Abstract

Tungsten diselenide (WSe2) thin films exhibit ultrafast carrier recombination lifetimes, which makes them promising candidates for high speed modulators. With pulsed optical excitation, they could be used to realize all-optical, frequency agile, terahertz devices. Looking into the potential of this material for such applications, time-resolved terahertz spectroscopy can provide significant insight into its free carrier and exciton dynamics such as recombination lifetimes, photo-induced conductivity and decay pathways. In this study, we measure transient terahertz conductivity and photo-generated carrier lifetimes in custom-grown large-area WSe2 thin-films. We discuss its dependence on grain size and number of layers. By analyzing the tradeoffs between carrier-lifetimes, photo-generated conductivity, grain size, and the number of layers, we show that the response of these films can be tailored by controlling the growth parameters. Customizing the film terahertz response can enable large modulation without the need for integration with bulk semiconductors, as widely reported in the literature, thereby achieve high terahertz photoconductivity and high-speed operation. Across samples, our measurements show carrier decay timescale on the order ~10 to 100 ps and a transient conductivity that shows non-Drude behavior. This deviation from a Drude response is dominant within the first few picoseconds (<10 ps) before changing into a Drude like free-carrier response at longer delays. Based on our grown films, we experimentally demonstrate a metamaterial terahertz modulator with WSe2 as the only active element, attaining ~40% modulation depth.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Large-area highly crystalline WSe2 atomic layers for ultrafast pulsed lasers

Jinde Yin, Jiarong Li, Hao Chen, Jintao Wang, Peiguang Yan, Mengli Liu, Wenjun Liu, Wei Lu, Zihan Xu, Wenfei Zhang, Jinzhang Wang, Zhipei Sun, and Shuangchen Ruan
Opt. Express 25(24) 30020-30031 (2017)

Computational modeling of plasmonic thin-film terahertz photoconductive antennas

Nathan Burford and Magda El-Shenawee
J. Opt. Soc. Am. B 33(4) 748-759 (2016)

Ultrafast carrier kinetics in exfoliated graphene and thin graphite films

Ryan W. Newson, Jesse Dean, Ben Schmidt, and Henry M. van Driel
Opt. Express 17(4) 2326-2333 (2009)

References

  • View by:
  • |
  • |
  • |

  1. A. Tackeuchi, T. Kuroda, and Y. Nishikawa, “Electron spin-relaxation dynamics in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells,” Jpn. J. Appl. Phys. 38(1), 4680–4687 (1999).
    [Crossref]
  2. H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optical switching at 1.3 µm/1.55 µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35(13), 1103–1105 (1999).
    [Crossref]
  3. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
    [Crossref]
  4. V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84(17), 3301–3303 (2004).
    [Crossref]
  5. K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
    [Crossref] [PubMed]
  6. K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
    [Crossref]
  7. B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2,” ACS Nano 5(12), 9934–9938 (2011).
    [Crossref] [PubMed]
  8. M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
    [Crossref] [PubMed]
  9. C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
    [Crossref] [PubMed]
  10. J. H. Strait, P. Nene, and F. Rana, “High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(24), 245402 (2014).
    [Crossref]
  11. C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
    [Crossref]
  12. W. Zheng, F. Fan, M. Chen, S. Chen, and S. J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
    [Crossref]
  13. Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
    [Crossref] [PubMed]
  14. Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
    [Crossref] [PubMed]
  15. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  16. Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
    [Crossref] [PubMed]
  17. H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
    [Crossref] [PubMed]
  18. W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
    [Crossref] [PubMed]
  19. A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2.,” ACS Nano 8(7), 7180–7185 (2014).
    [Crossref] [PubMed]
  20. R. F. Frindt, “The optical properties of single crystals of WSe2 and MoTe2,” J. Phys. Chem. Solids 24(9), 1107–1108 (1963).
    [Crossref]
  21. A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C Solid State Phys. 9(12), 2449–2457 (1976).
    [Crossref]
  22. E. D. Palik, Handbook of Optical Constants of Solids, Five-Volume Set: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Elsevier, 1997).
  23. C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, ““Bulk and surface optical absorption in molybdenum disulfide,” J. Vac. Sci. & Tech. A,” Vacuum, Surfaces, and Films 5(4), 555–557 (1987).
    [Crossref]
  24. P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
    [Crossref] [PubMed]
  25. M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
    [Crossref]
  26. W. A. Brainard. “The thermal stability and friction of the disulfides, diselenides, and ditellurides of molybdenum and tungsten in vacuum” (1969).
  27. W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
    [Crossref] [PubMed]
  28. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
    [Crossref]
  29. D. Voß, P. Krüger, A. Mazur, and J. Pollmann, “Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems,” Phys. Rev. B Condens. Matter Mater. Phys. 60(20), 14311–14317 (1999).
    [Crossref]
  30. H. Wang, C. Zhang, and F. Rana, “Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2,” Nano Lett. 15(12), 8204–8210 (2015).
    [Crossref] [PubMed]
  31. P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
    [Crossref] [PubMed]
  32. X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
    [Crossref]
  33. C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
    [Crossref] [PubMed]
  34. M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2(9), 983–987 (2002).
    [Crossref]
  35. J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
    [Crossref] [PubMed]
  36. J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
    [Crossref] [PubMed]
  37. K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
    [Crossref]
  38. A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
    [Crossref] [PubMed]
  39. R. Long, J. Liu, and O. V. Prezhdo, “Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation,” J. Am. Chem. Soc. 138(11), 3884–3890 (2016).
    [Crossref] [PubMed]
  40. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  41. H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
    [Crossref]
  42. H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
    [Crossref]
  43. M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
    [Crossref] [PubMed]
  44. M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
    [Crossref] [PubMed]
  45. W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
    [Crossref] [PubMed]
  46. B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
    [Crossref]
  47. L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
    [Crossref]
  48. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
    [Crossref] [PubMed]
  49. A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
    [Crossref] [PubMed]
  50. H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
    [Crossref] [PubMed]
  51. J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
    [Crossref] [PubMed]
  52. Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
    [Crossref] [PubMed]
  53. M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
    [Crossref] [PubMed]
  54. Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
    [Crossref]
  55. Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
    [Crossref]
  56. H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
    [Crossref] [PubMed]
  57. R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. G. Xing, “A new class of electrically tunable metamaterial terahertz modulators,” Opt. Express 20(27), 28664–28671 (2012).
    [Crossref] [PubMed]

