Abstract

Artwork often needs to be verified for authenticity during transactions. Electronic tags and labels are easily spotted and hence counterfeited. A covert and effective tag needs to be: (1) microscopic, (2) camouflaged into the surroundings, and (3) contain multiple sets of information. Here, we developed aluminum (Al) nanostructures that resonate across the ultraviolet (UV) to infrared (IR) spectra for use in micro-tags with varying colors of similar brightness and containing two sets of information in the visible and IR. Native Al2O3 on Al films was measured to be ~4–7 nm thick, enabling resonances to be supported by Al disks with diameters merely ~1/6th of the wavelength at the fundamental mode. Through accurate modeling of the nanostructures and high-resolution electron-beam lithography, we designed and fabricated a printed micro-tag on silicon. This micro-tag requires image processing to extract a quick response (QR) code in the visible, and 1.2 μm IR illumination (or visible light darkfield imaging) to extract a covert barcode. The compact and multi-spectral encoding of prints demonstrated here is particularly suited for discreet tagging of art and high-value merchandise.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
On the correlation of absorption cross-section with plasmonic color generation

Soroosh Daqiqeh Rezaei, Jinfa Ho, Ray Jia Hong Ng, Seeram Ramakrishna, and Joel K. W. Yang
Opt. Express 25(22) 27652-27664 (2017)

Plasmonic color printing based on third-order gap surface plasmons [Invited]

Rucha A. Deshpande, Alexander S. Roberts, and Sergey I. Bozhevolnyi
Opt. Mater. Express 9(2) 717-730 (2019)

All-metal structural color printing based on aluminum plasmonic metasurfaces

Zhigang Li, Wei Wang, Daniel Rosenmann, David A. Czaplewski, Xiaodong Yang, and Jie Gao
Opt. Express 24(18) 20472-20480 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
    [Crossref]
  2. Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
    [Crossref] [PubMed]
  3. K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
    [Crossref] [PubMed]
  4. S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
    [Crossref] [PubMed]
  5. X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
    [Crossref] [PubMed]
  6. S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
    [Crossref] [PubMed]
  7. Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
    [Crossref] [PubMed]
  8. X. M. Goh, R. J. H. Ng, S. Wang, S. J. Tan, and J. K. W. Yang, “Comparative Study of Plasmonic colors from all-metal structures of posts and pits,” ACS Photonics 3(6), 1000–1009 (2016).
    [Crossref]
  9. R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
    [Crossref] [PubMed]
  10. X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
    [Crossref] [PubMed]
  11. T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
    [Crossref] [PubMed]
  12. J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29(6), 1602971 (2017).
    [Crossref] [PubMed]
  13. M. Yousaf and M. Lazzouni, “Formulation of an invisible infrared printing ink,” Dyes Pigm. 27(4), 297–303 (1995).
    [Crossref]
  14. F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
    [Crossref]
  15. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 31(22), 3288–3290 (2006).
    [Crossref] [PubMed]
  16. A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
    [Crossref] [PubMed]
  17. T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophotonics 4(3), 363–382 (2015).
    [Crossref]
  18. M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
    [Crossref] [PubMed]
  19. D. Zhu, M. Bosman, and J. K. W. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22(8), 9809–9819 (2014).
    [Crossref] [PubMed]
  20. F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
    [Crossref] [PubMed]
  21. A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
    [Crossref] [PubMed]
  22. M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
    [Crossref] [PubMed]
  23. B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
    [Crossref] [PubMed]
  24. J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
    [Crossref] [PubMed]
  25. S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
    [Crossref] [PubMed]
  26. M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
    [Crossref] [PubMed]
  27. S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
    [Crossref]
  28. H. Im, N. J. Wittenberg, N. C. Lindquist, and S.-H. Oh, “Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology,” J. Mater. Res. 27(4), 663–671 (2012).
    [Crossref] [PubMed]
  29. Z. Dong, M. Bosman, D. Zhu, X. M. Goh, and J. K. W. Yang, “Fabrication of suspended metal-dielectric-metal plasmonic nanostructures,” Nanotechnology 25(13), 135303 (2014).
    [Crossref] [PubMed]
  30. J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
    [Crossref] [PubMed]
  31. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  32. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
    [Crossref]
  33. S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. W. Yang, “On the correlation of absorption cross-section with plasmonic color generation,” Opt. Express 25(22), 27652–27664 (2017).
    [Crossref] [PubMed]
  34. T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
    [Crossref]
  35. S. P. McGrew, “Hologram counterfeiting: problems and solutions,” Proc. SPIE 1210, 66–76 (1990).
    [Crossref]
  36. T. T. Crane, “Security paper for currency and banknotes,” U.S. patent 4,652,015 (March 24, 1987).
  37. V. Chawla and D. S. Ha, “An overview of passive RFID,” IEEE Commun. Mag. 45(9), 11–17 (2007).
    [Crossref]

