Abstract

In this contribution, a tunable plasmonic absorber consisting of periodical elliptical hollow graphene arrays deposited on SiO2 substrate is proposed in the far infrared and terahertz (THz). The simulation calculation results show that the structure supports a variety of effective tuning methods, such as changing the period, geometry parameters, Fermi level, relaxation time, incident angle, to achieve active and passive tuning. When the incident angle is set to 60°, the maximum absorption value (0.31) in our work can be achieved. Meanwhile, the red shift caused by period variations and blue shift phenomenon made of geometry parameters provides an exercisable way to select the resonance range. Therefore, these outcomes undoubtedlyoffer a unique source of inspiration for the diversity of graphene array shapes and the design and fabrication of absorption-related devices, such as filters, spatial light modulators, and sensors.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Hollow-petal graphene metasurface for broadband tunable THz absorption

Shuang Wu and Jiu-sheng Li
Appl. Opt. 58(11) 3023-3028 (2019)

Plasmonic absorption enhancement in periodic cross-shaped graphene arrays

Shaolin Ke, Bing Wang, He Huang, Hua Long, Kai Wang, and Peixiang Lu
Opt. Express 23(7) 8888-8900 (2015)

Broadband, wide-angle and tunable terahertz absorber based on cross-shaped graphene arrays

Binggang Xiao, Mingyue Gu, and Sanshui Xiao
Appl. Opt. 56(19) 5458-5462 (2017)

References

  • View by:
  • |
  • |
  • |

  1. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking with Non-Magnetic Metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
    [Crossref]
  2. D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
    [Crossref] [PubMed]
  3. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
    [Crossref] [PubMed]
  4. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T Microw Theory 47(11), 2075–2084 (1999).
    [Crossref]
  5. H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  6. J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
    [Crossref]
  7. P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: always positive and very inhomogeneous,” Phys. Rev. Lett. 88(18), 187401 (2002).
    [Crossref] [PubMed]
  8. Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).
  9. X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
    [Crossref]
  10. C. R. Simovski, P. A. Belov, and S. He, “Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators,” IEEE Trans. Antenn. Propag. 51(10), 2582–2591 (2003).
    [Crossref]
  11. Z. Xiong and L. Cao, “Interparticle spacing dependence of magnetic anisotropy and dipolar interaction of Ni nanocrystals embedded in epitaxial BaTiO3 matrix,” Ceram. Int. 44(7), 8155–8160 (2018).
    [Crossref]
  12. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
    [Crossref] [PubMed]
  13. C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
    [Crossref] [PubMed]
  14. X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
    [Crossref] [PubMed]
  15. X. He, G. Xiao, F. Liu, F. Lin, and W. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
    [Crossref]
  16. J. Wang, C. Song, J. Hang, Z. D. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
    [Crossref] [PubMed]
  17. X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
    [Crossref] [PubMed]
  18. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
    [Crossref]
  19. F. J. García de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1(3), 135–152 (2014).
    [Crossref]
  20. X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
    [Crossref]
  21. W. Wang, C. Kang, X. Liu, and S. Qu, “Spin-selected and spin-independent dielectric metalenses,” J. Opt. 20(9), 095102 (2018).
    [Crossref]
  22. J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
    [Crossref]
  23. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  24. H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
    [Crossref]
  25. C. X. Zheng and H. Yang, “Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance,” J Mater Sci-Mater EL 29(11), 9291–9300 (2018).
    [Crossref]
  26. W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
    [Crossref] [PubMed]
  27. Y. Yang, G. Kolesov, L. Kocia, and E. J. Heller, “Reassessing Graphene Absorption and Emission Spectroscopy,” Nano Lett. 17(10), 6077–6082 (2017).
    [Crossref] [PubMed]
  28. X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
    [Crossref] [PubMed]
  29. X. X. Zhao, H. Yang, S. H. Li, Z. M. Cui, and C. R. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
    [Crossref]
  30. X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
    [Crossref]
  31. Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
    [Crossref]
  32. J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
    [Crossref] [PubMed]
  33. Y. Zeng, X. F. Chen, Z. Yi, Y. G. Yi, and X. B. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
    [Crossref]
  34. Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
    [Crossref]
  35. Z. W. Xiong and L. H. Cao, “Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix,” Appl. Surf. Sci. 445, 65–70 (2018).
    [Crossref]
  36. X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40(2), 178–181 (2015).
    [Crossref] [PubMed]
  37. L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation,” Micromachines (Basel) 9(12), 613 (2018).
    [Crossref] [PubMed]
  38. C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
    [Crossref] [PubMed]
  39. Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
    [Crossref]
  40. X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
    [Crossref]
  41. X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
    [Crossref]
  42. B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
    [Crossref] [PubMed]
  43. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  44. Z. Xiong and L. Cao, “Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40,” J. Alloys Compd. 773, 828–837 (2019).
    [Crossref]
  45. X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
    [Crossref]
  46. S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
    [Crossref] [PubMed]
  47. Y. X. Yan, H. Yang, X. X. Zhao, R. S. Li, and X. X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull. 105, 286–290 (2018).
    [Crossref]
  48. T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
    [Crossref]
  49. K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
    [Crossref] [PubMed]
  50. B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
    [Crossref] [PubMed]
  51. Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
    [Crossref]
  52. X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
    [Crossref] [PubMed]
  53. C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
    [Crossref]
  54. P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
    [Crossref] [PubMed]
  55. C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
    [Crossref]
  56. C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
    [Crossref]
  57. J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5(1), 015605 (2018).
    [Crossref]
  58. S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
    [Crossref]
  59. Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
    [Crossref] [PubMed]
  60. W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
    [Crossref]
  61. J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
    [Crossref] [PubMed]
  62. X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
    [Crossref]
  63. D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
    [Crossref] [PubMed]
  64. J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
    [Crossref]
  65. L. Liu, J. Chen, Z. Zhou, Y. Zao, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays,” Mater. Res. Express 5(4), 045802 (2018).
    [Crossref]

