Abstract

An opening up dual-core microstructured optical fiber based surface plasmon resonance sensor is numerically investigated for the measurement of a broad refractive index (RI) range. An open sensing channel is designed to facilitate the gold coating and accelerate the analyte infiltration. Results indicate that the sensitivity curve shows a nearly linear feature in two parts, and the maximal sensitivity is 4900 nm/RIU when the RI of the analyte is close to that of the background material of the fiber. Moreover, the sensitivities in low RI range and the signal to noise ratio can be improved by introducing air holes into the core center.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
A multi-core holey fiber based plasmonic sensor with large detection range and high linearity

Binbin Shuai, Li Xia, Yating Zhang, and Deming Liu
Opt. Express 20(6) 5974-5986 (2012)

Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core

Nannan Luan, Ran Wang, Wenhua Lv, and Jianquan Yao
Opt. Express 23(7) 8576-8582 (2015)

Hollow-fiber-based surface plasmon resonance sensor with large refractive index detection range and high linearity

Liangcheng Duan, Xianchao Yang, Ying Lu, and Jianquan Yao
Appl. Opt. 56(36) 9907-9912 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
    [Crossref]
  2. E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(12), 1–23 (2016).
    [Crossref] [PubMed]
  3. P. Singh, “SPR biosensors: Historical perspectives and current challenges,” Sens. Actuators B Chem. 229, 110–130 (2016).
    [Crossref]
  4. S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
    [Crossref] [PubMed]
  5. Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
    [Crossref]
  6. A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
    [Crossref]
  7. A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
    [Crossref] [PubMed]
  8. A. Hassani and M. Skorobogatiy, “Design criteria for the microstructured optical fiber-based surface plasmon resonance sensors,” J. Opt. Soc. Am. B 24(6), 1423–1429 (2007).
    [Crossref]
  9. X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
    [Crossref]
  10. B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
    [Crossref] [PubMed]
  11. N. Luan and J. Yao, “High refractive index surface plasmon resonance sensor based on a silver wire filled hollow fiber,” IEEE Photonics J. 8(1), 1 (2016).
    [Crossref]
  12. B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
    [Crossref] [PubMed]
  13. N. Luan and J. Yao, “A hollow-core photonic crystal fiber-based SPR sensor with large detection range,” IEEE Photonics J. 9(3), 1 (2017).
    [Crossref]
  14. N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
    [Crossref] [PubMed]
  15. A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
    [Crossref]
  16. C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
    [Crossref] [PubMed]
  17. N. Luan, L. Zhao, Y. Lian, and S. Lou, “A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core,” IEEE Photonics J. 10(5), 6803707 (2018).
    [Crossref]
  18. N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fibres,” Electron. Lett. 51(9), 714–715 (2015).
    [Crossref]
  19. E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
    [Crossref] [PubMed]
  20. N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8(1), 4800508 (2016).
    [Crossref]
  21. A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
    [Crossref] [PubMed]
  22. F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
    [Crossref] [PubMed]
  23. C. Martelli, P. Olivero, J. Canning, N. Groothoff, B. Gibson, and S. Huntington, “Micromachining structured optical fibers using focused ion beam milling,” Opt. Lett. 32(11), 1575–1577 (2007).
    [Crossref] [PubMed]
  24. F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
    [Crossref] [PubMed]
  25. R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
    [Crossref]
  26. S. C. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22(18), 1385–1387 (2010).
    [Crossref]
  27. S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
    [Crossref] [PubMed]
  28. A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
    [Crossref]
  29. P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
    [Crossref] [PubMed]
  30. J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19(3), 211–217 (2000).
    [Crossref]
  31. B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
    [Crossref]
  32. B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
    [Crossref]

2018 (2)

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
[Crossref] [PubMed]

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core,” IEEE Photonics J. 10(5), 6803707 (2018).
[Crossref]

2017 (3)

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

N. Luan and J. Yao, “A hollow-core photonic crystal fiber-based SPR sensor with large detection range,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

2016 (4)

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8(1), 4800508 (2016).
[Crossref]

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(12), 1–23 (2016).
[Crossref] [PubMed]

P. Singh, “SPR biosensors: Historical perspectives and current challenges,” Sens. Actuators B Chem. 229, 110–130 (2016).
[Crossref]

N. Luan and J. Yao, “High refractive index surface plasmon resonance sensor based on a silver wire filled hollow fiber,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

2015 (3)

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fibres,” Electron. Lett. 51(9), 714–715 (2015).
[Crossref]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

2014 (2)

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

2013 (1)

2012 (2)

2011 (2)

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[Crossref]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

2010 (3)

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

S. C. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22(18), 1385–1387 (2010).
[Crossref]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

2009 (1)

2007 (4)

2006 (2)

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

2005 (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

2000 (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19(3), 211–217 (2000).
[Crossref]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Adikan, F. M.

