Abstract

A methodology to design a multi-functional device (MFD) with switchable absorption and polarization conversion (PC) modes is proposed in this research. The methodology combines graphene absorbing metasurface (GAM) and polarization conversion metasurface (PCM) in one component. The key point is that the absorbing metasurface (AM) should be made completely by conductivity tunable material, such as graphene. The PCM can be constructed by fine metal. A prototype is designed to verify the designing methodology by stacking a layer of gold pattern PCM and two layers of GAM with fishnet shape patterns. In the PC mode, the chemical potentials of the two GAMs are µc1 = µc2 = 0 eV, then, the graphene layers act as thin dielectric layers, which can be treated as transparency. Thus, the PCM plays a leading role in the performances of the whole structure. Therefore, a linear polarized incidence is rotated by 90° in the 2.10-3.13 THz (39.5% at 2.61 THz) with polarization conversion ratio (PCR) larger than 90%. In the absorption mode with µc1 = 0.5 eV and µc2 = 0.8 eV, the GAMs have strong surface plasmon-polaritons (SPPs), and they concentrate most of the incident power, which makes the GAMs dominate roles of the whole structure. Therefore, the incident power is dissipated in the GAMs, and the absorption rate is larger than 90% in the 1.30-3.01 THz (79.5% at 2.15 THz). The absorption band for absorption rate larger than 70% is 1.19-3.90 THz (106.7% at 2.54 THz). The design methodology is useful for the designing of components with switchable absorption and PC modes.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Switchable broadband terahertz absorber/reflector enabled by hybrid graphene-gold metasurface

Yu Tong Zhao, Bian Wu, Bei Ju Huang, and Qiang Cheng
Opt. Express 25(7) 7161-7169 (2017)

Controllable linear asymmetric transmission and perfect polarization conversion in a terahertz hybrid metal-graphene metasurface

Jianxing Zhao, Jianlin Song, Tianyu Xu, Tingxiang Yang, and Jianhong Zhou
Opt. Express 27(7) 9773-9781 (2019)

References

  • View by:
  • |
  • |
  • |

  1. F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
    [Crossref] [PubMed]
  2. D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
    [Crossref] [PubMed]
  3. G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microw. Theory Tech. 50(12), 2702–2712 (2002).
    [Crossref]
  4. N. Engheta and R. W. Ziolkowski, “Electromagnetic Metamaterials: Physics and Engineering Explorations,” (New York: Wiley) (2006)
  5. C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
    [Crossref]
  6. E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged Transition Conditions for Electromagnetic Fields at a Metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
    [Crossref]
  7. N. Zhou and J. Wang, “Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: proposal and simulation,” Sci. Rep. 8(1), 8038 (2018).
    [Crossref] [PubMed]
  8. J. W. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
    [Crossref]
  9. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
    [Crossref]
  10. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
    [Crossref]
  11. Z. Y. Song, Z. Gao, Y. M. Zhang, and B. L. Zhang, “Terahertz transparency of optically opaque metallic films,” Europhys. Lett. 106(2), 27005 (2014).
    [Crossref]
  12. X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
    [Crossref] [PubMed]
  13. S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric‐Metal Grating,” Ann. Phys. 529(10), 1700151 (2017).
    [Crossref]
  14. M. Fartookzadeh, “Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth,” J. Mod. Opt. 64(18), 1854–1861 (2017).
    [Crossref]
  15. M. Fartookzadeh, “Single-buried-layer reflection-mode metasurfaces for dual-band linear to circular polarization conversion,” Mod. Phys. Lett. B 32(23), 1850274 (2018).
    [Crossref]
  16. W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
    [Crossref] [PubMed]
  17. B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
    [Crossref] [PubMed]
  18. X. Zheng, Z. Xiao, and X. Ling, “A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film,” Plasmonics 13(1), 287–291 (2018).
    [Crossref]
  19. F. T. Chuang, P. Y. Chen, T. C. Cheng, C. H. Chien, and B. J. Li, “Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate,” Nanotechnology 18(39), 395702 (2007).
    [Crossref] [PubMed]
  20. Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
    [Crossref] [PubMed]
  21. L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
    [Crossref]
  22. A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
    [Crossref]
  23. M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
    [Crossref]
  24. J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
    [Crossref]
  25. C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
    [Crossref] [PubMed]
  26. X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
    [Crossref] [PubMed]
  27. J. W. You and N. C. Panoiu, “Polarization control using passive and active crossed graphene gratings,” Opt. Express 26(2), 1882–1894 (2018).
    [Crossref] [PubMed]
  28. E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface,” Nanoscale Res. Lett. 13(1), 38 (2018).
    [Crossref] [PubMed]
  29. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett. 38(9), 1567–1569 (2013).
    [Crossref] [PubMed]
  30. C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
    [PubMed]
  31. Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
    [Crossref]
  32. R. Alaee, M. Albooyeh, and C. Rockstuhl, “Theory of metasurface based perfect absorbers,” J. Phys. D Appl. Phys. 50(50), 503002 (2017).
    [Crossref]
  33. L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
    [Crossref]
  34. N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
    [Crossref]
  35. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
    [Crossref] [PubMed]
  36. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
    [Crossref]
  37. J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
    [Crossref]
  38. B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
    [Crossref]
  39. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
    [Crossref] [PubMed]
  40. Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
    [Crossref]
  41. R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
    [Crossref] [PubMed]
  42. X. Zou, G. Zheng, J. Cong, L. Xu, Y. Chen, and M. Lai, “Polarization-insensitive and wide-incident-angle optical absorber with periodically patterned graphene-dielectric arrays,” Opt. Lett. 43(1), 46–49 (2018).
    [Crossref] [PubMed]
  43. Y. L. Liao and Y. Zhao, “Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber,” Opt. Express 25(25), 32080–32089 (2017).
    [Crossref] [PubMed]
  44. R. Xing and S. Jian, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Laser Technol. 100, 129–132 (2018).
    [Crossref]
  45. D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, “Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons,” Sci. Rep. 7(1), 15836 (2017).
    [Crossref] [PubMed]
  46. A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
    [Crossref] [PubMed]
  47. G. He and J. Stiens, “Enhanced Terahertz Absorption of Graphene Composite Integrated with Double Circular Metal Ring Array,” Plasmonics 9, 1–6 (2017).
  48. Y. W. Deng, L. Peng, X. Liao, and X. Jiang, “An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface,” Plasmonics 2018,1 (2018), doi:.
    [Crossref]
  49. L. Peng, X. Jiang, and S. M. Li, “Multi-functional Device with Switchable Functions of Absorption and Polarization Conversion at Terahertz Range,” Nanoscale Res. Lett. 13(1), 385 (2018).
    [Crossref] [PubMed]
  50. G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
    [Crossref]
  51. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  52. CST studio, Computer Simulation Technology. Darmstadt, Germany. [Online]. Available: www.cst.com .
  53. C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
    [Crossref]
  54. L. Peng, X. L. Li, X. Jiang, and S. M. Li, “A Novel THz Half-wave Polarization Converter for Cross-Polarization conversions of Both Linear and Circular Polarizations and Polarization Conversion Ratio Regulating by Graphene,” J. Lightwave Technol. 36(19), 4250–4258 (2018).
    [Crossref]
  55. L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
    [PubMed]
  56. D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
    [Crossref]
  57. X. Li, L. Lin, L. S. Wu, W. Y. Yin, and J. F. Mao, “A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
    [Crossref]
  58. M. Esquius-Morote, G. J. Sómez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
    [Crossref]
  59. H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
    [Crossref] [PubMed]
  60. G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
    [Crossref]
  61. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
    [Crossref]