2018 (2)

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

2017 (6)

S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. W. Yang, “On the correlation of absorption cross-section with plasmonic color generation,” Opt. Express 25(22), 27652–27664 (2017).
[Crossref] [PubMed]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

2016 (4)

X. M. Goh, R. J. H. Ng, S. Wang, S. J. Tan, and J. K. W. Yang, “Comparative Study of Plasmonic colors from all-metal structures of posts and pits,” ACS Photonics 3(6), 1000–1009 (2016).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref] [PubMed]

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

2015 (4)

F. Benz, B. de Nijs, C. Tserkezis, R. Chikkaraddy, D. O. Sigle, L. Pukenas, S. D. Evans, J. Aizpurua, and J. J. Baumberg, “Generalized circuit model for coupled plasmonic systems,” Opt. Express 23(26), 33255–33269 (2015).
[Crossref] [PubMed]

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophotonics 4(3), 363–382 (2015).
[Crossref]

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
[Crossref] [PubMed]

2014 (10)

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

D. Zhu, M. Bosman, and J. K. W. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22(8), 9809–9819 (2014).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
[Crossref]

Z. Dong, M. Bosman, D. Zhu, X. M. Goh, and J. K. W. Yang, “Fabrication of suspended metal-dielectric-metal plasmonic nanostructures,” Nanotechnology 25(13), 135303 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (2)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

H. Im, N. J. Wittenberg, N. C. Lindquist, and S.-H. Oh, “Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology,” J. Mater. Res. 27(4), 663–671 (2012).
[Crossref] [PubMed]

2008 (1)

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

2007 (1)

V. Chawla and D. S. Ha, “An overview of passive RFID,” IEEE Commun. Mag. 45(9), 11–17 (2007).
[Crossref]

2006 (1)

1995 (1)

M. Yousaf and M. Lazzouni, “Formulation of an invisible infrared printing ink,” Dyes Pigm. 27(4), 297–303 (1995).
[Crossref]

1990 (1)

S. P. McGrew, “Hologram counterfeiting: problems and solutions,” Proc. SPIE 1210, 66–76 (1990).
[Crossref]

1963 (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Adam, P.-M.

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophotonics 4(3), 363–382 (2015).
[Crossref]

Aizpurua, J.

Akselrod, G. M.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

Albrektsen, O.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Arbel, D.

Ayas, S.

S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
[Crossref]

Bakan, G.

S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
[Crossref]

Baumberg, J. J.

Benz, F.

Bosman, M.

D. Zhu, M. Bosman, and J. K. W. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22(8), 9809–9819 (2014).
[Crossref] [PubMed]

Z. Dong, M. Bosman, D. Zhu, X. M. Goh, and J. K. W. Yang, “Fabrication of suspended metal-dielectric-metal plasmonic nanostructures,” Nanotechnology 25(13), 135303 (2014).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Brongersma, M. L.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Chang, W. S.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Chawla, V.

V. Chawla and D. S. Ha, “An overview of passive RFID,” IEEE Commun. Mag. 45(9), 11–17 (2007).
[Crossref]

Chikkaraddy, R.