2019 (7)

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

Z. Xiong and L. Cao, “Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40,” J. Alloys Compd. 773, 828–837 (2019).
[Crossref]

J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
[Crossref]

X. He, G. Xiao, F. Liu, F. Lin, and W. Shi, “Flexible properties of THz graphene bowtie metamaterials structures,” Opt. Mater. Express 9(1), 44–55 (2019).
[Crossref]

2018 (27)

X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
[Crossref]

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
[Crossref] [PubMed]

X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
[Crossref] [PubMed]

X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
[Crossref] [PubMed]

S. X. Xia, X. Zhai, L. L. Wang, and S. C. Wen, “Plasmonically induced transparency in double-layered graphene nanoribbons,” Photon. Res. 6(7), 692–702 (2018).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Y. Zao, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5(1), 015605 (2018).
[Crossref]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation,” Micromachines (Basel) 9(12), 613 (2018).
[Crossref] [PubMed]

Y. X. Yan, H. Yang, X. X. Zhao, R. S. Li, and X. X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull. 105, 286–290 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

Y. Zeng, X. F. Chen, Z. Yi, Y. G. Yi, and X. B. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Z. W. Xiong and L. H. Cao, “Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix,” Appl. Surf. Sci. 445, 65–70 (2018).
[Crossref]

C. X. Zheng and H. Yang, “Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance,” J Mater Sci-Mater EL 29(11), 9291–9300 (2018).
[Crossref]

X. X. Zhao, H. Yang, S. H. Li, Z. M. Cui, and C. R. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Z. Xiong and L. Cao, “Interparticle spacing dependence of magnetic anisotropy and dipolar interaction of Ni nanocrystals embedded in epitaxial BaTiO3 matrix,” Ceram. Int. 44(7), 8155–8160 (2018).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

W. Wang, C. Kang, X. Liu, and S. Qu, “Spin-selected and spin-independent dielectric metalenses,” J. Opt. 20(9), 095102 (2018).
[Crossref]

2017 (4)

J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
[Crossref]

Y. Yang, G. Kolesov, L. Kocia, and E. J. Heller, “Reassessing Graphene Absorption and Emission Spectroscopy,” Nano Lett. 17(10), 6077–6082 (2017).
[Crossref] [PubMed]

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

J. Wang, C. Song, J. Hang, Z. D. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
[Crossref] [PubMed]

2016 (5)

J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
[Crossref] [PubMed]

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

2015 (6)

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

X. He, Z. Y. Zhao, and W. Shi, “Graphene-supported tunable near-IR metamaterials,” Opt. Lett. 40(2), 178–181 (2015).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

2014 (1)

F. J. García de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

2013 (1)

2012 (3)

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

2011 (1)

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

2010 (1)

D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
[Crossref] [PubMed]

2008 (1)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

2007 (1)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking with Non-Magnetic Metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

2006 (1)

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

2003 (1)

C. R. Simovski, P. A. Belov, and S. He, “Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators,” IEEE Trans. Antenn. Propag. 51(10), 2582–2591 (2003).
[Crossref]

2002 (1)

P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: always positive and very inhomogeneous,” Phys. Rev. Lett. 88(18), 187401 (2002).
[Crossref] [PubMed]

1999 (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T Microw Theory 47(11), 2075–2084 (1999).
[Crossref]

1996 (1)

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Alaee, R.

Alù, A.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Baek, S.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Bai, X.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Belov, P. A.

C. R. Simovski, P. A. Belov, and S. He, “Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators,” IEEE Trans. Antenn. Propag. 51(10), 2582–2591 (2003).
[Crossref]

Cai, W.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking with Non-Magnetic Metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Cao, L.

Z. Xiong and L. Cao, “Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40,” J. Alloys Compd. 773, 828–837 (2019).
[Crossref]

Z. Xiong and L. Cao, “Interparticle spacing dependence of magnetic anisotropy and dipolar interaction of Ni nanocrystals embedded in epitaxial BaTiO3 matrix,” Ceram. Int. 44(7), 8155–8160 (2018).
[Crossref]

Cao, L. H.

