Abstract

Here, we prepared silver (Ag) dendrite fractal nanostructures by a facile electrochemical deposition method. The silver dendrite fractal nanostructures exhibit multiple plasmon resonances, which leads to an enhanced second harmonic generation (SHG). Interestingly, the prepared thin film can be used as plasmonic substrates. As an example application, we selected surface-enhanced Raman scattering (SERS) spectroscopy with tunable sensitivity. Using 1,4-benzenedithiol (1,4-BDT) as a probe molecule, the SERS intensity of dendrite fractal nanostructures is approximately 77 times larger than that of the flower-like nanoplates (one of the structures that appears during the growth), and a low detection limit of 10−14 M 1,4-BDT can be achieved. Our results offer a low-cost and easy strategy in fabricating nonlinear photonic nanodevices and SERS chips.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Silver-decorated hierarchical cuprous oxide micro/nanospheres as highly effective surface-enhanced Raman scattering substrates

Shih-Yu Fu, Yu-Kuei Hsu, Mei-Hsin Chen, Chin-Jung Chuang, Ying-Chu Chen, and Yan-Gu Lin
Opt. Express 22(12) 14617-14624 (2014)

Two-photon fabrication of three-dimensional silver microstructures in microfluidic channels for volumetric surface-enhanced Raman scattering detection

Monica Focsan, Ana Maria Craciun, Simion Astilean, and Patrice L. Baldeck
Opt. Mater. Express 6(5) 1587-1593 (2016)

Multi-level surface enhanced Raman scattering using AgOx thin film

Ming Lun Tseng, Chia Min Chang, Bo Han Cheng, Pin Chieh Wu, Kuang Sheng Chung, Min-Kai Hsiao, Hsin Wei Huang, Ding-Wei Huang, Hai-Pang Chiang, Pui Tak Leung, and Din Ping Tsai
Opt. Express 21(21) 24460-24467 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  2. W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
    [Crossref]
  3. E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
    [Crossref] [PubMed]
  4. X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
    [Crossref] [PubMed]
  5. X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
    [Crossref] [PubMed]
  6. M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
    [Crossref] [PubMed]
  7. P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
    [Crossref] [PubMed]
  8. Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
    [Crossref] [PubMed]
  9. Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
    [Crossref] [PubMed]
  10. M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
    [Crossref] [PubMed]
  11. H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
    [Crossref]
  12. X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
    [Crossref] [PubMed]
  13. H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
    [Crossref] [PubMed]
  14. S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
    [Crossref]
  15. S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
    [Crossref] [PubMed]
  16. S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
    [Crossref]
  17. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  18. Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
    [Crossref] [PubMed]
  19. N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
    [Crossref] [PubMed]
  20. M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
    [Crossref] [PubMed]
  21. Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
    [Crossref] [PubMed]
  22. Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
    [Crossref] [PubMed]
  23. Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
    [Crossref]
  24. W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
    [Crossref]
  25. Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
    [Crossref]
  26. S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
    [Crossref] [PubMed]
  27. H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
    [Crossref] [PubMed]
  28. T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
    [Crossref]
  29. X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
    [Crossref]
  30. H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
    [Crossref] [PubMed]
  31. L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
    [Crossref] [PubMed]
  32. T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
    [Crossref]
  33. L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
    [Crossref]
  34. T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47(19), 1400–1403 (1981).
    [Crossref]
  35. E. Benjacob and P. Garik, “The formation of patterns in non-equilibrium growth,” Nature 343(6258), 523–530 (1990).
    [Crossref]
  36. C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
    [Crossref]
  37. X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
    [Crossref] [PubMed]
  38. J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
    [Crossref] [PubMed]
  39. S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
    [Crossref] [PubMed]
  40. J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
    [Crossref]
  41. Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
    [Crossref] [PubMed]
  42. R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
    [Crossref] [PubMed]
  43. M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
    [Crossref] [PubMed]
  44. H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
    [Crossref] [PubMed]
  45. K. Thyagarajan, S. Rivier, A. Lovera, and O. J. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
    [Crossref] [PubMed]
  46. S. Park, J. W. Hahn, and J. Y. Lee, “Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation,” Opt. Express 20(5), 4856–4870 (2012).
    [Crossref] [PubMed]
  47. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
    [Crossref] [PubMed]
  48. Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
    [Crossref] [PubMed]
  49. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
    [Crossref] [PubMed]
  50. L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
    [Crossref]
  51. J. Butet and O. J. Martin, “Nonlinear plasmonic nanorulers,” ACS Nano 8(5), 4931–4939 (2014).
    [Crossref] [PubMed]
  52. M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
    [Crossref] [PubMed]
  53. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