2018 (11)

N. Zhou and J. Wang, “Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: proposal and simulation,” Sci. Rep. 8(1), 8038 (2018).
[Crossref] [PubMed]

M. Fartookzadeh, “Single-buried-layer reflection-mode metasurfaces for dual-band linear to circular polarization conversion,” Mod. Phys. Lett. B 32(23), 1850274 (2018).
[Crossref]

X. Zheng, Z. Xiao, and X. Ling, “A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Y. W. Deng, L. Peng, X. Liao, and X. Jiang, “An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface,” Plasmonics 2018,1 (2018), doi:.
[Crossref]

L. Peng, X. Jiang, and S. M. Li, “Multi-functional Device with Switchable Functions of Absorption and Polarization Conversion at Terahertz Range,” Nanoscale Res. Lett. 13(1), 385 (2018).
[Crossref] [PubMed]

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface,” Nanoscale Res. Lett. 13(1), 38 (2018).
[Crossref] [PubMed]

R. Xing and S. Jian, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Laser Technol. 100, 129–132 (2018).
[Crossref]

X. Zou, G. Zheng, J. Cong, L. Xu, Y. Chen, and M. Lai, “Polarization-insensitive and wide-incident-angle optical absorber with periodically patterned graphene-dielectric arrays,” Opt. Lett. 43(1), 46–49 (2018).
[Crossref] [PubMed]

J. W. You and N. C. Panoiu, “Polarization control using passive and active crossed graphene gratings,” Opt. Express 26(2), 1882–1894 (2018).
[Crossref] [PubMed]

L. Peng, X. L. Li, X. Jiang, and S. M. Li, “A Novel THz Half-wave Polarization Converter for Cross-Polarization conversions of Both Linear and Circular Polarizations and Polarization Conversion Ratio Regulating by Graphene,” J. Lightwave Technol. 36(19), 4250–4258 (2018).
[Crossref]

2017 (16)

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

Y. L. Liao and Y. Zhao, “Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber,” Opt. Express 25(25), 32080–32089 (2017).
[Crossref] [PubMed]

D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, “Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons,” Sci. Rep. 7(1), 15836 (2017).
[Crossref] [PubMed]

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

G. He and J. Stiens, “Enhanced Terahertz Absorption of Graphene Composite Integrated with Double Circular Metal Ring Array,” Plasmonics 9, 1–6 (2017).