Z. W. Xiong and L. H. Cao, “Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix,” Appl. Surf. Sci. 445, 65–70 (2018).
[Crossref]

Cen, C.

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

Chen, C.

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Chen, H. T.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Chen, J.

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5(1), 015605 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

L. Liu, J. Chen, Z. Zhou, Y. Zao, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

Chen, P. Y.

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

Chen, Q.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Chen, W.

J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
[Crossref]

Chen, X.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation,” Micromachines (Basel) 9(12), 613 (2018).
[Crossref] [PubMed]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

Chen, X. F.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

Y. Zeng, X. F. Chen, Z. Yi, Y. G. Yi, and X. B. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Chen, Y.

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Cheng, Z.

Chettiar, U. K.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking with Non-Magnetic Metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Choi, M.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Chu, P. K.

Cui, J.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

Cui, Z. M.

X. X. Zhao, H. Yang, S. H. Li, Z. M. Cui, and C. R. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

Dai, J. Y.

J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
[Crossref]

Di, L.

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation,” Micromachines (Basel) 9(12), 613 (2018).
[Crossref] [PubMed]

Du, G.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Duan, T.

J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fan, Y.

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Fang, R.

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

Farhat, M.

Feng, Z.

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fu, G.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Fu, J.

J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
[Crossref]

Gao, P.

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Geim, A. K.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gong, H.

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Gu, G.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

Halterman, K.

J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
[Crossref] [PubMed]

Han, J.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

Hang, J.

He, L.

D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
[Crossref] [PubMed]

He, S.

C. R. Simovski, P. A. Belov, and S. He, “Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators,” IEEE Trans. Antenn. Propag. 51(10), 2582–2591 (2003).
[Crossref]

He, X.

Heinz, T. F.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Heller, E. J.

Y. Yang, G. Kolesov, L. Kocia, and E. J. Heller, “Reassessing Graphene Absorption and Emission Spectroscopy,” Nano Lett. 17(10), 6077–6082 (2017).
[Crossref] [PubMed]

Holden, A. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T Microw Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Hou, Y.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

Hu, B.

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Hu, Z. D.

Hua, J. J.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

Hua, Y. T.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

Huang, H.

Huang, J.

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

Huang, S.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

Jian, S.

Jiang, D.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, Y.

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

Jung, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Kang, C.

W. Wang, C. Kang, X. Liu, and S. Qu, “Spin-selected and spin-independent dielectric metalenses,” J. Opt. 20(9), 095102 (2018).
[Crossref]

Kang, G.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Kang, X. L.

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Katsnelson, M. I.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

Ke, S.

Kildishev, A. V.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking with Non-Magnetic Metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Kim, K.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Kocia, L.

Y. Yang, G. Kolesov, L. Kocia, and E. J. Heller, “Reassessing Graphene Absorption and Emission Spectroscopy,” Nano Lett. 17(10), 6077–6082 (2017).
[Crossref] [PubMed]

Kolesov, G.

Y. Yang, G. Kolesov, L. Kocia, and E. J. Heller, “Reassessing Graphene Absorption and Emission Spectroscopy,” Nano Lett. 17(10), 6077–6082 (2017).
[Crossref] [PubMed]

Koschny, T.

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Kuang, Y.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

Lederer, F.

Li, J. J.

J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
[Crossref]

Li, R.

J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
[Crossref]

Li, R. S.

Y. X. Yan, H. Yang, X. X. Zhao, R. S. Li, and X. X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull. 105, 286–290 (2018).
[Crossref]

Li, S. H.

X. X. Zhao, H. Yang, S. H. Li, Z. M. Cui, and C. R. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

Li, X.

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

Liang, C.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

Liao, M.

J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
[Crossref]

Lin, F.

Lin, H.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

Lin, L.

Lin, Q.

Lin, Z.

Linder, J.

J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
[Crossref] [PubMed]

Liu, C.

Liu, F.

Liu, G.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

Liu, J.

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
[Crossref]

Liu, L.

L. Liu, J. Chen, Z. Zhou, Y. Zao, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Liu, Q.

Liu, T.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

Liu, W.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Liu, X.

W. Wang, C. Kang, X. Liu, and S. Qu, “Spin-selected and spin-independent dielectric metalenses,” J. Opt. 20(9), 095102 (2018).
[Crossref]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
[Crossref] [PubMed]

Liu, Y.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

Liu, Z.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
[Crossref]

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

Long, H.

Lu, P.

Lu, X.

Lui, C. H.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Luo, J. S.

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Luo, X.

Lv, B.

J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
[Crossref]

Ma, L.

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

Ma, R.

J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
[Crossref]

Mak, K. F.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Mao, P.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

Miao, C.

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

Misewich, J. A.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Morozov, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Niu, G.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Pan, L.

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Pan, P.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

Pang, Z.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Park, H.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Pendry, J. B.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T Microw Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Qi, Y.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Qin, S.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Qu, S.