2019 (1)

Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]

2018 (4)

X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
[Crossref] [PubMed]

X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
[Crossref] [PubMed]

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

2017 (3)

M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref] [PubMed]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

2016 (1)

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

2015 (8)

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref] [PubMed]

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref] [PubMed]

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

2014 (5)

J. Butet and O. J. Martin, “Nonlinear plasmonic nanorulers,” ACS Nano 8(5), 4931–4939 (2014).
[Crossref] [PubMed]

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]

2013 (5)

S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref] [PubMed]

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref] [PubMed]

2012 (5)

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

K. Thyagarajan, S. Rivier, A. Lovera, and O. J. Martin, “Enhanced second-harmonic generation from double resonant plasmonic antennae,” Opt. Express 20(12), 12860–12865 (2012).
[Crossref] [PubMed]

S. Park, J. W. Hahn, and J. Y. Lee, “Doubly resonant metallic nanostructure for high conversion efficiency of second harmonic generation,” Opt. Express 20(5), 4856–4870 (2012).
[Crossref] [PubMed]

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref] [PubMed]

2011 (2)

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

2010 (4)

X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

2009 (2)

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

2008 (3)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]

W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
[Crossref]

2007 (2)

W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

2006 (2)

J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

2004 (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

2001 (1)

S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
[Crossref] [PubMed]

1999 (1)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

1990 (1)

E. Benjacob and P. Garik, “The formation of patterns in non-equilibrium growth,” Nature 343(6258), 523–530 (1990).
[Crossref]

1981 (1)

T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47(19), 1400–1403 (1981).
[Crossref]

Antosiewicz, T. J.

M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref] [PubMed]

Aouani, H.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Arbouet, A.

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Ayala-Orozco, C.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Balci, S.

M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Barnes, W.

W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Baselli, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Benjacob, E.

E. Benjacob and P. Garik, “The formation of patterns in non-equilibrium growth,” Nature 343(6258), 523–530 (1990).
[Crossref]

Bi, K.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Biagioni, P.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Black, L. J.

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Börjesson, L.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Butet, J.

J. Butet and O. J. Martin, “Nonlinear plasmonic nanorulers,” ACS Nano 8(5), 4931–4939 (2014).
[Crossref] [PubMed]

Cai, G.

W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Celebrano, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Cerullo, G.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Chang, S.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Chang, S. H. G.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Chen, C. Y.

X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref] [PubMed]

Chen, F.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

Chen, H.

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Chen, J.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]

Chen, M.

M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref] [PubMed]

Chen, S.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

Chen, W. M.

X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref] [PubMed]

Chen, Y.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Chen, Z. Y.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Cheng, F. Y.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Cheng, L.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Cheng, Y. S.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Cheng, Z.

Cheng, Z. Q.

Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]

Chirumamilla, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Chu, P. K.

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]

Ciccacci, F.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Cuadra, J.

M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref] [PubMed]

Cui, T.

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

Czaplicki, R.

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

Dai, Z.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Das, G.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

De Angelis, C.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

De Angelis, F.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

de Groot, C. H.

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Deng, S.

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Di Fabrizio, E.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Di Falco, A.

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Ding, S. J.

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref] [PubMed]

Du, H.

S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref] [PubMed]

Duan, H.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Duò, L.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

El-Sayed, I. H.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

El-Sayed, M. A.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Eres, G.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Fang, J.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Finazzi, M.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Fu, L.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Gaddis, A. L.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Gao, N.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

Garik, P.