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

X. Li, L. Lin, L. S. Wu, W. Y. Yin, and J. F. Mao, “A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

R. Alaee, M. Albooyeh, and C. Rockstuhl, “Theory of metasurface based perfect absorbers,” J. Phys. D Appl. Phys. 50(50), 503002 (2017).
[Crossref]

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref] [PubMed]

X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
[Crossref] [PubMed]

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric‐Metal Grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

M. Fartookzadeh, “Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth,” J. Mod. Opt. 64(18), 1854–1861 (2017).
[Crossref]

J. W. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
[Crossref]

F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
[Crossref] [PubMed]

2016 (2)

2015 (2)

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

2014 (3)

Z. Y. Song, Z. Gao, Y. M. Zhang, and B. L. Zhang, “Terahertz transparency of optically opaque metallic films,” Europhys. Lett. 106(2), 27005 (2014).
[Crossref]

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

M. Esquius-Morote, G. J. Sómez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

2013 (3)

2012 (5)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

2011 (3)

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011).
[Crossref] [PubMed]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

2010 (4)

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

2009 (1)

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

2008 (4)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

2007 (2)

F. T. Chuang, P. Y. Chen, T. C. Cheng, C. H. Chien, and B. J. Li, “Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate,” Nanotechnology 18(39), 395702 (2007).
[Crossref] [PubMed]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

2003 (1)

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged Transition Conditions for Electromagnetic Fields at a Metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

2002 (1)

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microw. Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

2000 (1)

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Ajayan, P. M.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Alaee, R.

R. Alaee, M. Albooyeh, and C. Rockstuhl, “Theory of metasurface based perfect absorbers,” J. Phys. D Appl. Phys. 50(50), 503002 (2017).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

Albooyeh, M.

R. Alaee, M. Albooyeh, and C. Rockstuhl, “Theory of metasurface based perfect absorbers,” J. Phys. D Appl. Phys. 50(50), 503002 (2017).
[Crossref]

Alù, A.

F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
[Crossref] [PubMed]

Andryieuski, A.

Arigong, B.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Averitt, R. D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

Beccherelli, R.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref] [PubMed]

Bi, K.

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

Bingham, C. M.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Booth, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Cao, W.

Chang, L.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Chang, S. J.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric‐Metal Grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Chen, D.

D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, “Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons,” Sci. Rep. 7(1), 15836 (2017).
[Crossref] [PubMed]

Chen, H.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Chen, H. S.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Chen, H. T.

Chen, M.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric‐Metal Grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Chen, P. Y.

F. T. Chuang, P. Y. Chen, T. C. Cheng, C. H. Chien, and B. J. Li, “Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate,” Nanotechnology 18(39), 395702 (2007).
[Crossref] [PubMed]

Chen, S.

Chen, W. C.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Chen, Y.

Chen, Z. L.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Cheng, H.

Cheng, T. C.

F. T. Chuang, P. Y. Chen, T. C. Cheng, C. H. Chien, and B. J. Li, “Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate,” Nanotechnology 18(39), 395702 (2007).
[Crossref] [PubMed]

Chien, C. H.

F. T. Chuang, P. Y. Chen, T. C. Cheng, C. H. Chien, and B. J. Li, “Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate,” Nanotechnology 18(39), 395702 (2007).
[Crossref] [PubMed]

Chua, L. L.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Chuang, F. T.

F. T. Chuang, P. Y. Chen, T. C. Cheng, C. H. Chien, and B. J. Li, “Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate,” Nanotechnology 18(39), 395702 (2007).
[Crossref] [PubMed]

Clark, J.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Cong, J.

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Cui, H. L.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Cui, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Cumming, D. R.

Deng, L.

Deng, Y. W.

Y. W. Deng, L. Peng, X. Liao, and X. Jiang, “An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface,” Plasmonics 2018,1 (2018), doi:.
[Crossref]

Ding, F.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ding, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Eleftheriades, G. V.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microw. Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

Esquius-Morote, M.

M. Esquius-Morote, G. J. Sómez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

Falkovsky, L. A.

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

Fan, F.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric‐Metal Grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Fang, Z.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Farhat, M.

Fartookzadeh, M.

M. Fartookzadeh, “Single-buried-layer reflection-mode metasurfaces for dual-band linear to circular polarization conversion,” Mod. Phys. Lett. B 32(23), 1850274 (2018).
[Crossref]

M. Fartookzadeh, “Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth,” J. Mod. Opt. 64(18), 1854–1861 (2017).
[Crossref]

Ferrari, A. C.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Friend, R. H.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Gajic, R.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref] [PubMed]

Gao, P. Q.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Gao, X.

X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
[Crossref] [PubMed]

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

Gao, Z.

Z. Y. Song, Z. Gao, Y. M. Zhang, and B. L. Zhang, “Terahertz transparency of optically opaque metallic films,” Europhys. Lett. 106(2), 27005 (2014).
[Crossref]

Goh, R. G.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Gordon, J. A.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Grant, J.

Guo, J.

Guo, L.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Guo, Y.

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

Halas, N. J.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Han, X. H.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Hao, J.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Hao, Y.

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

He, D.

He, G.

G. He and J. Stiens, “Enhanced Terahertz Absorption of Graphene Composite Integrated with Double Circular Metal Ring Array,” Plasmonics 9, 1–6 (2017).