Cui, Y.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Cupallari, A.

S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
[Crossref]

Dana, A.

S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
[Crossref]

de Nijs, B.

Deshpande, R.

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

Ding, F.

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

Dong, Z.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Z. Dong, M. Bosman, D. Zhu, X. M. Goh, and J. K. W. Yang, “Fabrication of suspended metal-dielectric-metal plasmonic nanostructures,” Nanotechnology 25(13), 135303 (2014).
[Crossref] [PubMed]

Duan, H.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Duan, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Esfandyarpour, M.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Evans, S. D.

Everitt, H. O.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Foerster, B.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Fu, Y. H.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Gao, Y.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Garnett, E. C.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Ginzburg, P.

Goh, X. M.

X. M. Goh, R. J. H. Ng, S. Wang, S. J. Tan, and J. K. W. Yang, “Comparative Study of Plasmonic colors from all-metal structures of posts and pits,” ACS Photonics 3(6), 1000–1009 (2016).
[Crossref]

R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Z. Dong, M. Bosman, D. Zhu, X. M. Goh, and J. K. W. Yang, “Fabrication of suspended metal-dielectric-metal plasmonic nanostructures,” Nanotechnology 25(13), 135303 (2014).
[Crossref] [PubMed]

Gu, Y.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

Güner, H.

S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
[Crossref]

Ha, D. S.

V. Chawla and D. S. Ha, “An overview of passive RFID,” IEEE Commun. Mag. 45(9), 11–17 (2007).
[Crossref]

Halas, N. J.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Hatada, H.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Hegde, R. S.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Ho, J.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. W. Yang, “On the correlation of absorption cross-section with plasmonic color generation,” Opt. Express 25(22), 27652–27664 (2017).
[Crossref] [PubMed]

Højlund-Nielsen, E.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref] [PubMed]

Im, H.

H. Im, N. J. Wittenberg, N. C. Lindquist, and S.-H. Oh, “Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology,” J. Mater. Res. 27(4), 663–671 (2012).
[Crossref] [PubMed]

James, T. D.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

Jung, J.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

King, N. S.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Knight, M. W.

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Koay, E. H. H.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

Koh, S. C. W.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Kristensen, A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref] [PubMed]

Kumar, K.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Kuznetsov, A. I.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Lazzouni, M.

M. Yousaf and M. Lazzouni, “Formulation of an invisible infrared printing ink,” Dyes Pigm. 27(4), 297–303 (1995).
[Crossref]

Lévêque, G.

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophotonics 4(3), 363–382 (2015).
[Crossref]

Lindquist, N. C.

H. Im, N. J. Wittenberg, N. C. Lindquist, and S.-H. Oh, “Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology,” J. Mater. Res. 27(4), 663–671 (2012).
[Crossref] [PubMed]

Link, S.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Liu, L.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

Manjavacas, A.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Maurer, T.

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophotonics 4(3), 363–382 (2015).
[Crossref]

McClain, M. J.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

McGehee, M. D.

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

McGrew, S. P.

S. P. McGrew, “Hologram counterfeiting: problems and solutions,” Proc. SPIE 1210, 66–76 (1990).
[Crossref]

Mikkelsen, M. H.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

Miyata, M.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Mortensen, N. A.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref] [PubMed]

Mulvaney, P.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

Neumann, O.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

Ng, R. J. H.

Nordlander, P.

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

Oh, S.-H.

H. Im, N. J. Wittenberg, N. C. Lindquist, and S.-H. Oh, “Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology,” J. Mater. Res. 27(4), 663–671 (2012).
[Crossref] [PubMed]

Olson, J.

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Orenstein, M.

Paniagua-Dominguez, R.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Pors, A.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

A. Pors and S. I. Bozhevolnyi, “Plasmonic metasurfaces for efficient phase control in reflection,” Opt. Express 21(22), 27438–27451 (2013).
[Crossref] [PubMed]

Pukenas, L.