W. Wang, C. Kang, X. Liu, and S. Qu, “Spin-selected and spin-independent dielectric metalenses,” J. Opt. 20(9), 095102 (2018).
[Crossref]

Ren, G.

Robbins, D. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T Microw Theory 47(11), 2075–2084 (1999).
[Crossref]

Rockstuhl, C.

Sfeir, M. Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Shalaev, V. M.

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking with Non-Magnetic Metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

Shen, N. H.

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Shi, J.

D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
[Crossref] [PubMed]

Shi, P.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

Shi, W.

Shi, X.

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

Shin, D.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Simovski, C. R.

C. R. Simovski, P. A. Belov, and S. He, “Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators,” IEEE Trans. Antenn. Propag. 51(10), 2582–2591 (2003).
[Crossref]

Smith, D. R.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Song, C.

Soukoulis, C. M.

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

Stewart, W. J.

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T Microw Theory 47(11), 2075–2084 (1999).
[Crossref]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Su, W.

Sun, T.

Sun, Y.

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

Tang, C.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

Tang, P.

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Tang, Y.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

Tang, Y. J.

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Taylor, A. J.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Tong, H.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Urzhumov, Y.

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Valanju, A. P.

P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: always positive and very inhomogeneous,” Phys. Rev. Lett. 88(18), 187401 (2002).
[Crossref] [PubMed]

Valanju, P. M.

P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: always positive and very inhomogeneous,” Phys. Rev. Lett. 88(18), 187401 (2002).
[Crossref] [PubMed]

Walser, R. M.

P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: always positive and very inhomogeneous,” Phys. Rev. Lett. 88(18), 187401 (2002).
[Crossref] [PubMed]

Wang, B.

Wang, C. Y.

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Wang, D.

D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
[Crossref] [PubMed]

Wang, F.

Wang, H.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

Wang, J.

Wang, K.

Wang, L.

Wang, L. L.

Wang, R.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

Wang, W.

W. Wang, C. Kang, X. Liu, and S. Qu, “Spin-selected and spin-independent dielectric metalenses,” J. Opt. 20(9), 095102 (2018).
[Crossref]

Wang, X.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Wang, X. X.

Y. X. Yan, H. Yang, X. X. Zhao, R. S. Li, and X. X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull. 105, 286–290 (2018).
[Crossref]

Wang, Y.

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

Wang, Z.

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
[Crossref]

B. Zheng, S. Xu, L. Lin, Z. Wang, Z. Feng, and Z. Zheng, “Plasmon enhanced near-infrared quantum cutting of KYF4: Tb3+, Yb3+ doped with Ag nanoparticles,” Opt. Lett. 40(11), 2630–2633 (2015).
[Crossref] [PubMed]

Wen, S. C.

Wen, X.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Wu, D.

D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
[Crossref] [PubMed]

Wu, X.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Wu, Y.

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

Xia, S. X.

Xian, T.

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation,” Micromachines (Basel) 9(12), 613 (2018).
[Crossref] [PubMed]

Xiao, G.

Xiao, L.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

Xiao, S.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5(1), 015605 (2018).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

Xiao, S. Y.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

Xiao, W.

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

Xiong, Z.

Z. Xiong and L. Cao, “Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40,” J. Alloys Compd. 773, 828–837 (2019).
[Crossref]

Z. Xiong and L. Cao, “Interparticle spacing dependence of magnetic anisotropy and dipolar interaction of Ni nanocrystals embedded in epitaxial BaTiO3 matrix,” Ceram. Int. 44(7), 8155–8160 (2018).
[Crossref]

Xiong, Z. W.

Z. W. Xiong and L. H. Cao, “Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix,” Appl. Surf. Sci. 445, 65–70 (2018).
[Crossref]

Xu, S.

Xu, X.

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5(1), 015605 (2018).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

Xu, X. B.

Y. Zeng, X. F. Chen, Z. Yi, Y. G. Yi, and X. B. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Yan, C.

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Yan, X. M.

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

Yan, Y. X.

Y. X. Yan, H. Yang, X. X. Zhao, R. S. Li, and X. X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull. 105, 286–290 (2018).
[Crossref]

Yang, H.

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation,” Micromachines (Basel) 9(12), 613 (2018).
[Crossref] [PubMed]

Y. X. Yan, H. Yang, X. X. Zhao, R. S. Li, and X. X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull. 105, 286–290 (2018).
[Crossref]

X. X. Zhao, H. Yang, S. H. Li, Z. M. Cui, and C. R. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

C. X. Zheng and H. Yang, “Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance,” J Mater Sci-Mater EL 29(11), 9291–9300 (2018).
[Crossref]

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Yang, Y.

Y. Yang, G. Kolesov, L. Kocia, and E. J. Heller, “Reassessing Graphene Absorption and Emission Spectroscopy,” Nano Lett. 17(10), 6077–6082 (2017).
[Crossref] [PubMed]

Yao, W. T.