2018 (6)

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

2017 (9)

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

2016 (3)

W. Zheng, F. Fan, M. Chen, S. Chen, and S. J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

R. Long, J. Liu, and O. V. Prezhdo, “Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation,” J. Am. Chem. Soc. 138(11), 3884–3890 (2016).
[Crossref] [PubMed]

2015 (4)

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

H. Wang, C. Zhang, and F. Rana, “Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2,” Nano Lett. 15(12), 8204–8210 (2015).
[Crossref] [PubMed]

2014 (5)

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2.,” ACS Nano 8(7), 7180–7185 (2014).
[Crossref] [PubMed]

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

J. H. Strait, P. Nene, and F. Rana, “High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(24), 245402 (2014).
[Crossref]

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

2013 (4)

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
[Crossref] [PubMed]

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

2012 (3)

R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. G. Xing, “A new class of electrically tunable metamaterial terahertz modulators,” Opt. Express 20(27), 28664–28671 (2012).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
[Crossref] [PubMed]

2011 (3)

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

2010 (3)

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

2009 (1)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

2008 (2)

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

2007 (1)

2006 (1)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2004 (1)

V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84(17), 3301–3303 (2004).
[Crossref]

2002 (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2(9), 983–987 (2002).
[Crossref]

2001 (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

1999 (3)

A. Tackeuchi, T. Kuroda, and Y. Nishikawa, “Electron spin-relaxation dynamics in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells,” Jpn. J. Appl. Phys. 38(1), 4680–4687 (1999).
[Crossref]

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optical switching at 1.3 µm/1.55 µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35(13), 1103–1105 (1999).
[Crossref]

D. Voß, P. Krüger, A. Mazur, and J. Pollmann, “Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems,” Phys. Rev. B Condens. Matter Mater. Phys. 60(20), 14311–14317 (1999).
[Crossref]

1996 (1)

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

1987 (1)

C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, ““Bulk and surface optical absorption in molybdenum disulfide,” J. Vac. Sci. & Tech. A,” Vacuum, Surfaces, and Films 5(4), 555–557 (1987).
[Crossref]

1976 (1)

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C Solid State Phys. 9(12), 2449–2457 (1976).
[Crossref]

1963 (1)

R. F. Frindt, “The optical properties of single crystals of WSe2 and MoTe2,” J. Phys. Chem. Solids 24(9), 1107–1108 (1963).
[Crossref]

Ahn, K.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Ahn, Y. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Akinwande, D.

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

Allain, A.

A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2.,” ACS Nano 8(7), 7180–7185 (2014).
[Crossref] [PubMed]

Al-Naib, I.

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

Amara, K. K.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Averitt, R. D.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Azad, A. K.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Banerjee, K.

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
[Crossref] [PubMed]

Banerjee, S. K.

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

Baniya, S.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref] [PubMed]

Bao, Q.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Beal, A. R.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C Solid State Phys. 9(12), 2449–2457 (1976).
[Crossref]

Beard, M. C.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2(9), 983–987 (2002).
[Crossref]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

Berkelbach, T. C.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Bernien, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Bøggild, P.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Bolotin, K. I.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Booth, T. J.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

Brainard, W. A.

W. A. Brainard. “The thermal stability and friction of the disulfides, diselenides, and ditellurides of molybdenum and tungsten in vacuum” (1969).

Bratschitsch, R.

