Abstract

Rare earth co-doping of erbium with optically inactive ytterbium or lanthanum ions was investigated in silica fibers for resonant pumping of amplifiers and lasers. The co-dopants are optically inactive when pumped at 1475 nm and therefore their main role is to reduce erbium clustering in solution-doped fibers. We have demonstrated increased efficiencies compared to fibers where no co-dopants are used. With this technique, a single mode Er-La fiber with an Er ion concentration of 0.98x1025 ions/m3, exhibited a slope efficiency of 79.6% in a core-pumped master oscillator-power amplifier (MOPA) with a signal wavelength of 1560 nm.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Nanoparticle doping for high power fiber lasers at eye-safer wavelengths

Colin C. Baker, E. Joseph Friebele, Ashley A. Burdett, Daniel L. Rhonehouse, Jake Fontana, Woohong Kim, Steven R. Bowman, L. Brandon Shaw, Jasbinder Sanghera, Jun Zhang, Radha Pattnaik, Mark Dubinskii, John Ballato, Courtney Kucera, Amber Vargas, Alexander Hemming, Nikita Simakov, and John Haub
Opt. Express 25(12) 13903-13915 (2017)

High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers

Zexuan Qiang, Jihong Geng, Tao Luo, Jun Zhang, and Shibin Jiang
Appl. Opt. 53(4) 643-647 (2014)

Multiple rare earth emissions in a multicore tellurite fiber with a single pump wavelength

H. T. Bookey, J. Lousteau, A. Jha, N. Gayraud, R. R. Thomson, N. D. Psaila, H. Li, W. N. MacPherson, J. S. Barton, and A. K. Kar
Opt. Express 15(26) 17554-17561 (2007)

References

  • View by:
  • |
  • |
  • |

  1. C. C. Baker, E. J. Friebele, A. A. Burdett, D. L. Rhonehouse, J. Fontana, W. Kim, S. R. Bowman, L. B. Shaw, J. Sanghera, J. Zhang, R. Pattnaik, M. Dubinskii, J. Ballato, C. Kucera, A. Vargas, A. Hemming, N. Simakov, and J. Haub, “Nanoparticle doping for high power fiber lasers at eye-safer wavelengths,” Opt. Express 25(12), 13903–13915 (2017).
    [Crossref] [PubMed]
  2. E.-L. Lim, S. U. Alam, and D. J. Richardson, “Optimizing the pumping configuration for the power scaling of in-band pumped erbium doped fiber amplifiers,” Opt. Express 20(13), 13886–13895 (2012).
    [Crossref] [PubMed]
  3. M. A. Jebali, J.-N. Maran, and S. LaRochelle, “264 W output power at 1585 nm in Er-Yb codoped fiber laser using in-band pumping,” Opt. Lett. 39(13), 3974–3977 (2014).
    [Crossref] [PubMed]
  4. N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).
  5. M. Nakazawa and Y. Kimura, “Lanthanum codoped erbium fibre amplifier,” Electron. Lett. 27(12), 1065–1067 (1991).
    [Crossref]
  6. K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Erbium Lanthanum co-doped fiber for L-band amplifier with high efficiency, low non-linearity and low NF”, in Optical Fiber Communication Conference and International Conference on Quantum Information, OSA, paper TuA6. (2001).
  7. K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
    [Crossref]
  8. W. J. Miniscalco, “Optical and Electronic Properties of Rare Earth Ions in Glasses,” in Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed, M. J. F. Digonnet, ed. (Marcel Dekker Inc. 2001).
  9. P. F. Wysocki, “Erbium-Doped Fiber Amplifiers: Advanced Topics,” in Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed, M. J. F. Digonnet, ed. (Marcel Dekker Inc. 2001).

2017 (1)

2015 (1)

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

2014 (1)

2012 (1)

1991 (1)

M. Nakazawa and Y. Kimura, “Lanthanum codoped erbium fibre amplifier,” Electron. Lett. 27(12), 1065–1067 (1991).
[Crossref]

1986 (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Alam, S. U.

