Condens. Matter (3)

W. Gryk, C. Dujardin, M. F. Joubert, W. Ryba-Romanowski, M. Malinowski, and M. Grinberg, “Pressure effect on luminescence dynamics in Pr3+-doped LiNbO3 and LiTaO3 crystals,” J. Phys. Condens. Matter 18(1), 117–125 (2006).
[Crossref]

P. Hermet, M. Veithen, and P. Ghosez, “First-principles calculations of the nonlinear optical susceptibilities and Raman scattering spectra of lithium niobate,” J. Phys. Condens. Matter 19(45), 456202 (2007).
[Crossref]

R. Mouras, M. D. Fontana, P. Bourson, and A. V. Postnikov, “Lattice site of Mg ion in LiNbO3 crystal determined by Raman spectroscopy,” J. Phys. Condens. Matter 12(23), 5053–5059 (2000).
[Crossref]

J. Phys. D Appl. Phys. (1)

J. Pejchal, M. Nikl, E. Mihokova, J. A. Mares, A. Yoshikawa, H. Ogino, K. M. Schillemat, A. Krasnikov, A. Vedda, K. Nejezchleb, and V. Mucka, “Pr3+-doped complex oxide single crystal scintillators,” J. Phys. D Appl. Phys. 42(5), 055117 (2009).
[Crossref]

Opt. Lett. (3)

Opt. Mater. (2)

P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, and M. Bettinelli, “Making red emitting phosphors with Pr3+,” Opt. Mater. 28(1–2), 9–13 (2006).
[Crossref]

P. X. Zhang, J. G. Yin, L. H. Zhang, Y. C. Liu, J. Q. Hong, K. J. Ning, Z. Chen, X. Y. Wang, C. J. Shi, and Y. Hang, “Efficient enhanced 1.54 μm emission in Er/Yb: LiNbO3 crystal codoped with Mg2+ ions,” Opt. Mater. 36(12), 1986–1990 (2014).
[Crossref]

Phys. Rev. (1)

B. T. Matthias and J. P. Remeika, “Ferroelectricity in the Ilmenite Structure,” Phys. Rev. 76(12), 1886–1887 (1949).
[Crossref]

Phys. Rev. B Condens. Matter (1)

A. Lorenzo, L. E. Bausá, and J. Garcia Sole, “Optical spectroscopy of Pr3+ ions in LiNbO3.,” Phys. Rev. B Condens. Matter 51(23), 16643–16650 (1995).
[Crossref] [PubMed]

Phys. Rev. B Condens. Matter Mater. Phys. (1)

V. Caciuc, A. V. Postnikov, and G. Borstel, “Ab initio structure and zone-center phonons in LiNbO3,” Phys. Rev. B Condens. Matter Mater. Phys. 61(13), 8806–8813 (2000).
[Crossref]

Sci. Rep. (1)

L. Xing, W. Yang, J. Lin, M. Huang, and Y. Xue, “Enhanced and Stable Upconverted White-light Emission in Ho3+/Yb3+/Tm3+-doped LiNbO3 Single Crystal via Mg2+ Ion Doping,” Sci. Rep. 7(1), 14725 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Raman spectra of Pr3+ doped and Pr3+-Mg2+ codoped congruent LiNbO3 crystals (Pr:CLN and Pr:Mg:CLN), with the photographs displaying the appearance of the as-grown single crystals (a) Pr:CLN and (b) Pr:Mg:CLN in the insets.
Fig. 2
Fig. 2 The polarized transmittance absorption spectra of Pr:CLN and Pr:Mg:CLN wafers, referred as 1Pr0Mg-σ, 1Pr0Mg-π, 1Pr5Mg-σ and 1Pr5Mg-π, at the wavelength range from 350nm to 2500nm. In the insets: the infrared absorption spectra at around 3500cm−1 (2857nm).
Fig. 3
Fig. 3 The (a) σ-polarized (d) π-polarized fluorescence excitation spectra measured by monitoring 618nm emissions in Pr:CLN and Pr:Mg:CLN. The Gaussian decomposition of the excitation band from 250nm to 450nm in (b) 1Pr0Mg-σ (c) 1Pr5Mg-σ (e) 1Pr0Mg-π (f) 1Pr5Mg-π, with the central wavelengths of Gauss peaks Peak0 Peak1 and Peak2 marked beside.
Fig. 4
Fig. 4 The (a) σ-polarized (b) π-polarized fluorescence emission spectra recorded under 360nm excitation. The (c) σ-polarized (d) π-polarized fluorescence emission spectra recorded under 463nm excitation.
Fig. 5
Fig. 5 The configurational coordinate diagram of Pr:CLN and Pr:Mg:CLN, depicting the light-emitting mechanism based on the intervalence charge transfer. IVCTi (i = a, b) represented the Pr3+–Nb5+ intervalence charge transfer state; Eactv,i represented the quenching activation energy; ΔRi represented the coordinate offset of IVCT state; Dashed arrows ① and ② signified the quenching of 3P0 emissions under ① 360nm excitation and ② 463nm excitation.
Fig. 6
Fig. 6 The normalized temperature-dependent fluorescence emission spectra at temperatures ranging from 20K to 430K under 360nm excitation in (a) Pr:CLN and (b) Pr:Mg:CLN. (c) The temperature dependences of emission intensity ratio I/I0K related to the transition 1D23H4 and the fitting curves acquired using formula (1). The temperature-dependent fluorescence decay curves from excited level 1D2 measured under 360nm excitation in (d) Pr:CLN and (e) Pr:Mg:CLN. (f) The temperature dependences of the radiant lifetime and the fitting curves acquired using formula (1).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I(T)/ I 0K = [1+Aexp( E actv / k B T)] 1