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Bucher, E.

V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84(17), 3301–3303 (2004).
[Crossref]

Buron, J. D.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Cao, C.

Cao, Y.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Chanana, A.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref] [PubMed]

Chang, S. J.

W. Zheng, F. Fan, M. Chen, S. Chen, and S. J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Chang, T. C.

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
[Crossref] [PubMed]

Chaturvedi, A.

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

Chen, C. H.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Chen, H.

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, J.

Chen, K.

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Chen, M.

W. Zheng, F. Fan, M. Chen, S. Chen, and S. J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Chen, S.

W. Zheng, F. Fan, M. Chen, S. Chen, and S. J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Chen, T.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

Chen, Z.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Chenet, D. A.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Chernikov, A.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Chianelli, R. R.

C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, ““Bulk and surface optical absorption in molybdenum disulfide,” J. Vac. Sci. & Tech. A,” Vacuum, Surfaces, and Films 5(4), 555–557 (1987).
[Crossref]

Chiu, M. H.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Choe, J. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Chuang, S.

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
[Crossref] [PubMed]

Cich, M. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

Cong, L.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Cooke, D. G.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Dai, H.

Dayal, G.

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

Deckman, H. W.

C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, ““Bulk and surface optical absorption in molybdenum disulfide,” J. Vac. Sci. & Tech. A,” Vacuum, Surfaces, and Films 5(4), 555–557 (1987).
[Crossref]

Docherty, C. J.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Du, W.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

Eda, G.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Fan, F.

W. Zheng, F. Fan, M. Chen, S. Chen, and S. J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Fan, Z.

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

Fang, H.

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
[Crossref] [PubMed]

Frindt, R. F.

R. F. Frindt, “The optical properties of single crystals of WSe2 and MoTe2,” J. Phys. Chem. Solids 24(9), 1107–1108 (1963).
[Crossref]

Fudenberg, G.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Gan, S.

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Ge, R.

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Geng, Z.

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Gershenson, M. E.

V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84(17), 3301–3303 (2004).
[Crossref]

Ghorannevis, Z.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Gupta, M.

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref] [PubMed]

Han, Y.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Hansen, O.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

He, C.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

He, F.

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

He, T.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

He, Y.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

Heinz, T. F.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Herz, L. M.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Highstrete, C.

Hilke, M.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Hone, J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Hone, J. C.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Hou, Y.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

Huang, L.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Huang, P. Y.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Huang, Y.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

Huber, R.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Hughes, H. P.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C Solid State Phys. 9(12), 2449–2457 (1976).
[Crossref]

Javey, A.

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
[Crossref] [PubMed]

Jena, D.

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
[Crossref] [PubMed]

R. Yan, B. Sensale-Rodriguez, L. Liu, D. Jena, and H. G. Xing, “A new class of electrically tunable metamaterial terahertz modulators,” Opt. Express 20(27), 28664–28671 (2012).
[Crossref] [PubMed]

Jepsen, P. U.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Jessen, B. S.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

Jia, Q. X.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Jiang, Z.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Jin, B.

Johnston, M. B.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Joyce, H. J.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kang, J.

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
[Crossref] [PubMed]

Kang, K.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Kang, L.

Kannappan, S.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

Khatami, Y.

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
[Crossref] [PubMed]

Kim, B. J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, C. J.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Kim, D. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, H. T.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Kim, M.

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

Kim, P.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Kis, A.

A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2.,” ACS Nano 8(7), 7180–7185 (2014).
[Crossref] [PubMed]

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

Klima, M.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Kloc, C.

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84(17), 3301–3303 (2004).
[Crossref]

Koo, S.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Korn, T.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Krishnamoorthy, H. N. S.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

Krishnamoorthy, S.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

Krüger, P.

D. Voß, P. Krüger, A. Mazur, and J. Pollmann, “Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems,” Phys. Rev. B Condens. Matter Mater. Phys. 60(20), 14311–14317 (1999).
[Crossref]

Kumar, A.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

Kuroda, T.

A. Tackeuchi, T. Kuroda, and Y. Nishikawa, “Electron spin-relaxation dynamics in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells,” Jpn. J. Appl. Phys. 38(1), 4680–4687 (1999).
[Crossref]

Kyoung, J.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Lan, X.

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

Laskar, M. R.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

Lee, G. H.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Lee, J. C.

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

Lee, M.

Lee, M. Y.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Leierseder, U.

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Li, L.-J.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Liang, W. Y.

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C Solid State Phys. 9(12), 2449–2457 (1976).
[Crossref]

Lim, W. X.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Liu, J.

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

R. Long, J. Liu, and O. V. Prezhdo, “Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation,” J. Am. Chem. Soc. 138(11), 3884–3890 (2016).
[Crossref] [PubMed]

Liu, L.

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W.

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
[Crossref] [PubMed]

Liu, W. W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Liu, X.

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Liu, Y. L.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Long, R.