He, J. W.

J. W. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
[Crossref]

He, S.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

He, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Ho, P. K.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Holloway, C. L.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged Transition Conditions for Electromagnetic Fields at a Metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Hu, F. T.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric‐Metal Grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Hu, J.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Huang, J.

D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, “Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons,” Sci. Rep. 7(1), 15836 (2017).
[Crossref] [PubMed]

Ishikawa, A.

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

Isic, G.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref] [PubMed]

Iyer, A. K.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microw. Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Jian, S.

R. Xing and S. Jian, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Laser Technol. 100, 129–132 (2018).
[Crossref]

Jiang, X.

Y. W. Deng, L. Peng, X. Liao, and X. Jiang, “An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface,” Plasmonics 2018,1 (2018), doi:.
[Crossref]

L. Peng, X. Jiang, and S. M. Li, “Multi-functional Device with Switchable Functions of Absorption and Polarization Conversion at Terahertz Range,” Nanoscale Res. Lett. 13(1), 385 (2018).
[Crossref] [PubMed]

L. Peng, X. L. Li, X. Jiang, and S. M. Li, “A Novel THz Half-wave Polarization Converter for Cross-Polarization conversions of Both Linear and Circular Polarizations and Polarization Conversion Ratio Regulating by Graphene,” J. Lightwave Technol. 36(19), 4250–4258 (2018).
[Crossref]

Jiang, Y.

Jin, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Jokerst, N.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Khalid, A.

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Koppens, F. H.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Kremer, P. C.

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microw. Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

Kuester, E. F.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged Transition Conditions for Electromagnetic Fields at a Metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Lai, M.

Landy, N. I.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

Lavrinenko, A. V.

Lederer, F.

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Lei, M.

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

Li, B. J.

F. T. Chuang, P. Y. Chen, T. C. Cheng, C. H. Chien, and B. J. Li, “Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate,” Nanotechnology 18(39), 395702 (2007).
[Crossref] [PubMed]

Li, E. P.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Li, H.

X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
[Crossref] [PubMed]

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

Li, J.

Li, S. M.

Li, W.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Li, X.

X. Li, L. Lin, L. S. Wu, W. Y. Yin, and J. F. Mao, “A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Li, X. L.

Li, Y.

Liao, X.

Y. W. Deng, L. Peng, X. Liao, and X. Jiang, “An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface,” Plasmonics 2018,1 (2018), doi:.
[Crossref]

Liao, Y. L.

Lim, G. K.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Lin, L.

X. Li, L. Lin, L. S. Wu, W. Y. Yin, and J. F. Mao, “A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Lin, Y.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Ling, X.

X. Zheng, Z. Xiao, and X. Ling, “A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Liu, J.

Liu, P.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface,” Nanoscale Res. Lett. 13(1), 38 (2018).
[Crossref] [PubMed]

Liu, X.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Liu, Z.

C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref] [PubMed]

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Luo, Y.

Ma, X.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Ma, Y.

Ma, Y. T.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Mao, J. F.

X. Li, L. Lin, L. S. Wu, W. Y. Yin, and J. F. Mao, “A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Menzel, C.

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Mo, W.

Mohamed, M. A.

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged Transition Conditions for Electromagnetic Fields at a Metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Monticone, F.

F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
[Crossref] [PubMed]

Nemat-Nasser, S. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Ng, W. H.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Nordlander, P.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

O’Hara, J.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

Ominde, C. F.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface,” Nanoscale Res. Lett. 13(1), 38 (2018).
[Crossref] [PubMed]

Owiti, E. O.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface,” Nanoscale Res. Lett. 13(1), 38 (2018).
[Crossref] [PubMed]

Padilla, W. J.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Panoiu, N. C.

Peng, L.

L. Peng, X. Jiang, and S. M. Li, “Multi-functional Device with Switchable Functions of Absorption and Polarization Conversion at Terahertz Range,” Nanoscale Res. Lett. 13(1), 385 (2018).
[Crossref] [PubMed]

L. Peng, X. L. Li, X. Jiang, and S. M. Li, “A Novel THz Half-wave Polarization Converter for Cross-Polarization conversions of Both Linear and Circular Polarizations and Polarization Conversion Ratio Regulating by Graphene,” J. Lightwave Technol. 36(19), 4250–4258 (2018).
[Crossref]

Y. W. Deng, L. Peng, X. Liao, and X. Jiang, “An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface,” Plasmonics 2018,1 (2018), doi:.
[Crossref]

Perruisseau-Carrier, J.

M. Esquius-Morote, G. J. Sómez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

Piket-May, M.

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged Transition Conditions for Electromagnetic Fields at a Metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

Pilon, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

Pu, Y.

Qiu, M.

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Ren, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Rockstuhl, C.

R. Alaee, M. Albooyeh, and C. Rockstuhl, “Theory of metasurface based perfect absorbers,” J. Phys. D Appl. Phys. 50(50), 503002 (2017).
[Crossref]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Saha, S.

Schlather, A.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Schultz, S.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Shao, J.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Shi, C. C.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Shrekenhamer, D.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

Singh, L.