E. Benjacob and P. Garik, “The formation of patterns in non-equilibrium growth,” Nature 343(6258), 523–530 (1990).
[Crossref]

Girard, C.

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Gopalakrishnan, A.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Grady, N. K.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Grant, J.

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

Großmann, S.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Gu, B.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Gu, H. X.

H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref] [PubMed]

Guan, Z.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

Hafner, J. H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

Hahn, J. W.

Halas, N. J.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

Han, F.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

Han, J. B.

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Han, S. W.

S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
[Crossref] [PubMed]

Han, Y.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Hao, E.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Hao, Z. H.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref] [PubMed]

Hatab, N. A.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hecht, B.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Hong, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Hsueh, C. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Hu, C.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

Huang, Q.

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

Huang, X.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Huang, Z.

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

Husu, H.

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Im, S. J.

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

Jain, P. K.

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

Jiang, C.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Jiang, X. C.

X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref] [PubMed]

Jiang, X. F.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

Joo, S. W.

S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
[Crossref] [PubMed]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Käll, M.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Kauranen, M.

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Ke, Y.

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Kim, K.

S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Krahne, R.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Kuittinen, M.

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Lang, X.

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

Lassiter, B.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

Laukkanen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Lee, C. K.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Lee, J. Y.

Lee, M. R.

M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref] [PubMed]

Lee, Y. H.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Lehtolahti, J.

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

Leoncini, M.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Li, D. W.

H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref] [PubMed]

Li, H.

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

Li, H. B.

H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref] [PubMed]

Li, J.

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

Li, J. H.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Li, Q.

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Li, W.

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

Li, Z.

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

Li, Z. L.

Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]

Liang, C.

W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
[Crossref]

Liang, Y.

H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref] [PubMed]

Liberale, C.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Lin, Q.

Ling, X. Y.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref] [PubMed]

Liu, B.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

Liu, J.

Liu, L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Liu, P.

H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref] [PubMed]

Liu, Q.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Liu, W.

W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
[Crossref]

Liu, X. L.

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

Liu, Z.

Liu, Z. M.

Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]

Locatelli, A.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Long, Y. T.

H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref] [PubMed]

Lovera, A.

Luo, C. L.

Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]

Luo, X.

Lv, M. Y.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Ma, C.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Ma, L.

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Maier, S. A.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Mäkitalo, J.

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

Martin, O. J.

McLellan, J. M.

J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]

Meng, G.

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

Mo, Y.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Murray, W.

W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

Muskens, O. L.

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Nan, F.

Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]

Navarro-Cia, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Nehl, C. L.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

Nordlander, P.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

Osellame, R.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Oulton, R. F.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Paillard, V.

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Park, S.

Phang, I. Y.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref] [PubMed]

Qiu, T.

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]

Rahmani, M.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Retterer, S. T.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Rivier, S.

Rondanina, E.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Sander, L. M.

T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47(19), 1400–1403 (1981).
[Crossref]

Schatz, G. C.

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Shanmugam, V.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Shegai, T.

M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref] [PubMed]

Shen, J. C.

T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]

Shen, P. N.

T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]

Shi, C. A.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Shi, H.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

Shi, H. Q.

Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]

Sidiropoulos, T. P.

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

Siekkinen, A.

J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]

Siikanen, R.

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

Su, C. H.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Sun, X.

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

Sun, X. M.

X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Tao, J.

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

Thyagarajan, K.

Tian, J.

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

Toma, A.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Tsai, M. F.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

Wang, H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

Wang, J. F.

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

Wang, J. H.

Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]

Wang, L.

Wang, M.

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

Wang, M. L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Wang, P.

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

Wang, Q.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Wang, Q. Q.

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]

Wang, S.

S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref] [PubMed]

S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref] [PubMed]

Wang, W.

X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Wang, X.

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Wang, Y.

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Wei, Z.

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Wen, Y.

S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref] [PubMed]

Wersäll, M.

M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Wiecha, P. R.

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Witten, T. A.

T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47(19), 1400–1403 (1981).
[Crossref]

Wu, W.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Wu, X.