Arai, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Baker, C. C.

Ballato, J.

Bowman, S. R.

Bubnov, M. M.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Burdett, A. A.

Dubinskii, M.

Fontana, J.

Friebele, E. J.

Guryanov, A. N.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Handa, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Haub, J.

Hemming, A.

Honda, T.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Ishii, Y.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Jebali, M. A.

Kim, W.

Kimura, Y.

M. Nakazawa and Y. Kimura, “Lanthanum codoped erbium fibre amplifier,” Electron. Lett. 27(12), 1065–1067 (1991).
[Crossref]

Kiritchenko, N. V.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Kotov, L. V.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Kucera, C.

Kumata, K.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

LaRochelle, S.

Likhachev, M. E.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Lim, E.-L.

Maran, J.-N.

Melkumov, M. A.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Nakazawa, M.

M. Nakazawa and Y. Kimura, “Lanthanum codoped erbium fibre amplifier,” Electron. Lett. 27(12), 1065–1067 (1991).
[Crossref]

Namikawa, H.

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Pattnaik, R.

Rhonehouse, D. L.

Richardson, D. J.

Sanghera, J.

Shaw, L. B.

Simakov, N.

Vargas, A.

Yashkov, M. V.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Yu Laptev, A.

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Zhang, J.

Electron. Lett. (1)

M. Nakazawa and Y. Kimura, “Lanthanum codoped erbium fibre amplifier,” Electron. Lett. 27(12), 1065–1067 (1991).
[Crossref]

J. Appl. Phys. (1)

K. Arai, H. Namikawa, K. Kumata, T. Honda, Y. Ishii, and T. Handa, “Aluminum or phosphorus co-doping effects on the fluorescence and structural properties of neodymium-doped silica glass,” J. Appl. Phys. 59(10), 3430–3436 (1986).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. (1)

N. V. Kiritchenko, L. V. Kotov, M. A. Melkumov, M. E. Likhachev, M. M. Bubnov, M. V. Yashkov, A. Yu Laptev, and A. N. Guryanov, “Effect of ytterbium co-doping on erbium clustering in silica-doped glass Laser,” Phys. 25, 025102 (2015).

Other (3)

W. J. Miniscalco, “Optical and Electronic Properties of Rare Earth Ions in Glasses,” in Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed, M. J. F. Digonnet, ed. (Marcel Dekker Inc. 2001).

P. F. Wysocki, “Erbium-Doped Fiber Amplifiers: Advanced Topics,” in Rare-Earth-Doped Fiber Lasers and Amplifiers, 2nd ed, M. J. F. Digonnet, ed. (Marcel Dekker Inc. 2001).

K. Aiso, Y. Tashiro, T. Suzuki, and T. Yagi, “Erbium Lanthanum co-doped fiber for L-band amplifier with high efficiency, low non-linearity and low NF”, in Optical Fiber Communication Conference and International Conference on Quantum Information, OSA, paper TuA6. (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Normalized absorption spectra for RE co-doped fibers compared with a fiber with no co-dopant; (b) background loss for the fibers.
Fig. 2
Fig. 2 Slope efficiency with respect to absorbed pump power with (a) 76mW signal input power and (b) 12 mW input signal power for RE:Er co-doped fibers with varying ratios of RE:Er from 2:1 to 8:1 and ratios of Al/Er of 50/1 and 75/1.
Fig. 3
Fig. 3 Slope efficiency and fiber refractive index profile (inset) for La-Er doped fiber with La:Er concentration ratio of 8:1.
Fig. 4
Fig. 4 Gain spectra for Er, La:Er, and Yb:Er co-doped fibers. All fibers have an Al/Er ratio of 75/1. The open points correspond to fiber with Er absorptions of ~20 dB/m and the closed points to ~55 dB/m

Tables (1)

Tables Icon

Table 1 Er core absorption, Er and Al concentration, co-dopant and Al/Er ratio, NA and slope efficiency with 12 mW input signal power for the fibers of this study.

Metrics