X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
[Crossref] [PubMed]

Smith, D. R.

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Sómez-Diaz, G. J.

M. Esquius-Morote, G. J. Sómez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

Song, Z. Y.

Z. Y. Song, Z. Gao, Y. M. Zhang, and B. L. Zhang, “Terahertz transparency of optically opaque metallic films,” Europhys. Lett. 106(2), 27005 (2014).
[Crossref]

Starr, A. F.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Starr, T.

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

Stiens, J.

G. He and J. Stiens, “Enhanced Terahertz Absorption of Graphene Composite Integrated with Double Circular Metal Ring Array,” Plasmonics 9, 1–6 (2017).

Strikwerda, A. C.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

Sun, X.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface,” Nanoscale Res. Lett. 13(1), 38 (2018).
[Crossref] [PubMed]

Sun, Z.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Tan, H. W.

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

Tanaka, T.

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

Tao, H.

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

Tian, J.

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

Tyler, T.

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Vasic, B.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref] [PubMed]

Vier, D. C.

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Wang, B. X.

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

Wang, C.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Wang, D. W.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Wang, J.

N. Zhou and J. Wang, “Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: proposal and simulation,” Sci. Rep. 8(1), 8038 (2018).
[Crossref] [PubMed]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Wang, J. A.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Wang, K.

Wang, Q.

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

Wang, X.

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

Wang, Y.

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Watts, C. M.

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

Wei, X.

Wu, L. S.

X. Li, L. Lin, L. S. Wu, W. Y. Yin, and J. F. Mao, “A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

Xiao, X.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Xiao, Z.

X. Zheng, Z. Xiao, and X. Ling, “A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Xie, H.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Xing, L. Y.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Xing, R.

R. Xing and S. Jian, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Laser Technol. 100, 129–132 (2018).
[Crossref]

Xu, J.

Xu, L.

Xu, S. T.

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric‐Metal Grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Xu, Y.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Yang, C.

Yang, H.

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface,” Nanoscale Res. Lett. 13(1), 38 (2018).
[Crossref] [PubMed]

Yang, J.

D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, “Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons,” Sci. Rep. 7(1), 15836 (2017).
[Crossref] [PubMed]

Yang, L.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yang, W.

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
[Crossref] [PubMed]

Ye, J. C.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Ye, Y.

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

Yin, W. Y.

X. Li, L. Lin, L. S. Wu, W. Y. Yin, and J. F. Mao, “A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

You, J. W.

Yu, P.

Yu, X.

Zhang, B. L.

Z. Y. Song, Z. Gao, Y. M. Zhang, and B. L. Zhang, “Terahertz transparency of optically opaque metallic films,” Europhys. Lett. 106(2), 27005 (2014).
[Crossref]

Zhang, D.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Zhang, H.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Zhang, J.

D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, “Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons,” Sci. Rep. 7(1), 15836 (2017).
[Crossref] [PubMed]

Zhang, R.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

Zhang, S. N.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Zhang, W.

X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
[Crossref] [PubMed]

Zhang, Y.

J. W. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
[Crossref]

Zhang, Y. M.

Z. Y. Song, Z. Gao, Y. M. Zhang, and B. L. Zhang, “Terahertz transparency of optically opaque metallic films,” Europhys. Lett. 106(2), 27005 (2014).
[Crossref]

Zhang, Z.

D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, “Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons,” Sci. Rep. 7(1), 15836 (2017).
[Crossref] [PubMed]

Zhang, Z. Y.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Zhao, D.

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

Zhao, W. S.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

Zhao, Y.

Zheng, G.

Zheng, J.

X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
[Crossref] [PubMed]

Zheng, X.

X. Zheng, Z. Xiao, and X. Ling, “A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

Zheng, Y.

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

Zhou, L.

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Zhou, M.

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

Zhou, N.

N. Zhou and J. Wang, “Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: proposal and simulation,” Sci. Rep. 8(1), 8038 (2018).
[Crossref] [PubMed]

Zhou, R.

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

Zografopoulos, D. C.

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref] [PubMed]

Zou, X.

Zou, Y.

L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

ACS Nano (1)

Z. Fang, Y. Wang, Z. Liu, A. Schlather, P. M. Ajayan, F. H. Koppens, P. Nordlander, and N. J. Halas, “Plasmon-induced doping of graphene,” ACS Nano 6(11), 10222–10228 (2012).
[Crossref] [PubMed]

Adv. Mater. (1)

C. M. Watts, X. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. 24(23), OP98 (2012).
[PubMed]

AIP Adv. (1)

Q. Wang, R. Zhou, X. Wang, Y. Guo, Y. Hao, M. Lei, and K. Bi, “Wideband terahertz absorber based on Mie resonance metasurface,” AIP Adv. 7(11), 115310 (2017).
[Crossref]

Ann. Phys. (1)

S. T. Xu, F. T. Hu, M. Chen, F. Fan, and S. J. Chang, “Broadband Terahertz Polarization Converter and Asymmetric Transmission Based on Coupled Dielectric‐Metal Grating,” Ann. Phys. 529(10), 1700151 (2017).
[Crossref]

Appl. Phys. Lett. (2)