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Wu, X. L.

T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]

Wu, Y.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

Wu, Z. L.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Xia, Y.

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]

J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]

Xiao, J.

H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref] [PubMed]

Xiao, X.

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

Xie, W.

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Xu, H.

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

Xu, H. J.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Xu, L. P.

S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref] [PubMed]

Xu, Q. H.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

Xue, J.

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Xue, L.

H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref] [PubMed]

Yang, D. J.

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Yang, G.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Yang, G. W.

H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref] [PubMed]

Yang, J.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Yang, J. K. W.

M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref] [PubMed]

Yang, Z.

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Yeh, C. S.

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

Yin, H. J.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

You, H.

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

Yu, A. B.

X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref] [PubMed]

Yu, Y.

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Yuan, J.

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

Yuan, P.

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

Zaccaria, R. P.

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Zeng, J.

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

Zhai, X.

Zhang, G.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Zhang, Q.

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Zhang, W.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

Zhang, X.

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref] [PubMed]

X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Zhang, Y.

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

Zhang, Y. F.

H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref] [PubMed]

Zhang, Z.

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

Zhao, D. M.

X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Zhao, Y. M.

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Zheng, M.

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

Zheng, Z.

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Zhong, Y. T.

S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]

Zhou, J.

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Zhou, L.

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]

Zhou, Y.

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

Zhou, Z. K.

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Zhu, C.

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

Zhu, Y.

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

P. K. Jain, X. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41(12), 1578–1586 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (2)

H. X. Gu, L. Xue, Y. F. Zhang, D. W. Li, and Y. T. Long, “Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering,” ACS Appl. Mater. Interfaces 7(4), 2931–2936 (2015).
[Crossref] [PubMed]

L. Wang, H. Li, J. Tian, and X. Sun, “Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: rapid, large-scale, wet-chemical synthesis and their application as SERS substrates,” ACS Appl. Mater. Interfaces 2(11), 2987–2991 (2010).
[Crossref] [PubMed]

ACS Nano (3)

Y. Chen, K. Bi, Q. Wang, M. Zheng, Q. Liu, Y. Han, J. Yang, S. Chang, G. Zhang, and H. Duan, “Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via “Sketch and Peel” strategy,” ACS Nano 10(12), 11228–11236 (2016).
[Crossref] [PubMed]

M. F. Tsai, S. H. G. Chang, F. Y. Cheng, V. Shanmugam, Y. S. Cheng, C. H. Su, and C. S. Yeh, “Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy,” ACS Nano 7(6), 5330–5342 (2013).
[Crossref] [PubMed]

J. Butet and O. J. Martin, “Nonlinear plasmonic nanorulers,” ACS Nano 8(5), 4931–4939 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

L. J. Black, P. R. Wiecha, Y. Wang, C. H. de Groot, V. Paillard, C. Girard, O. L. Muskens, and A. Arbouet, “Tailoring Second-Harmonic Generation in Single L-Shaped Plasmonic Nanoantennas from the Capacitive to Conductive Coupling Regime,” ACS Photonics 2(11), 1592–1601 (2015).
[Crossref]

Adv. Mater. (2)

W. Murray and W. Barnes, “Plasmonic materials,” Adv. Mater. 19(22), 3771–3782 (2007).
[Crossref]

M. Chirumamilla, A. Toma, A. Gopalakrishnan, G. Das, R. P. Zaccaria, R. Krahne, E. Rondanina, M. Leoncini, C. Liberale, F. De Angelis, and E. Di Fabrizio, “3D nanostar dimers with a sub-10-nm gap for single-/few-molecule surface-enhanced raman scattering,” Adv. Mater. 26(15), 2353–2358 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

Z. Q. Cheng, Z. L. Li, X. Luo, H. Q. Shi, C. L. Luo, Z. M. Liu, and F. Nan, “Enhanced second harmonic generation by double plasmon resonances in mesoscale flower-like silver particles,” Appl. Phys. Lett. 114(1), 011901 (2019).
[Crossref]