Qiu, C.-W.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Ramakrishna, S.

Rezaei, S. D.

Roberts, A.

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

Roberts, A. S.

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

Segall, B.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Sigle, D. O.

Smith, D. R.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

Søndergaard, T.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Song, Q.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Stewart, J. W.

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

Sun, S.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Takahara, J.

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Tan, S. J.

X. M. Goh, R. J. H. Ng, S. Wang, S. J. Tan, and J. K. W. Yang, “Comparative Study of Plasmonic colors from all-metal structures of posts and pits,” ACS Photonics 3(6), 1000–1009 (2016).
[Crossref]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Tian, S.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

Topal, A. E.

S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
[Crossref]

Tserkezis, C.

Valle, G. D.

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Valuckas, V.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

Vannahme, C.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref] [PubMed]

Wang, S.

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

X. M. Goh, R. J. H. Ng, S. Wang, S. J. Tan, and J. K. W. Yang, “Comparative Study of Plasmonic colors from all-metal structures of posts and pits,” ACS Photonics 3(6), 1000–1009 (2016).
[Crossref]

Wang, Y.

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

Wang, Y. M.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Wei, J. N.

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Wittenberg, N. J.

H. Im, N. J. Wittenberg, N. C. Lindquist, and S.-H. Oh, “Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology,” J. Mater. Res. 27(4), 663–671 (2012).
[Crossref] [PubMed]

Xiao, S.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Yang, J. K. W.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

S. D. Rezaei, J. Ho, R. J. H. Ng, S. Ramakrishna, and J. K. W. Yang, “On the correlation of absorption cross-section with plasmonic color generation,” Opt. Express 25(22), 27652–27664 (2017).
[Crossref] [PubMed]

X. M. Goh, R. J. H. Ng, S. Wang, S. J. Tan, and J. K. W. Yang, “Comparative Study of Plasmonic colors from all-metal structures of posts and pits,” ACS Photonics 3(6), 1000–1009 (2016).
[Crossref]

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

R. J. H. Ng, X. M. Goh, and J. K. W. Yang, “All-metal nanostructured substrates as subtractive color reflectors with near-perfect absorptance,” Opt. Express 23(25), 32597–32605 (2015).
[Crossref] [PubMed]

D. Zhu, M. Bosman, and J. K. W. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22(8), 9809–9819 (2014).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Z. Dong, M. Bosman, D. Zhu, X. M. Goh, and J. K. W. Yang, “Fabrication of suspended metal-dielectric-metal plasmonic nanostructures,” Nanotechnology 25(13), 135303 (2014).
[Crossref] [PubMed]

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

Yang, X.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

Yeo, S. P.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

Yousaf, M.

M. Yousaf and M. Lazzouni, “Formulation of an invisible infrared printing ink,” Dyes Pigm. 27(4), 297–303 (1995).
[Crossref]

Yu, Y. F.

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

Zhang, C.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

Zhang, L.

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Zheng, B. Y.

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

Zheng, Y.

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Zhou, L.

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

Zhou, Z.

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

Zhu, D.

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

Z. Dong, M. Bosman, D. Zhu, X. M. Goh, and J. K. W. Yang, “Fabrication of suspended metal-dielectric-metal plasmonic nanostructures,” Nanotechnology 25(13), 135303 (2014).
[Crossref] [PubMed]

D. Zhu, M. Bosman, and J. K. W. Yang, “A circuit model for plasmonic resonators,” Opt. Express 22(8), 9809–9819 (2014).
[Crossref] [PubMed]

Zhu, X.