A. Ishikawa and T. Tanaka, “Plasmon hybridization in graphene metamaterials,” Appl. Phys. Lett. 102(25), 253110 (2013).
[Crossref]

J. Hao, J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, “High performance optical absorber based on a plasmonic metamaterial,” Appl. Phys. Lett. 96(25), 251104 (2010).
[Crossref]

Europhys. Lett. (1)

Z. Y. Song, Z. Gao, Y. M. Zhang, and B. L. Zhang, “Terahertz transparency of optically opaque metallic films,” Europhys. Lett. 106(2), 27005 (2014).
[Crossref]

Guangpuxue Yu Guangpu Fenxi (1)

L. Y. Xing, H. L. Cui, C. C. Shi, X. H. Han, Z. Y. Zhang, W. Li, Y. T. Ma, Y. Zheng, and S. N. Zhang, “Experimental study of PMI Foam Composite properties in terahertz,” Guangpuxue Yu Guangpu Fenxi 35(12), 3319–3324 (2015).
[PubMed]

IEEE Antennas Propag. Mag. (1)

C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas Propag. Mag. 54(2), 10–35 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. X. Wang, “Quad-band terahertz metamaterial absorber based on the combining of the dipole and quadrupole resonances of two SRRs,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–7 (2017).
[Crossref]

IEEE Photonics J. (1)

M. Chen, L. Chang, X. Gao, H. Chen, C. Wang, X. Xiao, and D. Zhao, “Wideband Tunable Cross Polarization Converter Based on a Graphene Metasurface With a Hollow-Carved “H” Array,” IEEE Photonics J. 9(5), 1–11 (2017).
[Crossref]

IEEE Trans. Antenn. Propag. (3)

E. F. Kuester, M. A. Mohamed, M. Piket-May, and C. L. Holloway, “Averaged Transition Conditions for Electromagnetic Fields at a Metafilm,” IEEE Trans. Antenn. Propag. 51(10), 2641–2651 (2003).
[Crossref]

G. W. Hanson, “Dyadic Green’s functions for an anisotropic, non-local model of biased graphene,” IEEE Trans. Antenn. Propag. 56(3), 747–757 (2008).
[Crossref]

X. Li, L. Lin, L. S. Wu, W. Y. Yin, and J. F. Mao, “A Bandpass Graphene Frequency Selective Surface With Tunable Polarization Rotation for THz Applications,” IEEE Trans. Antenn. Propag. 65(2), 662–672 (2017).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative refractive index media using periodically L-C loaded transmission lines,” IEEE Trans. Microw. Theory Tech. 50(12), 2702–2712 (2002).
[Crossref]

IEEE Trans. NanoTechnol. (1)

D. W. Wang, W. S. Zhao, H. Xie, J. Hu, L. Zhou, W. C. Chen, P. Q. Gao, J. C. Ye, Y. Xu, H. S. Chen, E. P. Li, and W. Y. Yin, “Tunable THz Multiband Frequency-Selective Surface Based on Hybrid Metal–Graphene Structures,” IEEE Trans. NanoTechnol. 16(6), 1132–1137 (2017).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

M. Esquius-Morote, G. J. Sómez-Diaz, and J. Perruisseau-Carrier, “Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz,” IEEE Trans. Terahertz Sci. Technol. 4(1), 116–122 (2014).
[Crossref]

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

M. Fartookzadeh, “Design of metamirrors for linear to circular polarization conversion with super-octave bandwidth,” J. Mod. Opt. 64(18), 1854–1861 (2017).
[Crossref]

J. Phys. Conf. Ser. (1)

L. A. Falkovsky, “Optical properties of graphene,” J. Phys. Conf. Ser. 129, 012004 (2008).
[Crossref]

J. Phys. D Appl. Phys. (2)

R. Alaee, M. Albooyeh, and C. Rockstuhl, “Theory of metasurface based perfect absorbers,” J. Phys. D Appl. Phys. 50(50), 503002 (2017).
[Crossref]

J. W. He and Y. Zhang, “Metasurfaces in terahertz waveband,” J. Phys. D Appl. Phys. 50(46), 464004 (2017).
[Crossref]

Laser Photonics Rev. (2)

Y. Cui, Y. He, Y. Jin, F. Ding, L. Yang, Y. Ye, and S. He, “Plasmonic and metamaterial structures as electromagnetic absorbers,” Laser Photonics Rev. 8(4), 495–520 (2014).
[Crossref]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging–Modern techniques and applications,” Laser Photonics Rev. 5(1), 124–166 (2011).
[Crossref]

Mod. Phys. Lett. B (1)

M. Fartookzadeh, “Single-buried-layer reflection-mode metasurfaces for dual-band linear to circular polarization conversion,” Mod. Phys. Lett. B 32(23), 1850274 (2018).
[Crossref]

Nanoscale Res. Lett. (2)

E. O. Owiti, H. Yang, P. Liu, C. F. Ominde, and X. Sun, “Polarization Converter with Controllable Birefringence Based on Hybrid All-Dielectric-Graphene Metasurface,” Nanoscale Res. Lett. 13(1), 38 (2018).
[Crossref] [PubMed]