X. Zhang, Z. L. Wu, D. M. Zhao, W. Wang, H. J. Xu, and X. M. Sun, “Ag dendritic nanostructures as ultrastable substrates for surface-enhanced Raman scattering,” Appl. Phys. Lett. 102(18), 183118 (2013).
[Crossref]

Appl. Surf. Sci. (1)

T. Qiu, X. L. Wu, J. C. Shen, Y. Xia, P. N. Shen, and P. K. Chu, “Silver fractal networks for surface-enhanced Raman scattering substrates,” Appl. Surf. Sci. 254(17), 5399–5402 (2008).
[Crossref]

Chem. Asian J. (1)

J. Zeng, J. Tao, W. Li, J. Grant, P. Wang, Y. Zhu, and Y. Xia, “A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions,” Chem. Asian J. 6(2), 376–379 (2011).
[Crossref] [PubMed]

Chem. Phys. Lett. (1)

J. M. McLellan, A. Siekkinen, J. Chen, and Y. Xia, “Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes,” Chem. Phys. Lett. 427(1-3), 122–126 (2006).
[Crossref]

Cryst. Growth Des. (1)

W. Liu, G. Cai, and C. Liang, “Trapeziform Ag Nanosheet Arrays Induced by Electrochemical Deposition on Au-Coated Substrate,” Cryst. Growth Des. 8(8), 2748–2752 (2008).
[Crossref]

Electrochim. Acta (1)

S. Chen, B. Liu, X. Zhang, Y. Mo, F. Chen, H. Shi, W. Zhang, C. Hu, and J. Chen, “Electrochemical fabrication of pyramid-shape silver microstructure as effective and reusable SERS substrate,” Electrochim. Acta 274, 242–249 (2018).
[Crossref]

J. Am. Chem. Soc. (1)

Z. Guan, N. Gao, X. F. Jiang, P. Yuan, F. Han, and Q. H. Xu, “Huge enhancement in two-photon photoluminescence of au nanoparticle clusters revealed by single-particle spectroscopy,” J. Am. Chem. Soc. 135(19), 7272–7277 (2013).
[Crossref] [PubMed]

J. Appl. Phys. (1)

Z. Q. Cheng, Y. T. Zhong, F. Nan, J. H. Wang, L. Zhou, and Q. Q. Wang, “Plasmonic near-field coupling induced absorption enhancement and photoluminescence of silver nanorod arrays,” J. Appl. Phys. 115(22), 224302 (2014).
[Crossref]

J. Chem. Phys. (1)

E. Hao and G. C. Schatz, “Electromagnetic fields around silver nanoparticles and dimers,” J. Chem. Phys. 120(1), 357–366 (2004).
[Crossref] [PubMed]

J. Colloid Interface Sci. (1)

S. W. Joo, S. W. Han, and K. Kim, “Adsorption of 1,4-Benzenedithiol on Gold and Silver Surfaces: Surface-Enhanced Raman Scattering Study,” J. Colloid Interface Sci. 240(2), 391–399 (2001).
[Crossref] [PubMed]

J. Mater. Chem. (1)

C. Zhu, G. Meng, Q. Huang, Z. Li, Z. Huang, M. Wang, and J. Yuan, “Large-scale well-separated Ag nanosheet-assembled micro-hemispheres modified with HS-β-CD as effective SERS substrates for trace detection of PCBs,” J. Mater. Chem. 22(5), 2271–2278 (2012).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

L. Cheng, C. Ma, G. Yang, H. You, and J. Fang, “Hierarchical silver mesoparticles with tunable surface topographies for highly sensitive surface-enhanced Raman spectroscopy,” J. Mater. Chem. A Mater. Energy Sustain. 2(13), 4534–4542 (2014).
[Crossref]

J. Phys. D Appl. Phys. (1)

T. Qiu, Y. Zhou, J. Li, W. Zhang, X. Lang, T. Cui, and P. K. Chu, “Hot spots in highly Raman-enhancing silver nano-dendrites,” J. Phys. D Appl. Phys. 42(17), 175403 (2009).
[Crossref]

Langmuir (2)