R. Long, J. Liu, and O. V. Prezhdo, “Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation,” J. Am. Chem. Soc. 138(11), 3884–3890 (2016).
[Crossref] [PubMed]

Lu, W.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

Lv, L.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

Lv, X.

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

Ma, L.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

MacDonald, K. F.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Mak, K. F.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Manjappa, M.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Mao, Q.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Mazur, A.

D. Voß, P. Krüger, A. Mazur, and J. Pollmann, “Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems,” Phys. Rev. B Condens. Matter Mater. Phys. 60(20), 14311–14317 (1999).
[Crossref]

Meng, X.

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

Merkl, P.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Mornhinweg, J.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

Movva, H. C.

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

Mozume, T.

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optical switching at 1.3 µm/1.55 µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35(13), 1103–1105 (1999).
[Crossref]

Muller, D.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Muller, D. A.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Nagler, P.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Nahata, A.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref] [PubMed]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Nath, D. N.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

Nene, P.

J. H. Strait, P. Nene, and F. Rana, “High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(24), 245402 (2014).
[Crossref]

Neogi, A.

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optical switching at 1.3 µm/1.55 µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35(13), 1103–1105 (1999).
[Crossref]

Nielsen, P. F.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Nishikawa, Y.

A. Tackeuchi, T. Kuroda, and Y. Nishikawa, “Electron spin-relaxation dynamics in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells,” Jpn. J. Appl. Phys. 38(1), 4680–4687 (1999).
[Crossref]

O’Hara, J. F.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

Padilla, W. J.

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Pang, J. R.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Park, H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, J.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Park, N.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Park, Q. H.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Parkinson, P.

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

Petersen, D. H.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Pitchappa, P.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

Pizzocchero, F.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

Plechinger, G.

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Podzorov, V.

V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84(17), 3301–3303 (2004).
[Crossref]

Poellmann, C.

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Pollmann, J.

D. Voß, P. Krüger, A. Mazur, and J. Pollmann, “Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems,” Phys. Rev. B Condens. Matter Mater. Phys. 60(20), 14311–14317 (1999).
[Crossref]

Porer, M.

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Prezhdo, O. V.

R. Long, J. Liu, and O. V. Prezhdo, “Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation,” J. Am. Chem. Soc. 138(11), 3884–3890 (2016).
[Crossref] [PubMed]

Radisavljevic, B.

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

Rai, A.

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

Rajan, S.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

Rana, F.

H. Wang, C. Zhang, and F. Rana, “Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2,” Nano Lett. 15(12), 8204–8210 (2015).
[Crossref] [PubMed]

J. H. Strait, P. Nene, and F. Rana, “High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(24), 245402 (2014).
[Crossref]

Reichman, D. R.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Roxlo, C. B.

C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, ““Bulk and surface optical absorption in molybdenum disulfide,” J. Vac. Sci. & Tech. A,” Vacuum, Surfaces, and Films 5(4), 555–557 (1987).
[Crossref]

Roy, A.

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

Ruppert, A. F.

C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, ““Bulk and surface optical absorption in molybdenum disulfide,” J. Vac. Sci. & Tech. A,” Vacuum, Surfaces, and Films 5(4), 555–557 (1987).
[Crossref]

Sanderson, M.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Sarkar, D.

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
[Crossref] [PubMed]

Savinov, V.

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

Schmuttenmaer, C. A.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2(9), 983–987 (2002).
[Crossref]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

Schüller, C.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Sensale-Rodriguez, B.

Seo, M.

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Shrekenhamer, D. B.

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Sikes, K. J.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Singh, R.

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Solanki, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Srivastava, Y. K.

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

Steinleitner, P.

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Stormer, H. L.

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Strait, J. H.

J. H. Strait, P. Nene, and F. Rana, “High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(24), 245402 (2014).
[Crossref]

Su, Y.

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

Sum, T. C.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Sun, J.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Sung Park, P.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

Tackeuchi, A.

A. Tackeuchi, T. Kuroda, and Y. Nishikawa, “Electron spin-relaxation dynamics in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells,” Jpn. J. Appl. Phys. 38(1), 4680–4687 (1999).
[Crossref]

Takahashi, T.

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
[Crossref] [PubMed]

Takei, K.

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
[Crossref] [PubMed]

Tan, P. H.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Taylor, A. J.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

H. T. Chen, J. F. O’Hara, A. J. Taylor, R. D. Averitt, C. Highstrete, M. Lee, and W. J. Padilla, “Complementary planar terahertz metamaterials,” Opt. Express 15(3), 1084–1095 (2007).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tian, W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Tice, J.

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

Toh, M.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Trugman, S. A.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Turner, G. M.

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2(9), 983–987 (2002).
[Crossref]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

van der Zande, A. M.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Vardeny, Z. V.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref] [PubMed]

Voß, D.