J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
[Crossref]

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Ye, X.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

L. Liu, J. Chen, Z. Zhou, Y. Zao, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

Yi, Y.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Yi, Y. G.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

Y. Zeng, X. F. Chen, Z. Yi, Y. G. Yi, and X. B. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Yi, Z.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5(1), 015605 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

Y. Zeng, X. F. Chen, Z. Yi, Y. G. Yi, and X. B. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Yin, Y.

D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
[Crossref] [PubMed]

Youngs, I.

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

Yu, Y.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

Yuan, X.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Yuan, Z.

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

Zao, Y.

L. Liu, J. Chen, Z. Zhou, Y. Zao, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

Zeng, Y.

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

Y. Zeng, X. F. Chen, Z. Yi, Y. G. Yi, and X. B. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Zhai, X.

Zhang, C. R.

X. X. Zhao, H. Yang, S. H. Li, Z. M. Cui, and C. R. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

Zhang, F.

Zhang, J.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Zhang, Q. B.

J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
[Crossref]

Zhang, S. L.

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Zhang, T.

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

Zhang, X.

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Zhang, Y.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zhang, Z.

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

Zhao, X. X.

Y. X. Yan, H. Yang, X. X. Zhao, R. S. Li, and X. X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull. 105, 286–290 (2018).
[Crossref]

X. X. Zhao, H. Yang, S. H. Li, Z. M. Cui, and C. R. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

Zhao, Y. L.

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Zhao, Z. Y.

Zheng, B.

Zheng, C. X.

C. X. Zheng and H. Yang, “Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance,” J Mater Sci-Mater EL 29(11), 9291–9300 (2018).
[Crossref]

Zheng, S.

Zheng, Z.

Zhou, C.

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

Zhou, P.

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Zhou, Z.

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

L. Liu, J. Chen, Z. Zhou, Y. Zao, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

Zhou, Z. G.

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

Zhu, B.

Zhu, J.

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Zhu, Z.

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

Zide, J. M. O.

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

ACS Nano (1)

P. Y. Chen and A. Alù, “Atomically thin surface cloak using graphene monolayers,” ACS Nano 5(7), 5855–5863 (2011).
[Crossref] [PubMed]

ACS Photonics (2)

F. J. García de Abajo, “Graphene Plasmonics: Challenges and Opportunities,” ACS Photonics 1(3), 135–152 (2014).
[Crossref]

Y. Fan, N. H. Shen, T. Koschny, and C. M. Soukoulis, “Tunable Terahertz Meta-Surface with Graphene Cut-Wires,” ACS Photonics 2(1), 151–156 (2015).
[Crossref]

AIP Adv. (1)

X. Wang, X. Wu, Y. Chen, X. Bai, Z. Pang, H. Yang, Y. Qi, and X. Wen, “Investigation of wide-range refractive index sensor based on asymmetric metal-cladding dielectric waveguide structure,” AIP Adv. 8(10), 105029 (2018).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on Fano resonance in the plasmonic system of splitting ring cavity-coupled MIM waveguide with tooth cavity,” Appl. Phys., A Mater. Sci. Process. 125(1), 13 (2019).
[Crossref]

Appl. Surf. Sci. (2)

Z. W. Xiong and L. H. Cao, “Red-ultraviolet photoluminescence tuning by Ni nanocrystals in epitaxial SrTiO3 matrix,” Appl. Surf. Sci. 445, 65–70 (2018).
[Crossref]

Y. Zeng, X. F. Chen, Z. Yi, Y. G. Yi, and X. B. Xu, “Fabrication of p-n heterostructure ZnO/Si moth-eye structures: Antireflection, enhanced charge separation and photocatalytic properties,” Appl. Surf. Sci. 441, 40–48 (2018).
[Crossref]

Carbon (2)

X. He, “Tunable terahertz graphene metamaterials,” Carbon 82, 229–237 (2015).
[Crossref]

X. Liu, G. Liu, P. Tang, G. Fu, G. Du, Q. Chen, and Z. Liu, “Quantitatively optical and electrical-adjusting high-performance switch by graphene plasmonic perfect absorbers,” Carbon 140, 362–367 (2018).
[Crossref]

Ceram. Int. (1)

Z. Xiong and L. Cao, “Interparticle spacing dependence of magnetic anisotropy and dipolar interaction of Ni nanocrystals embedded in epitaxial BaTiO3 matrix,” Ceram. Int. 44(7), 8155–8160 (2018).
[Crossref]

IEEE Photonic Tech L. (1)

J. Chen, T. Zhang, C. Tang, P. Mao, Y. Liu, Y. Yu, and Z. Liu, “Optical Magnetic Field Enhancement via Coupling Magnetic Plasmons to Optical Cavity Modes,” IEEE Photonic Tech L. 28(14), 1529–1532 (2016).
[Crossref]

IEEE T Microw Theory (1)

J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE T Microw Theory 47(11), 2075–2084 (1999).
[Crossref]

IEEE Trans. Antenn. Propag. (1)