X. C. Jiang, C. Y. Chen, W. M. Chen, and A. B. Yu, “Role of Citric Acid in the Formation of Silver Nanoplates through a Synergistic Reduction Approach,” Langmuir 26(6), 4400–4408 (2010).
[Crossref] [PubMed]

M. Chen, I. Y. Phang, M. R. Lee, J. K. W. Yang, and X. Y. Ling, “Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density “hot spots” for surface-enhanced Raman scattering,” Langmuir 29(23), 7061–7069 (2013).
[Crossref] [PubMed]

Nano Lett. (6)

R. Czaplicki, J. Mäkitalo, R. Siikanen, H. Husu, J. Lehtolahti, M. Kuittinen, and M. Kauranen, “Second-harmonic generation from metal nanoparticles: resonance enhancement versus particle geometry,” Nano Lett. 15(1), 530–534 (2015).
[Crossref] [PubMed]

Y. Zhang, N. K. Grady, C. Ayala-Orozco, and N. J. Halas, “Three-dimensional nanostructures as highly efficient generators of second harmonic light,” Nano Lett. 11(12), 5519–5523 (2011).
[Crossref] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett. 7(5), 1251–1255 (2007).
[Crossref] [PubMed]

H. Aouani, M. Navarro-Cia, M. Rahmani, T. P. Sidiropoulos, M. Hong, R. F. Oulton, and S. A. Maier, “Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light,” Nano Lett. 12(9), 4997–5002 (2012).
[Crossref] [PubMed]

N. A. Hatab, C. H. Hsueh, A. L. Gaddis, S. T. Retterer, J. H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-Standing Optical Gold Bowtie Nanoantenna with Variable Gap Size for Enhanced raman spectroscopy,” Nano Lett. 10(12), 4952–4955 (2010).
[Crossref] [PubMed]

M. Wersäll, J. Cuadra, T. J. Antosiewicz, S. Balci, and T. Shegai, “Observation of Mode Splitting in Photoluminescence of Individual Plasmonic Nanoparticles Strongly Coupled to Molecular Excitons,” Nano Lett. 17(1), 551–558 (2017).
[Crossref] [PubMed]

Nano Res. (1)

S. J. Ding, D. J. Yang, X. L. Liu, F. Nan, Z. Q. Cheng, S. J. Im, L. Zhou, J. F. Wang, and Q. Q. Wang, “Asymmetric growth of Au-core/Ag-shell nanorods with a strong octupolar plasmon resonance and an efficient second-harmonic generation,” Nano Res. 11(2), 686–695 (2018).
[Crossref]

Nanoscale (6)

S. J. Ding, F. Nan, D. J. Yang, Y. T. Zhong, Z. H. Hao, and Q. Q. Wang, “Tunable plasmon resonance and enhanced second harmonic generation and upconverted fluorescence of hemispheric-like silver core/shell islands,” Nanoscale 7(38), 15798–15805 (2015).
[Crossref] [PubMed]

X. Zhang, X. Xiao, Z. Dai, W. Wu, X. Zhang, L. Fu, and C. Jiang, “Ultrasensitive SERS performance in 3D “sunflower-like” nanoarrays decorated with Ag nanoparticles,” Nanoscale 9(9), 3114–3120 (2017).
[Crossref] [PubMed]

H. B. Li, P. Liu, Y. Liang, J. Xiao, and G. W. Yang, “Super-SERS-active and highly effective antimicrobial Ag nanodendrites,” Nanoscale 4(16), 5082–5091 (2012).
[Crossref] [PubMed]

Z. K. Zhou, J. Xue, Z. Zheng, J. Li, Y. Ke, Y. Yu, J. B. Han, W. Xie, S. Deng, H. Chen, and X. Wang, “A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions,” Nanoscale 7(37), 15392–15403 (2015).
[Crossref] [PubMed]

Z. Q. Cheng, F. Nan, D. J. Yang, Y. T. Zhong, L. Ma, Z. H. Hao, L. Zhou, and Q. Q. Wang, “Plasmonic nanorod arrays of a two-segment dimer and a coaxial cable with 1 nm gap for large field confinement and enhancement,” Nanoscale 7(4), 1463–1470 (2015).
[Crossref] [PubMed]