D. Voß, P. Krüger, A. Mazur, and J. Pollmann, “Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems,” Phys. Rev. B Condens. Matter Mater. Phys. 60(20), 14311–14317 (1999).
[Crossref]

Wada, O.

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optical switching at 1.3 µm/1.55 µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35(13), 1103–1105 (1999).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, H.

H. Wang, C. Zhang, and F. Rana, “Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2,” Nano Lett. 15(12), 8204–8210 (2015).
[Crossref] [PubMed]

Wang, Y.

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Wen, Q. Y.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Whiteway, E.

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Whitwick, M. B.

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

Wong, P. P.

C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, ““Bulk and surface optical absorption in molybdenum disulfide,” J. Vac. Sci. & Tech. A,” Vacuum, Surfaces, and Films 5(4), 555–557 (1987).
[Crossref]

Wu, J.

Wu, P.

Wu, X.

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

Wu, Y.

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

Xie, S.

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

Xie, Y. S.

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Xing, H. G.

Xing, X.

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Xu, J.

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Xu, W.

Xu, X.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

Xue, Y.

Yan, R.

Yang, H.

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Yang, Q. H.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Yang, Y.

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Yao, Z.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yoshida, H.

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optical switching at 1.3 µm/1.55 µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35(13), 1103–1105 (1999).
[Crossref]

You, Y.

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

Yu, Y.

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Yurgens, A.

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

Zang, M.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

Zeis, R.

V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84(17), 3301–3303 (2004).
[Crossref]

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhai, Y.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref] [PubMed]

Zhang, B.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

Zhang, C.

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref] [PubMed]

H. Wang, C. Zhang, and F. Rana, “Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2,” Nano Lett. 15(12), 8204–8210 (2015).
[Crossref] [PubMed]

J. Wu, B. Jin, Y. Xue, C. Zhang, H. Dai, L. Zhang, C. Cao, L. Kang, W. Xu, J. Chen, and P. Wu, “Tuning of superconducting niobium nitride terahertz metamaterials,” Opt. Express 19(13), 12021–12026 (2011).
[Crossref] [PubMed]

Zhang, H. W.

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

Zhang, K.

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Zhang, L.

Zhang, S.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

Zhang, X.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, Z.

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Zhao, L.

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

Zhao, Q.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

Zhao, W.

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Zheng, W.

W. Zheng, F. Fan, M. Chen, S. Chen, and S. J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

Zhong, L.

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

Zhu, L.

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Nano (3)

B. Radisavljevic, M. B. Whitwick, and A. Kis, “Integrated circuits and logic operations based on single-layer MoS2,” ACS Nano 5(12), 9934–9938 (2011).
[Crossref] [PubMed]

C. J. Docherty, P. Parkinson, H. J. Joyce, M. H. Chiu, C. H. Chen, M. Y. Lee, L.-J. Li, L. M. Herz, and M. B. Johnston, “Ultrafast transient terahertz conductivity of monolayer MoS₂ and WSe₂ grown by chemical vapor deposition,” ACS Nano 8(11), 11147–11153 (2014).
[Crossref] [PubMed]

A. Allain and A. Kis, “Electron and hole mobilities in single-layer WSe2.,” ACS Nano 8(7), 7180–7185 (2014).
[Crossref] [PubMed]

ACS Photonics (1)

L. Cong, Y. K. Srivastava, A. Solanki, T. C. Sum, and R. Singh, “Perovskite as a platform for active flexible metaphotonic devices,” ACS Photonics 4(7), 1595–1601 (2017).
[Crossref]

Adv. Mater. (5)

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29(32), 1605881 (2017).
[Crossref] [PubMed]

M. Manjappa, Y. K. Srivastava, L. Cong, I. Al-Naib, and R. Singh, “Active photoswitching of sharp Fano resonances in THz metadevices,” Adv. Mater. 29(3), 1603355 (2017).
[Crossref] [PubMed]

M. Gupta, Y. K. Srivastava, and R. Singh, “A Toroidal Metamaterial Switch,” Adv. Mater. 30(4), 1704845 (2018).
[Crossref] [PubMed]

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast All-Optical Switching of Germanium-Based Flexible Metaphotonic Devices,” Adv. Mater. 30(9), 1705331 (2018).
[Crossref] [PubMed]

Y. K. Srivastava, M. Manjappa, L. Cong, H. N. S. Krishnamoorthy, V. Savinov, P. Pitchappa, and R. Singh, “A Superconducting Dual-Channel Photonic Switch,” Adv. Mater. 30(29), e1801257 (2018).
[Crossref] [PubMed]

Adv. Opt. Mater. (2)

Y. K. Srivastava, A. Chaturvedi, M. Manjappa, A. Kumar, G. Dayal, C. Kloc, and R. Singh, “MoS2 for Ultrafast All‐Optical Switching and Modulation of THz Fano Metaphotonic Devices,” Adv. Opt. Mater. 5(23), 1700762 (2017).
[Crossref]