C. R. Simovski, P. A. Belov, and S. He, “Backward wave region and negative material parameters of a structure formed by lattices of wires and split-ring resonators,” IEEE Trans. Antenn. Propag. 51(10), 2582–2591 (2003).
[Crossref]

J Mater Sci-Mater EL (1)

C. X. Zheng and H. Yang, “Assembly of Ag3PO4 nanoparticles on rose flower-like Bi2WO6 hierarchical architectures for achieving high photocatalytic performance,” J Mater Sci-Mater EL 29(11), 9291–9300 (2018).
[Crossref]

J. Alloys Compd. (1)

Z. Xiong and L. Cao, “Tailoring morphology, enhancing magnetization and photocatalytic activity via Cr doping in Bi25FeO40,” J. Alloys Compd. 773, 828–837 (2019).
[Crossref]

J. Opt. (1)

W. Wang, C. Kang, X. Liu, and S. Qu, “Spin-selected and spin-independent dielectric metalenses,” J. Opt. 20(9), 095102 (2018).
[Crossref]

J. Power Sources (1)

W. Xiao, Z. Wang, Y. Zhang, R. Fang, Z. Yuan, C. Miao, X. M. Yan, and Y. Jiang, “Enhanced performance of P (VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries,” J. Power Sources 382, 128–134 (2018).
[Crossref]

Mater. Lett. (1)

J. Y. Dai, J. J. Li, Q. B. Zhang, M. Liao, T. Duan, and W. T. Yao, “Co3S4@C@MoS2 microstructures fabricated from MOF template as advanced lithium-ion battery anode,” Mater. Lett. 236, 483–486 (2019).
[Crossref]

Mater. Res. Bull. (2)

Y. X. Yan, H. Yang, X. X. Zhao, R. S. Li, and X. X. Wang, “Enhanced photocatalytic activity of surface disorder-engineered CaTiO3,” Mater. Res. Bull. 105, 286–290 (2018).
[Crossref]

X. X. Zhao, H. Yang, S. H. Li, Z. M. Cui, and C. R. Zhang, “Synthesis and theoretical study of large-sized Bi4Ti3O12 square nanosheets with high photocatalytic activity,” Mater. Res. Bull. 107, 180–188 (2018).
[Crossref]

Mater. Res. Express (3)

H. Lin, X. Ye, X. F. Chen, Z. G. Zhou, Z. Yi, G. Niu, Y. G. Yi, Y. T. Hua, J. J. Hua, and S. Y. Xiao, “Plasmonic absorption enhancement in graphene circular and elliptical disk arrays,” Mater. Res. Express 2019, aafc3e (2019), doi:.
[Crossref]

L. Liu, J. Chen, Z. Zhou, Y. Zao, and X. Ye, “Tunable absorption enhancement in electric split-ring resonators-shaped graphene arrays,” Mater. Res. Express 5(4), 045802 (2018).
[Crossref]

J. Chen, Z. Yi, S. Xiao, and X. Xu, “Absorption enhancement in double-layer cross-shaped graphene arrays,” Mater. Res. Express 5(1), 015605 (2018).
[Crossref]

Micromachines (Basel) (1)

L. Di, H. Yang, T. Xian, and X. Chen, “Construction of Z-scheme g-C3N4/CNT/Bi2Fe4O9 composites with improved simulated-sunlight photocatalytic activity for the dye degradation,” Micromachines (Basel) 9(12), 613 (2018).
[Crossref] [PubMed]

Nano Lett. (2)

D. Wang, X. Liu, L. He, Y. Yin, D. Wu, and J. Shi, “Manipulating Graphene Mobility and Charge Neutral Point with Ligand-Bound Nanoparticles as Charge Reservoir,” Nano Lett. 10(12), 4989–4993 (2010).
[Crossref] [PubMed]

Y. Yang, G. Kolesov, L. Kocia, and E. J. Heller, “Reassessing Graphene Absorption and Emission Spectroscopy,” Nano Lett. 17(10), 6077–6082 (2017).
[Crossref] [PubMed]

Nanomaterials (Basel) (3)

W. Liu, J. Zhang, Z. Zhu, X. Yuan, and S. Qin, “Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping,” Nanomaterials (Basel) 6(9), 155 (2016).
[Crossref] [PubMed]

J. Chen, Y. Zeng, X. Xu, X. Chen, Z. Zhou, P. Shi, Z. Yi, X. Ye, S. Xiao, and Y. Yi, “Plasmonic Absorption Enhancement in Elliptical Graphene Arrays,” Nanomaterials (Basel) 8(3), 175 (2018).
[Crossref] [PubMed]

Z. Yi, X. Li, X. Xu, X. Chen, X. Ye, Y. Yi, T. Duan, Y. Tang, J. Liu, and Y. Yi, “Nanostrip-Induced High Tunability Multipolar Fano Resonances in a Au Ring-Strip Nanosystem,” Nanomaterials (Basel) 8(8), 568 (2018).
[Crossref] [PubMed]

Nanoscale (1)

X. He, P. Gao, and W. Shi, “A further comparison of graphene and thin metal layers for plasmonics,” Nanoscale 8(19), 10388–10397 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