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref] [PubMed]

ACS Nano (3)

S. Sun, Z. Zhou, C. Zhang, Y. Gao, Z. Duan, S. Xiao, and Q. Song, “All-dielectric full-color printing with TiO2 metasurfaces,” ACS Nano 11(5), 4445–4452 (2017).
[Crossref] [PubMed]

M. W. Knight, N. S. King, L. Liu, H. O. Everitt, P. Nordlander, and N. J. Halas, “Aluminum for plasmonics,” ACS Nano 8(1), 834–840 (2014).
[Crossref] [PubMed]

J. Ho, Y. H. Fu, Z. Dong, R. Paniagua-Dominguez, E. H. H. Koay, Y. F. Yu, V. Valuckas, A. I. Kuznetsov, and J. K. W. Yang, “Highly directive hybrid metal–dielectric Yagi-Uda nanoantennas,” ACS Nano 12(8), 8616–8624 (2018).
[Crossref] [PubMed]

ACS Photonics (2)

S. Ayas, A. E. Topal, A. Cupallari, H. Güner, G. Bakan, and A. Dana, “Exploiting native Al2O3 for multispectral aluminum plasmonics,” ACS Photonics 1(12), 1313–1321 (2014).
[Crossref]

X. M. Goh, R. J. H. Ng, S. Wang, S. J. Tan, and J. K. W. Yang, “Comparative Study of Plasmonic colors from all-metal structures of posts and pits,” ACS Photonics 3(6), 1000–1009 (2016).
[Crossref]

Adv. Mater. (2)

J. W. Stewart, G. M. Akselrod, D. R. Smith, and M. H. Mikkelsen, “Toward multispectral imaging with colloidal metasurface pixels,” Adv. Mater. 29(6), 1602971 (2017).
[Crossref] [PubMed]

B. Y. Zheng, Y. Wang, P. Nordlander, and N. J. Halas, “Color-selective and CMOS-compatible photodetection based on aluminum plasmonics,” Adv. Mater. 26(36), 6318–6323 (2014).
[Crossref] [PubMed]

Dyes Pigm. (1)

M. Yousaf and M. Lazzouni, “Formulation of an invisible infrared printing ink,” Dyes Pigm. 27(4), 297–303 (1995).
[Crossref]

IEEE Commun. Mag. (1)

V. Chawla and D. S. Ha, “An overview of passive RFID,” IEEE Commun. Mag. 45(9), 11–17 (2007).
[Crossref]

J. Mater. Res. (1)

H. Im, N. J. Wittenberg, N. C. Lindquist, and S.-H. Oh, “Atomic layer deposition (ALD): A versatile technique for plasmonics and nanobiotechnology,” J. Mater. Res. 27(4), 663–671 (2012).
[Crossref] [PubMed]

Light Sci. Appl. (1)

F. Ding, R. Deshpande, and S. I. Bozhevolnyi, “Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence,” Light Sci. Appl. 7(4), 17178 (2018).
[Crossref]

Nano Lett. (6)

T. D. James, P. Mulvaney, and A. Roberts, “The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures,” Nano Lett. 16(6), 3817–3823 (2016).
[Crossref] [PubMed]

Z. Dong, J. Ho, Y. F. Yu, Y. H. Fu, R. Paniagua-Dominguez, S. Wang, A. I. Kuznetsov, and J. K. W. Yang, “Printing beyond sRGB color gamut by mimicking silicon nanostructures in free-space,” Nano Lett. 17(12), 7620–7628 (2017).
[Crossref] [PubMed]

S. J. Tan, L. Zhang, D. Zhu, X. M. Goh, Y. M. Wang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Plasmonic color palettes for photorealistic printing with aluminum nanostructures,” Nano Lett. 14(7), 4023–4029 (2014).
[Crossref] [PubMed]

S. Tian, O. Neumann, M. J. McClain, X. Yang, L. Zhou, C. Zhang, P. Nordlander, and N. J. Halas, “Aluminum nanocrystals: a sustainable substrate for quantitative SERS-based DNA detection,” Nano Lett. 17(8), 5071–5077 (2017).
[Crossref] [PubMed]

A. S. Roberts, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, “Subwavelength plasmonic color printing protected for ambient use,” Nano Lett. 14(2), 783–787 (2014).
[Crossref] [PubMed]