L. Peng, X. Jiang, and S. M. Li, “Multi-functional Device with Switchable Functions of Absorption and Polarization Conversion at Terahertz Range,” Nanoscale Res. Lett. 13(1), 385 (2018).
[Crossref] [PubMed]

Nanotechnology (2)

F. T. Chuang, P. Y. Chen, T. C. Cheng, C. H. Chien, and B. J. Li, “Improved field emission properties of thiolated multi-wall carbon nanotubes on a flexible carbon cloth substrate,” Nanotechnology 18(39), 395702 (2007).
[Crossref] [PubMed]

B. Vasić, D. C. Zografopoulos, G. Isić, R. Beccherelli, and R. Gajić, “Electrically tunable terahertz polarization converter based on overcoupled metal-isolator-metal metamaterials infiltrated with liquid crystals,” Nanotechnology 28(12), 124002 (2017).
[Crossref] [PubMed]

Nat. Photonics (3)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007).
[Crossref]

G. K. Lim, Z. L. Chen, J. Clark, R. G. Goh, W. H. Ng, H. W. Tan, R. H. Friend, P. K. Ho, and L. L. Chua, “Giant broadband nonlinear optical absorption response in dispersed graphene single sheets,” Nat. Photonics 5(9), 554–560 (2011).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010).
[Crossref]

Opt. Express (8)

H. T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012).
[Crossref] [PubMed]

R. Alaee, M. Farhat, C. Rockstuhl, and F. Lederer, “A perfect absorber made of a graphene micro-ribbon metamaterial,” Opt. Express 20(27), 28017–28024 (2012).
[Crossref] [PubMed]

Y. L. Liao and Y. Zhao, “Graphene-based tunable ultra-narrowband mid-infrared TE-polarization absorber,” Opt. Express 25(25), 32080–32089 (2017).
[Crossref] [PubMed]

A. Andryieuski and A. V. Lavrinenko, “Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach,” Opt. Express 21(7), 9144–9155 (2013).
[Crossref] [PubMed]

W. Mo, X. Wei, K. Wang, Y. Li, and J. Liu, “Ultrathin flexible terahertz polarization converter based on metasurfaces,” Opt. Express 24(12), 13621–13627 (2016).
[Crossref] [PubMed]

C. Yang, Y. Luo, J. Guo, Y. Pu, D. He, Y. Jiang, J. Xu, and Z. Liu, “Wideband tunable mid-infrared cross polarization converter using rectangle-shape perforated graphene,” Opt. Express 24(15), 16913–16922 (2016).
[Crossref] [PubMed]

X. Gao, W. Yang, W. Cao, M. Chen, Y. Jiang, X. Yu, and H. Li, “Bandwidth broadening of a graphene-based circular polarization converter by phase compensation,” Opt. Express 25(20), 23945–23954 (2017).
[Crossref] [PubMed]

J. W. You and N. C. Panoiu, “Polarization control using passive and active crossed graphene gratings,” Opt. Express 26(2), 1882–1894 (2018).
[Crossref] [PubMed]

Opt. Laser Technol. (2)

L. Guo, X. Ma, Y. Zou, R. Zhang, J. A. Wang, and D. Zhang, “Wide-angle infrared metamaterial absorber with near-unity absorbance,” Opt. Laser Technol. 98, 247–251 (2018).
[Crossref]

R. Xing and S. Jian, “A dual-band THz absorber based on graphene sheet and ribbons,” Opt. Laser Technol. 100, 129–132 (2018).
[Crossref]

Opt. Lett. (3)

Phys. Rev. A (1)

C. Menzel, C. Rockstuhl, and F. Lederer, “Advanced Jones calculus for the classification of periodic metamaterials,” Phys. Rev. A 82(5), 053811 (2010).
[Crossref]

Phys. Rev. B Condens. Matter Mater. Phys. (2)

H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, and R. D. Averitt, “Highly flexible wide angle of incidence terahertz metamaterial absorber: Design, fabrication, and characterization,” Phys. Rev. B Condens. Matter Mater. Phys. 78(24), 241103 (2008).
[Crossref]

N. I. Landy, C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, “Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging,” Phys. Rev. B Condens. Matter Mater. Phys. 79(12), 125104 (2009).
[Crossref]

Phys. Rev. Lett. (2)

X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010).
[Crossref] [PubMed]

D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett. 84(18), 4184–4187 (2000).
[Crossref] [PubMed]

Plasmonics (4)

X. Zheng, Z. Xiao, and X. Ling, “A tunable hybrid metamaterial reflective polarization converter based on vanadium oxide film,” Plasmonics 13(1), 287–291 (2018).
[Crossref]

J. Ding, B. Arigong, H. Ren, J. Shao, M. Zhou, Y. Lin, and H. Zhang, “Mid-infrared tunable dual-frequency cross polarization converters using graphene-based L-shaped nanoslot array,” Plasmonics 10(2), 351–356 (2015).
[Crossref]

G. He and J. Stiens, “Enhanced Terahertz Absorption of Graphene Composite Integrated with Double Circular Metal Ring Array,” Plasmonics 9, 1–6 (2017).