D. Shin, Y. Urzhumov, Y. Jung, G. Kang, S. Baek, M. Choi, H. Park, K. Kim, and D. R. Smith, “Broadband electromagnetic cloaking with smart metamaterials,” Nat. Commun. 3(1), 1213 (2012).
[Crossref] [PubMed]

Nat. Photonics (2)

W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Optical Cloaking with Non-Magnetic Metamaterials,” Nat. Photonics 1(4), 224–227 (2007).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6(11), 749–758 (2012).
[Crossref]

Nature (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature 438(7065), 197–200 (2005).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Opt. Commun. (3)

X. Shi, L. Ma, Z. Zhang, Y. Tang, Y. Zhang, J. Han, and Y. Sun, “Dual Fano resonance control and refractive index sensors based on a plasmonic waveguide-coupled resonator system,” Opt. Commun. 427(25), 326–330 (2018).
[Crossref]

T. Liu, H. Wang, Y. Liu, L. Xiao, Z. Yi, C. Zhou, and S. Xiao, “Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial,” Opt. Commun. 426(1), 629–634 (2018).
[Crossref]

C. Liang, G. Niu, X. Chen, Z. Zhou, Z. Yi, X. Ye, T. Duan, Y. Yi, and S. Xiao, “Tunable triple-band graphene refractive index sensor with good angle-polarization tolerance,” Opt. Commun. 436(1), 57–62 (2019).
[Crossref]

Opt. Express (8)

X. He, F. Liu, F. Lin, and W. Shi, “Graphene patterns supported terahertz tunable plasmon induced transparency,” Opt. Express 26(8), 9931–9944 (2018).
[Crossref] [PubMed]

B. Zhu, G. Ren, S. Zheng, Z. Lin, and S. Jian, “Nanoscale dielectric-graphene-dielectric tunable infrared waveguide with ultrahigh refractive indices,” Opt. Express 21(14), 17089–17096 (2013).
[Crossref] [PubMed]

S. Ke, B. Wang, H. Huang, H. Long, K. Wang, and P. Lu, “Plasmonic absorption enhancement in periodic cross-shaped graphene arrays,” Opt. Express 23(7), 8888–8900 (2015).
[Crossref] [PubMed]

C. Liu, W. Su, Q. Liu, X. Lu, F. Wang, T. Sun, and P. K. Chu, “Symmetrical dual D-shape photonic crystal fibers for surface plasmon resonance sensing,” Opt. Express 26(7), 9039–9049 (2018).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

J. Wang, C. Song, J. Hang, Z. D. Hu, and F. Zhang, “Tunable Fano resonance based on grating-coupled and graphene-based Otto configuration,” Opt. Express 25(20), 23880–23892 (2017).
[Crossref] [PubMed]

X. Luo, X. Zhai, L. Wang, and Q. Lin, “Enhanced dual-band absorption of molybdenum disulfide using a plasmonic perfect absorber,” Opt. Express 26(9), 11658–11666 (2018).
[Crossref] [PubMed]

X. Luo, Z. Liu, Z. Cheng, J. Liu, Q. Lin, and L. Wang, “Polarization-insensitive and wide-angle broadband absorption enhancement of molybdenum disulfide in visible regime,” Opt. Express 26(26), 33918–33929 (2018).
[Crossref]

Opt. Lett. (2)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

Z. Pang, H. Tong, X. Wu, J. Zhu, X. Wang, H. Yang, and Y. Qi, “Theoretical study of multiexposure zeroth-order waveguide mode interference lithography,” Opt. Quantum Electron. 50(9), 335 (2018).
[Crossref]

Photon. Res. (1)

Photonic Sens. (1)

X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive Index Sensor Based on Fano Resonances in Plasmonic Waveguide With Dual Side-Coupled Ring Resonators,” Photonic Sens. 8(4), 367–374 (2018).
[Crossref]

Phys. Rev. Lett. (3)

K. F. Mak, M. Y. Sfeir, Y. Wu, C. H. Lui, J. A. Misewich, and T. F. Heinz, “Measurement of the optical conductivity of graphene,” Phys. Rev. Lett. 101(19), 196405 (2008).
[Crossref] [PubMed]

J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett. 76(25), 4773–4776 (1996).
[Crossref] [PubMed]

P. M. Valanju, R. M. Walser, and A. P. Valanju, “Wave refraction in negative-index media: always positive and very inhomogeneous,” Phys. Rev. Lett. 88(18), 187401 (2002).
[Crossref] [PubMed]

Physica E (1)

C. Cen, J. Chen, C. Liang, J. Huang, X. Chen, Y. Tang, Z. Yi, X. Xu, Y. Yi, and S. Xiao, “Plasmonic absorption characteristics based on dumbbell-shaped graphene metamaterial arrays,” Physica E 103, 93–98 (2018).
[Crossref]

Plasmonics (1)