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

Ahmed, M. A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Ahmed, R.

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Amezcua-Correa, A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Amouzad Mahdiraji, G.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Badding, J. V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Baillargeat, D.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Bang, O.

Barchiesi, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Baril, N. F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Barthélémy, A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[Crossref]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Butt, H.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Canning, J.

Chu, P. K.

Cordeiro, C. M. B.

Cox, F. M.

Crespi, V. H.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Davis, C.

de la Chapelle, M. L.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Deng, Z.

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Desfarges-Berthelemot, A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[Crossref]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Ebendorff-Heidepriem, H.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(12), 1–23 (2016).
[Crossref] [PubMed]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

Finlayson, C. E.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Foo, T. C.

François, A.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(12), 1–23 (2016).
[Crossref] [PubMed]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Gibson, B.

Gopalan, V.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Graf, T.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Grimault, A.-S.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Grivas, C.

Groothoff, N.

Hansen, O.

Harrington, J. A.

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19(3), 211–217 (2000).
[Crossref]

Hassani, A.

Hayes, J. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Ho, H. P.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Hoffmann, P.

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Huntington, S.

Jackson, B. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Jia, P.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(12), 1–23 (2016).
[Crossref] [PubMed]

Jiang, Y. X.

Kermene, V.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[Crossref]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Klantsataya, E.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(12), 1–23 (2016).
[Crossref] [PubMed]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Kostecki, R.

Large, M. C. J.

Leviatan, Y.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Li, C. M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Li, J.

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Lian, Y.

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core,” IEEE Photonics J. 10(5), 6803707 (2018).
[Crossref]

Liu, B. H.

Liu, C.

Liu, D.

Liu, Q.

Lou, S.

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core,” IEEE Photonics J. 10(5), 6803707 (2018).
[Crossref]

Lu, X.

Luan, N.

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core,” IEEE Photonics J. 10(5), 6803707 (2018).
[Crossref]

N. Luan and J. Yao, “A hollow-core photonic crystal fiber-based SPR sensor with large detection range,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

N. Luan and J. Yao, “High refractive index surface plasmon resonance sensor based on a silver wire filled hollow fiber,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8(1), 4800508 (2016).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fibres,” Electron. Lett. 51(9), 714–715 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

Lv, W.

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fibres,” Electron. Lett. 51(9), 714–715 (2015).
[Crossref]

Lwin, R.

Macías, D.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Mahamd Adikan, F. R.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Mahdiraji, G. A.

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

Margine, E. R.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Martelli, C.

McAdam, G.

Monro, T.

S. C. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22(18), 1385–1387 (2010).
[Crossref]

Monro, T. M.

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(12), 1–23 (2016).
[Crossref] [PubMed]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

R. Kostecki, H. Ebendorff-Heidepriem, C. Davis, G. McAdam, S. C. Warren-Smith, and T. M. Monro, “Silica exposed-core microstructured optical fibers,” Opt. Mater. Express 2(11), 1538–1547 (2012).
[Crossref]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

Moore, R.

Olivero, P.

Pagnoux, D.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[Crossref]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Pan, S. S.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Petrovich, M. N.

Popp, A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Richardson, D. J.

Rifat, A. A.

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Sabouri, A.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Sazio, P. J. A.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Scheidemantel, T. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Shalaby, B. M.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[Crossref]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Shi, Y. W.

Shuai, B.

Shum, P.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Sinchenko, E.

S. C. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22(18), 1385–1387 (2010).
[Crossref]

Singh, P.

P. Singh, “SPR biosensors: Historical perspectives and current challenges,” Sens. Actuators B Chem. 229, 110–130 (2016).
[Crossref]

Skorobogatiy, M.

Stoddart, P.

S. C. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22(18), 1385–1387 (2010).
[Crossref]

Su, W.

Sun, T.

Tang, X. L.

van Brakel, A.

Vial, A.

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Voss, A.

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Wang, F.

Wang, R.

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fibres,” Electron. Lett. 51(9), 714–715 (2015).
[Crossref]

Warren-Smith, S. C.

Won, D. J.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Xia, L.