M. Miyata, H. Hatada, and J. Takahara, “Full-color subwavelength printing with gap-plasmonic optical antennas,” Nano Lett. 16(5), 3166–3172 (2016).
[Crossref] [PubMed]

Nanophotonics (1)

T. Maurer, P.-M. Adam, and G. Lévêque, “Coupling between plasmonic films and nanostructures: from basics to applications,” Nanophotonics 4(3), 363–382 (2015).
[Crossref]

Nanoscale (1)

Y. Gu, L. Zhang, J. K. W. Yang, S. P. Yeo, and C.-W. Qiu, “Color generation via subwavelength plasmonic nanostructures,” Nanoscale 7(15), 6409–6419 (2015).
[Crossref] [PubMed]

Nanotechnology (1)

Z. Dong, M. Bosman, D. Zhu, X. M. Goh, and J. K. W. Yang, “Fabrication of suspended metal-dielectric-metal plasmonic nanostructures,” Nanotechnology 25(13), 135303 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

X. M. Goh, Y. Zheng, S. J. Tan, L. Zhang, K. Kumar, C.-W. Qiu, and J. K. W. Yang, “Three-dimensional plasmonic stereoscopic prints in full colour,” Nat. Commun. 5(1), 5361 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (3)

K. Kumar, H. Duan, R. S. Hegde, S. C. W. Koh, J. N. Wei, and J. K. W. Yang, “Printing colour at the optical diffraction limit,” Nat. Nanotechnol. 7(9), 557–561 (2012).
[Crossref] [PubMed]

X. Zhu, C. Vannahme, E. Højlund-Nielsen, N. A. Mortensen, and A. Kristensen, “Plasmonic colour laser printing,” Nat. Nanotechnol. 11(4), 325–329 (2016).
[Crossref] [PubMed]

M. Esfandyarpour, E. C. Garnett, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Metamaterial mirrors in optoelectronic devices,” Nat. Nanotechnol. 9(7), 542–547 (2014).
[Crossref] [PubMed]

Nat. Rev. Mater. (1)

A. Kristensen, J. K. W. Yang, S. I. Bozhevolnyi, S. Link, P. Nordlander, N. J. Halas, and N. A. Mortensen, “Plasmonic colour generation,” Nat. Rev. Mater. 2(1), 16088 (2017).
[Crossref]

New J. Phys. (1)

T. Søndergaard, J. Jung, S. I. Bozhevolnyi, and G. D. Valle, “Theoretical analysis of gold nano-strip gap plasmon resonators,” New J. Phys. 10(10), 105008 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical Properties of Aluminum,” Phys. Rev. 132(5), 1918–1928 (1963).
[Crossref]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Olson, A. Manjavacas, L. Liu, W. S. Chang, B. Foerster, N. S. King, M. W. Knight, P. Nordlander, N. J. Halas, and S. Link, “Vivid, full-color aluminum plasmonic pixels,” Proc. Natl. Acad. Sci. U.S.A. 111(40), 14348–14353 (2014).
[Crossref] [PubMed]

Proc. SPIE (1)

S. P. McGrew, “Hologram counterfeiting: problems and solutions,” Proc. SPIE 1210, 66–76 (1990).
[Crossref]

Other (2)