Y. W. Deng, L. Peng, X. Liao, and X. Jiang, “An Ultra-Broadband Terahertz Absorber Based on Coplanar Graphene and Gold Hybridized Metasurface,” Plasmonics 2018,1 (2018), doi:.
[Crossref]

Rep. Prog. Phys. (1)

F. Monticone and A. Alù, “Metamaterial, plasmonic and nanophotonic devices,” Rep. Prog. Phys. 80(3), 036401 (2017).
[Crossref] [PubMed]

Sci. Rep. (3)

N. Zhou and J. Wang, “Metasurface-assisted orbital angular momentum carrying Bessel-Gaussian Laser: proposal and simulation,” Sci. Rep. 8(1), 8038 (2018).
[Crossref] [PubMed]

X. Gao, L. Singh, W. Yang, J. Zheng, H. Li, and W. Zhang, “Bandwidth broadening of a linear polarization converter by near-field metasurface coupling,” Sci. Rep. 7(1), 6817 (2017).
[Crossref] [PubMed]

D. Chen, J. Yang, J. Zhang, J. Huang, and Z. Zhang, “Section 1Tunable broadband terahertz absorbers based on multiple layers of graphene ribbons,” Sci. Rep. 7(1), 15836 (2017).
[Crossref] [PubMed]

Other (2)

CST studio, Computer Simulation Technology. Darmstadt, Germany. [Online]. Available: www.cst.com .

N. Engheta and R. W. Ziolkowski, “Electromagnetic Metamaterials: Physics and Engineering Explorations,” (New York: Wiley) (2006)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 The conductivities of the graphene in terms of the chemical potential (µc). (a) Real part, and (b) imaginary part.
Fig. 2
Fig. 2 A graphene sheet normally illuminated by a plane wave. (a) Schematic view of the incidence, (b) reflectance in terms of µc, (c) transmission in terms of µc, and (d) absorption in terms of µc.
Fig. 3
Fig. 3 Methodology of the multi-functional device.
Fig. 4
Fig. 4 The polarization converter. (a) 3D view of the array, (b) top view of a unit cell, (c) simulation model, (d) reflection and (e) PCR & Absorption.
Fig. 5
Fig. 5 Schematic view of the proposed MFD. (a) top view of the GAM, (b) 3D view of the MFD, and (c) side view of the MFD.
Fig. 6
Fig. 6 The results of the multi-functional device under normal illuminations. (a) reflection with µc1 = µc2 = 0 eV, (b) PCR and absorptions with µc1 = µc2 = 0 eV, (c) reflection with µc1 = 0.5 eV and µc2 = 0.8 eV, and (d) absorptions with µc1 = 0.5 eV and µc2 = 0.8 eV.
Fig. 7
Fig. 7 The structures and results without the GAM 2. (a) with PCM, (b) without PCM.
Fig. 8
Fig. 8 The structures and results without the GAM 1. (a) with PCM, (b) without PCM.
Fig. 9
Fig. 9 Current distributions of the multi-functional device with µc1 = µc2 = 0 eV (polarization conversion mode). (a) current density of 2.3 THz, (b) current phasor of 2.3 THz, (c) current density of 2.8 THz, and (d) current phasor aof 2.8 THz.
Fig. 10
Fig. 10 Current distributions of the multi-functional device with µc1 = 0.5 eV and µc2 = 0.8 eV (absorption mode). (a) current density of 1.5 THz, (b) current density of 2.3 THz, and (c) current density of 2.8 THz.
Fig. 11
Fig. 11 Oblique incidences for the polarization conversion mode with µc1 = µc2 = 0 eV. (a) s-polarized incidence, and (b) p-polarized incidence.
Fig. 12
Fig. 12 Oblique incidences for the absorption mode with µc1 = 0.5 eV and µc2 = 0.8 eV. (a) s-polarized incidence, and (b) p-polarized incidence.
Fig. 13
Fig. 13 With new PCM. (a) schematic view, (b) linear polarization, (c) circular polarization.

Tables (2)

Tables Icon

Table 1 Comparison of the bandwidth of the wideband absorbers

Tables Icon

Table 2 Comparison of the absorptivity results of Figs. 6-8

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

σ s = σ intra (ω, μ c ,Γ,T)+ σ inter (ω, μ c ,Γ,T) σ intra (ω, μ c ,Γ,T)=j e 2 k B T π 2 (ωj2Γ) ( μ c k B T +2ln( e μ c k B T +1)) σ inter (ω, μ c ,Γ,T)j e 2 4π ln( 2| μ c |(ωj2Γ) 2| μ c |+(ωj2Γ) )
r= n 1 n 2 σ s Z 0 n 1 + n 2 + σ s Z 0 ,
t= 2 n 1 n 1 + n 2 + σ s Z 0 ,
A= 4ξ (1+γ+ξ) 2 + ζ 2 ,
r= σ s Z 0 2+ σ s Z 0 ,
t= 2 2+ σ s Z 0 ,
A= 4ξ (2+ξ) 2 + ζ 2 = 4 Z 0 σ s (2+ Z 0 σ s ) 2 + ( Z 0 σ s ) 2 .

Metrics