C. He, L. Zhu, Q. Zhao, Y. Huang, Z. Yao, W. Du, Y. He, S. Zhang, and X. Xu, “Competition between Free Carriers and Excitons Mediated by Defects Observed in Layered WSe2 Crystal with Time‐Resolved Terahertz Spectroscopy,” Adv. Opt. Mater. 8(19), 1800290 (2018).
[Crossref]

AIP Adv. (1)

W. Zheng, F. Fan, M. Chen, S. Chen, and S. J. Chang, “Optically pumped terahertz wave modulation in MoS2-Si heterostructure metasurface,” AIP Adv. 6(7), 075105 (2016).
[Crossref]

APL Mater. (1)

K. Chen, A. Roy, A. Rai, H. C. Movva, X. Meng, F. He, S. K. Banerjee, and Y. Wang, “Accelerated carrier recombination by grain boundary/edge defects in MBE grown transition metal dichalcogenides,” APL Mater. 6(5), 056103 (2018).
[Crossref]

Appl. Phys. Lett. (5)

B. Zhang, L. Lv, T. He, T. Chen, M. Zang, L. Zhong, and Y. Hou, “Active terahertz device based on optically controlled organometal halide perovskite,” Appl. Phys. Lett. 107(9), 85 (2015).
[Crossref]

Q. Y. Wen, H. W. Zhang, Q. H. Yang, Y. S. Xie, K. Chen, and Y. L. Liu, “Terahertz metamaterials with VO2 cut-wires for thermal tunability,” Appl. Phys. Lett. 97(2), 021111 (2010).
[Crossref]

V. Podzorov, M. E. Gershenson, C. Kloc, R. Zeis, and E. Bucher, “High-mobility field-effect transistors based on transition metal dichalcogenides,” Appl. Phys. Lett. 84(17), 3301–3303 (2004).
[Crossref]

M. R. Laskar, L. Ma, S. Kannappan, P. Sung Park, S. Krishnamoorthy, D. N. Nath, W. Lu, Y. Wu, and S. Rajan, “Large area single crystal (0001) oriented MoS2,” Appl. Phys. Lett. 102(25), 252108 (2013).
[Crossref]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro‐optic sampling,” Appl. Phys. Lett. 69(16), 2321–2323 (1996).
[Crossref]

Electron. Lett. (1)

H. Yoshida, T. Mozume, A. Neogi, and O. Wada, “Ultrafast all-optical switching at 1.3 µm/1.55 µm using novel InGaAs/AlAsSb/InP coupled double quantum well structure for intersubband transitions,” Electron. Lett. 35(13), 1103–1105 (1999).
[Crossref]

J. Am. Chem. Soc. (1)

R. Long, J. Liu, and O. V. Prezhdo, “Unravelling the effects of grain boundary and chemical doping on electron–hole recombination in CH3NH3PbI3 perovskite by time-domain atomistic simulation,” J. Am. Chem. Soc. 138(11), 3884–3890 (2016).
[Crossref] [PubMed]

J. Appl. Phys. (1)

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy,” J. Appl. Phys. 90(12), 5915–5923 (2001).
[Crossref]

J. Phys. C Solid State Phys. (1)

A. R. Beal, W. Y. Liang, and H. P. Hughes, “Kramers-Kronig analysis of the reflectivity spectra of 3R-WS2 and 2H-WSe2,” J. Phys. C Solid State Phys. 9(12), 2449–2457 (1976).
[Crossref]

J. Phys. Chem. C (1)

X. Xing, L. Zhao, Z. Zhang, X. Liu, K. Zhang, Y. Yu, and J. Xu, “Role of photoinduced exciton in the transient terahertz conductivity of few-layer WS2 laminate,” J. Phys. Chem. C 121(37), 20451–20457 (2017).
[Crossref]

J. Phys. Chem. Solids (1)

R. F. Frindt, “The optical properties of single crystals of WSe2 and MoTe2,” J. Phys. Chem. Solids 24(9), 1107–1108 (1963).
[Crossref]

Jpn. J. Appl. Phys. (1)

A. Tackeuchi, T. Kuroda, and Y. Nishikawa, “Electron spin-relaxation dynamics in GaAs/AlGaAs quantum wells and InGaAs/InP quantum wells,” Jpn. J. Appl. Phys. 38(1), 4680–4687 (1999).
[Crossref]

Nano Lett. (9)

H. Wang, C. Zhang, and F. Rana, “Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS2,” Nano Lett. 15(12), 8204–8210 (2015).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

P. Steinleitner, P. Merkl, P. Nagler, J. Mornhinweg, C. Schüller, T. Korn, A. Chernikov, and R. Huber, “Direct observation of ultrafast exciton formation in a monolayer of WSe2,” Nano Lett. 17(3), 1455–1460 (2017).
[Crossref] [PubMed]