Yan, M.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Yao, J.

N. Luan and J. Yao, “A hollow-core photonic crystal fiber-based SPR sensor with large detection range,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

N. Luan and J. Yao, “High refractive index surface plasmon resonance sensor based on a silver wire filled hollow fiber,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8(1), 4800508 (2016).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fibres,” Electron. Lett. 51(9), 714–715 (2015).
[Crossref]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Yetisen, A. K.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Yong, K. T.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Yu, X.

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Yuan, W.

Yun, S. H.

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

Zeng, S.

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Zhang, F.

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Zhang, Y.

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

Zhao, L.

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core,” IEEE Photonics J. 10(5), 6803707 (2018).
[Crossref]

Zhao, Y.

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

Zhu, X. S.

Appl. Phys. B (2)

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, and A. Barthélémy, “Phase-locked supermode emissions from a dual multicore fiber laser,” Appl. Phys. B 105(2), 213–217 (2011).
[Crossref]

B. M. Shalaby, V. Kermene, D. Pagnoux, A. Desfarges-Berthelemot, A. Barthélémy, A. Popp, M. A. Ahmed, A. Voss, and T. Graf, “19-cores Yb-fiber laser with mode selection for improved beam brightness,” Appl. Phys. B 100(4), 859–864 (2010).
[Crossref]

Chem. Soc. Rev. (1)

S. Zeng, D. Baillargeat, H. P. Ho, and K. T. Yong, “Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications,” Chem. Soc. Rev. 43(10), 3426–3452 (2014).
[Crossref] [PubMed]

Electron. Lett. (1)

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fibres,” Electron. Lett. 51(9), 714–715 (2015).
[Crossref]

Fiber Integr. Opt. (1)

J. A. Harrington, “A review of IR transmitting, hollow waveguides,” Fiber Integr. Opt. 19(3), 211–217 (2000).
[Crossref]

IEEE Photonics J. (4)

N. Luan, L. Zhao, Y. Lian, and S. Lou, “A high refractive index plasmonic sensor based on D-shaped photonic crystal fiber with laterally accessible hollow-core,” IEEE Photonics J. 10(5), 6803707 (2018).
[Crossref]

N. Luan and J. Yao, “Surface plasmon resonance sensor based on exposed-core microstructured optical fiber placed with a silver wire,” IEEE Photonics J. 8(1), 4800508 (2016).
[Crossref]

N. Luan and J. Yao, “High refractive index surface plasmon resonance sensor based on a silver wire filled hollow fiber,” IEEE Photonics J. 8(1), 1 (2016).
[Crossref]

N. Luan and J. Yao, “A hollow-core photonic crystal fiber-based SPR sensor with large detection range,” IEEE Photonics J. 9(3), 1 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (1)

S. C. Warren-Smith, E. Sinchenko, P. Stoddart, and T. Monro, “Distributed fluorescence sensing using exposed core microstructured optical fiber,” IEEE Photonics Technol. Lett. 22(18), 1385–1387 (2010).
[Crossref]

IEEE Sens. J. (1)

A. A. Rifat, R. Ahmed, G. A. Mahdiraji, and F. M. Adikan, “Highly sensitive D-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-IR,” IEEE Sens. J. 17(9), 2776–2783 (2017).
[Crossref]

J. Opt. (1)

X. Yu, Y. Zhang, S. S. Pan, P. Shum, M. Yan, Y. Leviatan, and C. M. Li, “A selectively coated photonic crystal fiber based surface plasmon resonance sensors,” J. Opt. 12(1), 015005 (2010).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Express (9)

A. Hassani and M. Skorobogatiy, “Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics,” Opt. Express 14(24), 11616–11621 (2006).
[Crossref] [PubMed]

A. van Brakel, C. Grivas, M. N. Petrovich, and D. J. Richardson, “Micro-channels machined in microstructured optical fibers by femtosecond laser,” Opt. Express 15(14), 8731–8736 (2007).
[Crossref] [PubMed]

F. M. Cox, R. Lwin, M. C. J. Large, and C. M. B. Cordeiro, “Opening up optical fibres,” Opt. Express 15(19), 11843–11848 (2007).
[Crossref] [PubMed]

S. C. Warren-Smith, H. Ebendorff-Heidepriem, T. C. Foo, R. Moore, C. Davis, and T. M. Monro, “Exposed-core microstructured optical fibers for real-time fluorescence sensing,” Opt. Express 17(21), 18533–18542 (2009).
[Crossref] [PubMed]