T. T. Crane, “Security paper for currency and banknotes,” U.S. patent 4,652,015 (March 24, 1987).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Multi-spectral responsive nanostructures of Al disks on Al film sandwiching a ~7 nm thick native oxide of Al2O3 supporting multiple resonant modes from UV to IR. (a) 3D schematic of plasmonic pixels consisting of 44 nm tall (T) Al nanodisks on a layer of native Al2O3 above a 100 nm thick Al film on a bulk Si substrate. The diameter (D) and inter-disk gap (G) are varied from 60 nm to 280 nm and from 30 nm to 140 nm respectively. (b) SEM and (c) TEM of 240 nm wide, 44 nm tall Al disks with D = 70 nm. (d) Plots of simulated reflectance (R) versus wavelength for disk arrays with 70 nm spacing and at normal incidence, where the disk diameters are 240 nm (black) and 80 nm (red), and the Al2O3 thickness is 7 nm. The fundamental, 3rd order and 5th order modes for 240 nm diameter disk arrays occur at near-IR, visible and UV wavelengths, respectively. The resonances for all the modes redshift when the disk diameter increases. (e) Plots of the simulated electric (E) and magnetic (H) fields for the fundamental, 3rd order and 5th order gap plasmon modes of an array of disks with D = 240 nm and G = 70 nm.
Fig. 2
Fig. 2 Fabrication of Al-disk-on-Al2O3-on-Al structures. (a) Electron-beam evaporation of 100 nm thick layer of Al onto a Si substrate, and exposure to atmosphere for one day to form a 4 nm thick surface layer of Al2O3, followed by spin-coating of PMMA (a positive-tone resist). (b) Electron-beam lithography and development to produce openings in the resist. (c) Electron-beam evaporation of 44 nm thick layer of Al. (d) Lift-off in acetone to obtain Al nanodisks. An additional 3 nm thick surface layer of Al2O3 forms around the nanodisks.
Fig. 3
Fig. 3 Investigating the effects of oxide thickness on tunability and reflectance minima. (a) Plot of simulated reflectance at fundamental resonances of 44 nm tall Al nanodisk arrays with different underlying Al2O3 layer thicknesses of 3 nm (black), 7 nm (red) and 20 nm (blue), and the disk diameter is kept constant at 60 nm (solid line) and 240 nm (dotted line) and the inter-disk gap is 70 nm; (b) Plot of maximum absorptance for disk arrays with Al2O3 layer thicknesses of 3 nm (black), 7 nm (red) and 20 nm (blue) for varying disk diameters, where the minimum diameter is 60 nm and the maximum diameters for 3 nm, 7 nm and 20 nm thick oxide are 170 nm, 240 nm and 330 nm respectively. The interval for the disk diameter is 10 nm for all three oxide layer thicknesses. The inter-band transition region is indicated with dotted lines.
Fig. 4
Fig. 4 Intensity plots of (a) measured and (b) simulated reflectance spectra of square arrays of 44 nm tall Al nanodisks for wavelengths between 300 nm and 1700 nm and disk diameters between 60 nm and 280 nm, where the inter-disk gap is fixed at 30 nm. The red lines indicate the wavelength scaling of the resonances fit using the formula in Ref. [34].
Fig. 5
Fig. 5 (a) Optical and (b) infrared micrographs of 10 µm × 10 µm arrays of 44 nm tall Al nanodisks. The disk diameters (D) are 60–280 nm and the inter-disk gap (G) is 30–140 nm. (c) Plots of measured reflectance spectra (shifted along the y-axis for clarity) of four arrays of nanodisks: (1) D = 60 nm, G = 40 nm; (2) D = 200 nm, G = 100 nm; (3) D = 80 nm, G = 120 nm; (4) D = 230 nm, G = 70 nm.
Fig. 6
Fig. 6 Plot of CIE 1931 chromaticity coordinates for 10 µm square arrays of 44 nm tall Al nanodisks calculated from measured reflectance data (black dots). The black triangle indicates the sRGB gamut.
Fig. 7
Fig. 7 Al nanostructures for micro-tags. (a) Optical micrograph of 240 µm × 240 µm sample under brightfield illumination showing a Quick Response (QR) code: http://people.sutd.edu.sg/~joel_yang/. Image processing was done to produce a black-and-white image of the QR code. (b) Infrared and (c) darkfield optical micrographs of sample, showing a bar code (Code 128C): 010203. (d) High-magnification optical micrograph and scanning electron micrograph (SEM) of sample showing the four different disk diameters used. The box in the optical image shows the area from which the SEM was taken.

Tables (1)

Tables Icon

Table 1 Physical Parameters of Disks Used to Make Micro-Tag

Metrics