H. Fang, S. Chuang, T. C. Chang, K. Takei, T. Takahashi, and A. Javey, “High-performance single layered WSe₂ p-FETs with chemically doped contacts,” Nano Lett. 12(7), 3788–3792 (2012).
[Crossref] [PubMed]

W. Liu, J. Kang, D. Sarkar, Y. Khatami, D. Jena, and K. Banerjee, “Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors,” Nano Lett. 13(5), 1983–1990 (2013).
[Crossref] [PubMed]

M. C. Beard, G. M. Turner, and C. A. Schmuttenmaer, “Size-dependent photoconductivity in CdSe nanoparticles as measured by time-resolved terahertz spectroscopy,” Nano Lett. 2(9), 983–987 (2002).
[Crossref]

J. D. Buron, D. H. Petersen, P. Bøggild, D. G. Cooke, M. Hilke, J. Sun, E. Whiteway, P. F. Nielsen, O. Hansen, A. Yurgens, and P. U. Jepsen, “Graphene conductance uniformity mapping,” Nano Lett. 12(10), 5074–5081 (2012).
[Crossref] [PubMed]

J. D. Buron, F. Pizzocchero, B. S. Jessen, T. J. Booth, P. F. Nielsen, O. Hansen, M. Hilke, E. Whiteway, P. U. Jepsen, P. Bøggild, and D. H. Petersen, “Electrically continuous graphene from single crystal copper verified by terahertz conductance spectroscopy and micro four-point probe,” Nano Lett. 14(11), 6348–6355 (2014).
[Crossref] [PubMed]

M. Seo, J. Kyoung, H. Park, S. Koo, H. S. Kim, H. Bernien, B. J. Kim, J. H. Choe, Y. H. Ahn, H. T. Kim, N. Park, Q. H. Park, K. Ahn, and D. S. Kim, “Active terahertz nanoantennas based on VO2 phase transition,” Nano Lett. 10(6), 2064–2068 (2010).
[Crossref] [PubMed]

Nanoscale (1)

W. Zhao, Z. Ghorannevis, K. K. Amara, J. R. Pang, M. Toh, X. Zhang, C. Kloc, P. H. Tan, and G. Eda, “Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2.,” Nanoscale 5(20), 9677–9683 (2013).
[Crossref] [PubMed]

Nat. Commun. (2)

M. Kim, R. Ge, X. Wu, X. Lan, J. Tice, J. C. Lee, and D. Akinwande, “Zero-static power radio-frequency switches based on MoS2 atomristors,” Nat. Commun. 9(1), 2524 (2018).
[Crossref] [PubMed]

A. Chanana, Y. Zhai, S. Baniya, C. Zhang, Z. V. Vardeny, and A. Nahata, “Colour selective control of terahertz radiation using two-dimensional hybrid organic inorganic lead-trihalide perovskites,” Nat. Commun. 8(1), 1328 (2017).
[Crossref] [PubMed]

Nat. Mater. (2)

A. M. van der Zande, P. Y. Huang, D. A. Chenet, T. C. Berkelbach, Y. You, G. H. Lee, T. F. Heinz, D. R. Reichman, D. A. Muller, and J. C. Hone, “Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide,” Nat. Mater. 12(6), 554–561 (2013).
[Crossref] [PubMed]

C. Poellmann, P. Steinleitner, U. Leierseder, P. Nagler, G. Plechinger, M. Porer, R. Bratschitsch, C. Schüller, T. Korn, and R. Huber, “Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2.,” Nat. Mater. 14(9), 889–893 (2015).
[Crossref] [PubMed]

Nat. Photonics (2)

H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor, “A metamaterial solid-state terahertz phase modulator,” Nat. Photonics 3(3), 148–151 (2009).
[Crossref]

H. T. Chen, J. F. O’hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2(5), 295–298 (2008).
[Crossref]

Nature (3)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

K. Kang, S. Xie, L. Huang, Y. Han, P. Y. Huang, K. F. Mak, C. J. Kim, D. Muller, and J. Park, “High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity,” Nature 520(7549), 656–660 (2015).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

J. H. Strait, P. Nene, and F. Rana, “High intrinsic mobility and ultrafast carrier dynamics in multilayer metal-dichalcogenide MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 90(24), 245402 (2014).
[Crossref]

D. Voß, P. Krüger, A. Mazur, and J. Pollmann, “Atomic and electronic structure of WSe2 from ab initio theory: Bulk crystal and thin film systems,” Phys. Rev. B Condens. Matter Mater. Phys. 60(20), 14311–14317 (1999).
[Crossref]

Phys. Rev. Lett. (1)

H. T. Chen, H. Yang, R. Singh, J. F. O’Hara, A. K. Azad, S. A. Trugman, Q. X. Jia, and A. J. Taylor, “Tuning the resonance in high-temperature superconducting terahertz metamaterials,” Phys. Rev. Lett. 105(24), 247402 (2010).
[Crossref] [PubMed]