F. Wang, W. Yuan, O. Hansen, and O. Bang, “Selective filling of photonic crystal fibers using focused ion beam milled microchannels,” Opt. Express 19(18), 17585–17590 (2011).
[Crossref] [PubMed]

B. Shuai, L. Xia, Y. Zhang, and D. Liu, “A multi-core holey fiber based plasmonic sensor with large detection range and high linearity,” Opt. Express 20(6), 5974–5986 (2012).
[Crossref] [PubMed]

B. H. Liu, Y. X. Jiang, X. S. Zhu, X. L. Tang, and Y. W. Shi, “Hollow fiber surface plasmon resonance sensor for the detection of liquid with high refractive index,” Opt. Express 21(26), 32349–32357 (2013).
[Crossref] [PubMed]

N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core,” Opt. Express 23(7), 8576–8582 (2015).
[Crossref] [PubMed]

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Phys. Rev. B Condens. Matter Mater. Phys. (1)

A. Vial, A.-S. Grimault, D. Macías, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B Condens. Matter Mater. Phys. 71(8), 085416 (2005).
[Crossref]

Science (1)

P. J. A. Sazio, A. Amezcua-Correa, C. E. Finlayson, J. R. Hayes, T. J. Scheidemantel, N. F. Baril, B. R. Jackson, D. J. Won, F. Zhang, E. R. Margine, V. Gopalan, V. H. Crespi, and J. V. Badding, “Microstructured optical fibers as high-pressure microfluidic reactors,” Science 311(5767), 1583–1586 (2006).
[Crossref] [PubMed]

Sens. Actuators B Chem. (4)

P. Singh, “SPR biosensors: Historical perspectives and current challenges,” Sens. Actuators B Chem. 229, 110–130 (2016).
[Crossref]

Y. Zhao, Z. Deng, and J. Li, “Photonic crystal fiber based surface plasmon resonance chemical sensors,” Sens. Actuators B Chem. 202, 557–567 (2014).
[Crossref]

A. A. Rifat, R. Ahmed, A. K. Yetisen, H. Butt, A. Sabouri, G. Amouzad Mahdiraji, S. H. Yun, and F. R. Mahamd Adikan, “Photonic crystal fiber based plasmonic sensors,” Sens. Actuators B Chem. 243, 311–325 (2017).
[Crossref]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: Review,” Sens. Actuators B Chem. 54(1–2), 3–15 (1999).
[Crossref]

Sensors (Basel) (2)

E. Klantsataya, P. Jia, H. Ebendorff-Heidepriem, T. M. Monro, and A. François, “Plasmonic fiber optic refractometric sensors: From conventional architectures to recent design trends,” Sensors (Basel) 17(12), 1–23 (2016).
[Crossref] [PubMed]

E. Klantsataya, A. François, H. Ebendorff-Heidepriem, P. Hoffmann, and T. M. Monro, “Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing,” Sensors (Basel) 15(10), 25090–25102 (2015).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic diagram of the proposed opening up dual-core MOF-SPR sensor; (b) Cross-section of the SPR sensor part (sizes are not to scale).
Fig. 2
Fig. 2 Electric field distributions of the (a) x-polarized even, (b) x-polarized odd, (c) y-polarized even and (d) y-polarized odd core supermodes with na = 1.44 at 1200 nm (The red arrows represent the direction of the electric fields, similarly hereinafter).
Fig. 3
Fig. 3 (a) Re(neff) curves of the x-polarized odd core mode and x-polarized SPP mode, loss spectra of the x-polarized odd core mode with na = 1.44, 1.45 and 1.46; (b) Electric field distributions of the x-polarized odd core mode A at 900 nm, x-polarized SPP mode B at 950 nm and x-polarized core mode C at 974 nm with na = 1.44.
Fig. 4
Fig. 4 (a) Peak wavelengths and (b) Sensitivities of the SPR sensor at various na when dc is 0Λ, 0.2Λ and 0.4Λ respectively.
Fig. 5
Fig. 5 (a) Re(neff) curves, (b) Electric field distributions of the relevant core modes and (c) Loss spectra of the SPR sensor at na = 1.47 when the dc is 0Λ, 0.2Λ and 0.4Λ respectively.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ε( ω )= ε ω D 2 ω(ω+i γ D ) Δε Ω L 2 ( ω 2 Ω L 2 )+i Γ L ω
S λ ( nm/RIU )= Δ λ peak Δ n a

Metrics