J. Fu, B. Lv, R. Li, R. Ma, W. Chen, and Z. Wang, “Excitation of Surface Plasmon Polaritons in an Inhomogeneous Graphene-Covered Grating,” Plasmonics 12(1), 209–213 (2017).
[Crossref]

Results Phys. (1)

X. Wang, Z. Pang, H. Tong, X. Wu, X. Bai, H. Yang, X. Wen, and Y. Qi, “Theoretical investigation of subwavelength structure fabrication based onmulti-exposure surface plasmon interference lithography,” Results Phys. 12, 732–737 (2019).
[Crossref]

Sci. Rep. (2)

J. Linder and K. Halterman, “Graphene-based extremely wide-angle tunable metamaterial absorber,” Sci. Rep. 6(1), 31225 (2016).
[Crossref] [PubMed]

X. Wang, C. Chen, L. Pan, and J. Wang, “A graphene-based Fabry-Pérot spectrometer in mid-infrared region,” Sci. Rep. 6(1), 32616 (2016).
[Crossref] [PubMed]

Science (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Sensor Actuat. Biol. Chem. (1)

Z. Liu, G. Liu, S. Huang, X. Liu, P. Pan, Y. Wang, and G. Gu, “Multispectral spatial and frequency selective sensing with ultra-compact cross-shaped antenna plasmonic crystals,” Sensor Actuat. Biol. Chem. 215, 480–488 (2015).

Sensors (Basel) (1)

C. Cen, H. Lin, J. Huang, C. Liang, X. Chen, Y. Tang, Z. Yi, X. Ye, J. Liu, Y. Yi, and S. Xiao, “A Tunable Plasmonic Refractive Index Sensor with Nanoring-Strip Graphene Arrays,” Sensors (Basel) 18(12), 4489 (2018).
[Crossref] [PubMed]

Superlattices Microstruct. (1)

C. Cen, H. Lin, C. Liang, J. Huang, X. Chen, Z. Yi, Y. Tang, T. Duan, X. Xu, S. Xiao, and Y. Yi, “Tunable plasmonic resonance absorption characteries-tics in periodic H-shaped graphene arrays,” Superlattices Microstruct. 120, 427–435 (2018).
[Crossref]

Surf. Coat. Tech. (1)

Z. Yi, X. B. Xu, X. L. Kang, Y. L. Zhao, S. L. Zhang, W. T. Yao, Y. G. Yi, J. S. Luo, C. Y. Wang, Y. Yi, and Y. J. Tang, “Fabrication of well-aligned ZnO@Ag nanorod arrayswith effective charge transfer for surface-enhanced Raman scattering,” Surf. Coat. Tech. 324, 257–263 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The structural representation and geometric parameters of periodic elliptical hollow graphene arrays deposited on SiO2, and the geometric parameters are marked as shown in the figure. The electric field direction is parallel to X direction.
Fig. 2
Fig. 2 (A) The absorption spectrum of different elliptical hollow graphene arrays under conditions of varying period a and an electric field schematic of the basic model is in the upper left corner. (B) the specific data fitting diagrams about absorption maximum and resonance wavelength.
Fig. 3
Fig. 3 (A) and (B) the absorption spectrum of different elliptical hollow graphene arrays under conditions of the long axis (L1, L2) of the inner and outer diameter. (B) and (D) are corresponding electric field diagrams with distinct long axis (L1, L2).
Fig. 4
Fig. 4 (A) and (B) the absorption spectrum of different elliptical hollow graphene arrays under conditions of the short axis (W1, W2) of the inner and outer diameter, and (B) and (D) are corresponding electric field diagrams with distinct short axis (W1, W2).
Fig. 5
Fig. 5 (A) The absorption spectrum of elliptical hollow, elliptical and double elliptical hollow graphene arrays, and (B), (C) are homologous electric field diagrams. (D) and (E) represents the electric field distribution at the two distinct absorption peaks of adouble elliptical hollow graphene arrays, respectively.
Fig. 6
Fig. 6 (A)-(C) represent the absorption spectrum of elliptical hollow, elliptical and double elliptical hollow graphene arrays with the alterable Fermi level, respectively.
Fig. 7
Fig. 7 (A) The absorption spectrum under different relaxation times, and (B) includes four schematic diagrams of the elliptical hollow graphene arrays electric field at different relaxation times (τ = 0.5 ps, τ = 1.0 ps, τ = 1.5 ps, τ = 2.5 ps).
Fig. 8
Fig. 8 (A) and (C) represent the absorption spectra of different incident angles under the TM and TE polarization configurations, respectively. (B) and (D) are the corresponding specific data fitting diagrams about absorption maximum and resonance wavelength. The upper left-hand corner of (A) and (C) is a schematic of the electric field in the TM polarization mode and TE polarization.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

σ g = σ inter + σ intra = i e 2 4π ln( 2 E F (ω+i/τ) 2 E F +(ω+i/τ) )+ i e 2 k B T π 2 (ω+i/τ) ( E F k B T +2ln( e E F k B T +1))
ε g =1+i σ ε 0 ω t g

Metrics