Sci. Rep. (3)

Q. Y. Wen, W. Tian, Q. Mao, Z. Chen, W. W. Liu, Q. H. Yang, M. Sanderson, and H. W. Zhang, “Graphene based all-optical spatial terahertz modulator,” Sci. Rep. 4(1), 7409 (2014).
[Crossref] [PubMed]

Y. Cao, S. Gan, Z. Geng, J. Liu, Y. Yang, Q. Bao, and H. Chen, “Optically tuned terahertz modulator based on annealed multilayer MoS2,” Sci. Rep. 6(1), 22899 (2016).
[Crossref] [PubMed]

Z. Fan, Z. Geng, X. Lv, Y. Su, Y. Yang, J. Liu, and H. Chen, “Optical Controlled Terahertz Modulator Based on Tungsten Disulfide Nanosheet,” Sci. Rep. 7(1), 14828 (2017).
[Crossref] [PubMed]

Solid State Commun. (1)

K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun. 146(9–10), 351–355 (2008).
[Crossref]

Vacuum, Surfaces, and Films (1)

C. B. Roxlo, R. R. Chianelli, H. W. Deckman, A. F. Ruppert, and P. P. Wong, ““Bulk and surface optical absorption in molybdenum disulfide,” J. Vac. Sci. & Tech. A,” Vacuum, Surfaces, and Films 5(4), 555–557 (1987).
[Crossref]

Other (2)

W. A. Brainard. “The thermal stability and friction of the disulfides, diselenides, and ditellurides of molybdenum and tungsten in vacuum” (1969).

E. D. Palik, Handbook of Optical Constants of Solids, Five-Volume Set: Handbook of Thermo-Optic Coefficients of Optical Materials with Applications (Elsevier, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) XRD scans indicating highly crystalline WSe2 films showing only the (002) family of planes. (b) Raman mode at 251.2 cm−1, which agrees with reports in [24] for multilayer films. (c) UV-vis absorption measurements of WSe2 thin films indicating a strong excitonic absorption peak at ~740 nm. Based on this, optical excitation for OPTP and TRTS were chosen at 800 nm and 400 nm. (d) SEM image of WSe2 thin film shows grain size of ~1 µm.
Fig. 2
Fig. 2 (a) OPTP spectroscopy at 800 nm showing the recombination lifetimes of carriers in WSe2 thin films for different optical fluences – 35 μJ/cm2 (yellow), 85 μJ/cm2 (orange) and 125 μJ/cm2 (blue). We measure the change in the peak value of the incident THz electric field (ETHz). Increased optical fluence results in a change from single exponential decay to a bi-exponential decay. The bi-exponential decay has two components – fast (t2) lasting tens of picoseconds and a slow (t1) component extending for hundreds of picoseconds, (b) Excitation with 400 nm produces different recombination pathways with a short component of 42.05 picoseconds ( ± 1.18 ps) and a long component that extends to 1.86 nanoseconds ( ± 1.58 ns). The insets in both figures depict band structure of bulk WSe2 from ab initio calculation (extracted from [29]).
Fig. 3
Fig. 3 (a) Change in peak value of the THz electric field at different time delays between optical pump (800 nm) and THz probe. (b) Corresponding extracted real part of transient conductivity. (c & d) THz electric field versus time delay and corresponding real part of conductivity for a 400 nm excitation. We can observe from (b) and (d) that the slope of the extracted conductivity changes over time and doesn’t follow a classic Drude like fee-carrier response for all time delays.
Fig. 4
Fig. 4 (a) OPTP measurements of different grain sized samples (I, II and III/ ~10 nm, ~100 nm and ~1 µm) show significant differences in recombination lifetimes. This indicates that the size of the grains (relative to the probe length) plays a significant role in the induced THz photoconductivity. Smaller grains have a faster response but a smaller value of induced photoconductivity at the same optical fluence. The schematic depicted in the inset illustrates the role of grain boundary as recombination centers. The scale bar in all the SEM images is 2 µm. (b) Schematic illustration showing the observed tradeoff between photoconductivity and carrier lifetime with grain-size. An optimum window exists between the two, which can enable high-speed THz modulators with simultaneous large modulation depth.
Fig. 5
Fig. 5 (a) Schematic representation of capacitively coupled WSe2 / metal hybrid metasurface. (b) Transmission spectra obtained through full-wave simulations. (c) Experimental measurements of the fabricated metasurface exhibiting a similar response to the simulations in (b). The inset in (c) shows an optical image of the fabricated WSe2 – hybrid metasurface. The scale bar in the inset corresponds to 100 µm.

Tables (1)

Tables Icon

Table 1 Extracted carrier decay time constants (t1 and t2) under different optical fluence at 800 nm.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

dn dt =G  k 1 n k 2 n 2
E ˜ film ( ω ) E ˜ sub ( ω ) =  n s +1 n s +1+ Z o Δ σ ˜ ( ω )

Metrics