S. Wang, L. P. Xu, Y. Wen, H. Du, S. Wang, and X. Zhang, “Space-confined fabrication of silver nanodendrites and their enhanced SERS activity,” Nanoscale 5(10), 4284–4290 (2013).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

M. Celebrano, X. Wu, M. Baselli, S. Großmann, P. Biagioni, A. Locatelli, C. De Angelis, G. Cerullo, R. Osellame, B. Hecht, L. Duò, F. Ciccacci, and M. Finazzi, “Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation,” Nat. Nanotechnol. 10(5), 412–417 (2015).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nature (1)

E. Benjacob and P. Garik, “The formation of patterns in non-equilibrium growth,” Nature 343(6258), 523–530 (1990).
[Crossref]

Opt. Express (4)

Phys. Rev. Lett. (2)

H. Xu, E. J. Bjerneld, M. Käll, and L. Börjesson, “Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering,” Phys. Rev. Lett. 83(21), 4357–4360 (1999).
[Crossref]

T. A. Witten and L. M. Sander, “Diffusion-limited aggregation, a kinetic critical phenomenon,” Phys. Rev. Lett. 47(19), 1400–1403 (1981).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

H. J. Yin, Z. Y. Chen, Y. M. Zhao, M. Y. Lv, C. A. Shi, Z. L. Wu, X. Zhang, L. Liu, M. L. Wang, and H. J. Xu, “Ag@Au core-shell dendrites: a stable, reusable and sensitive surface enhanced Raman scattering substrate,” Sci. Rep. 5(1), 14502 (2015).
[Crossref] [PubMed]

Small (2)

Z. Wei, Z. K. Zhou, Q. Li, J. Xue, A. Di Falco, Z. Yang, J. Zhou, and X. Wang, “Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor,” Small 13(27), 1700109 (2017).
[Crossref] [PubMed]

Q. Zhang, Y. H. Lee, I. Y. Phang, C. K. Lee, and X. Y. Ling, “Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles,” Small 10(13), 2703–2711 (2014).
[Crossref] [PubMed]

Other (1)

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic illustration for shape-controlled synthesis of Ag micro/nanostructures. (b)-(e) SEM images of the Ag micro/nanostructures electrodeposited at different concentration of AgNO3: 0.5, 1, 2 and 4 g/L, respectively. The citric acid concentration was 40 g/L and electrodeposition was carried out under a constant current density of 1 mA·cm–2 for 120 s.
Fig. 2
Fig. 2 (a)-(e) SEM images of the Ag nanostructures electrodeposited on ITO glass substrates for 20, 30, 60, 180, and 240 s, respectively. (f) Low magnification SEM images of the Ag dendrite fractal nanostructures prepared by electrodeposition for 240 s. The inset shows the SEM image of the cross section of the sample.
Fig. 3
Fig. 3 (a) UV-visible extinction spectra of the Ag micro/nanostructures electrodeposited at different deposition time. Curves are shifted vertically for clear presentation. (b) The plots of extinction intensities against the deposition time of Ag nanostructures.
Fig. 4
Fig. 4 (a) SERS spectra of 10−6 M 1,4-BDT molecules adsorbed on the Ag micro/nanostructures electrodeposited at different deposition time. (b) SERS (peak at 1563 cm−1) intensities against the deposition time of Ag nanostructures. (c) SERS spectra of 1,4-BDT molecules with concentrations from 10−6 to 10−14 M adsorbed on the Ag dendrites prepared by electrodeposition for 240 s.
Fig. 5
Fig. 5 (a) SHG spectra of the Ag micro/nanostructures electrodeposited at different deposition time. (b) Log−log plot of the intensity relationship between SHG emission and excitation power. (c) SHG intensities against the deposition time of Ag nanostructures.
Fig. 6
Fig. 6 (a) Calculated extinction spectrum of a single dendrite fractal nanostructure illuminated by a circularly polarized incident light. (b) and (c) FDTD simulations of local field distribution at 800 nm and 488 nm, respectively.

Metrics