Abstract

The laser irradiation damage on Ge-As-S chalcogenide glasses was studied with 216-fs pulses with repetition rates (RRs) of 1 kHz-1 MHz at 1030 nm. The compositional dependence of the laser damage threshold was systematically investigated, and the damaged mechanisms corresponding to the irradiation pulses with different RRs were discussed. We found that the stoichiometric compositions have the best resistance to the optical damage irrespective of the RR. When the irradiation pulses operate at 1 kHz, the damage is mainly caused by avalanche ionization. In comparison, thermal accumulation becomes prominent as the RR exceeds 10 kHz and becomes a main factor in the damage when the RR is more than 100 kHz. The results could be helpful for composition choices and pumping scheme designs in nonlinear optics.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses

Yan Zhang, Yinsheng Xu, Chenyang You, Dong Xu, Junzhou Tang, Peiqing Zhang, and Shixun Dai
Opt. Express 25(8) 8886-8895 (2017)

Femtosecond laser ablation and photo-induced effects of As40S60, Ga0.8As39.2S60 and Ga0.8As29.2Sb10S60 chalcogenide glasses

Lutao Liu, Xin Zheng, Xusheng Xiao, Yantao Xu, Xiaoxia Cui, Jian Cui, Chunlei Guo, Jianjun Yang, and Haitao Guo
Opt. Mater. Express 9(9) 3582-3593 (2019)

Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation

S. H. Messaddeq, R. Vallée, P. Soucy, M. Bernier, M. El-Amraoui, and Y. Messaddeq
Opt. Express 20(28) 29882-29889 (2012)

References

  • View by:
  • |
  • |
  • |

  1. V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
    [Crossref]
  2. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
    [Crossref]
  3. Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
    [Crossref] [PubMed]
  4. P. Lucas, G. Coleman, S. Jiang, T. Luo, and Z. Yang, “Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing,” Opt. Mater. 47, 530–536 (2015).
    [Crossref]
  5. W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
    [Crossref]
  6. B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
    [Crossref]
  7. T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-Infrared Supercontinuum Generation Spanning 2.0 to 15.1 μm in a Chalcogenide Step-Index Fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
    [Crossref] [PubMed]
  8. J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
    [Crossref]
  9. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
    [Crossref]
  10. D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. Amraoui, Y. Messaddeq, M. Rochette, S. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
    [Crossref]
  11. S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
    [Crossref] [PubMed]
  12. R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
    [Crossref] [PubMed]
  13. T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines (Basel) 9(7), 337 (2018).
    [Crossref] [PubMed]
  14. J. Cui, X. Xiao, Y. Xu, X. Cui, M. Chen, J. Guo, M. Lu, B. Peng, and H. Guo, “Mid-infrared emissions of Dy3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser,” Opt. Mater. Express 8(8), 2089–2102 (2018).
    [Crossref]
  15. Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
    [Crossref] [PubMed]
  16. R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
    [Crossref]
  17. S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015).
    [Crossref] [PubMed]
  18. Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
    [Crossref] [PubMed]
  19. S. H. Messaddeq, R. Vallée, P. Soucy, M. Bernier, M. El-Amraoui, and Y. Messaddeq, “Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation,” Opt. Express 20(28), 29882–29889 (2012).
    [Crossref] [PubMed]
  20. C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
    [Crossref] [PubMed]
  21. Y. Zhang, Y. Xu, C. You, D. Xu, J. Tang, P. Zhang, and S. Dai, “Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses,” Opt. Express 25(8), 8886–8895 (2017).
    [Crossref] [PubMed]
  22. S. Mamedov, D. G. Georgiev, T. Qu, and P. Boolchand, “Evidence for nanoscale phase separation of stressed rigid glasses,” J. Phys. Condens. Matter 15(31), S2397–S2411 (2003).
    [Crossref]
  23. Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
    [Crossref]
  24. C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
    [Crossref]
  25. M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
    [Crossref]
  26. J. Qiu, Femtosecond laser processing technology-basic and applied (Science Press, 2018).
  27. Y. Yang, B. Zhang, A. Yang, Z. Yang, and P. Lucas, “Structural Origin of Fragility in Ge-As-S Glasses Investigated by Calorimetry and Raman Spectroscopy,” J. Phys. Chem. B 119(15), 5096–5101 (2015).
    [Crossref] [PubMed]
  28. Y. Yao, T. Xie, and Y. Gao, Handbook of chemistry and physics (Shanghai Science and Technology Press, 1983).

2018 (3)

2017 (7)

Y. Zhang, Y. Xu, C. You, D. Xu, J. Tang, P. Zhang, and S. Dai, “Raman gain and femtosecond laser induced damage of Ge-As-S chalcogenide glasses,” Opt. Express 25(8), 8886–8895 (2017).
[Crossref] [PubMed]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
[Crossref] [PubMed]

D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. Amraoui, Y. Messaddeq, M. Rochette, S. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
[Crossref] [PubMed]

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref] [PubMed]

2016 (5)

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-Infrared Supercontinuum Generation Spanning 2.0 to 15.1 μm in a Chalcogenide Step-Index Fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

2015 (4)

P. Lucas, G. Coleman, S. Jiang, T. Luo, and Z. Yang, “Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing,” Opt. Mater. 47, 530–536 (2015).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015).
[Crossref] [PubMed]

Y. Yang, B. Zhang, A. Yang, Z. Yang, and P. Lucas, “Structural Origin of Fragility in Ge-As-S Glasses Investigated by Calorimetry and Raman Spectroscopy,” J. Phys. Chem. B 119(15), 5096–5101 (2015).
[Crossref] [PubMed]

2014 (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

2013 (1)

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

2012 (2)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

S. H. Messaddeq, R. Vallée, P. Soucy, M. Bernier, M. El-Amraoui, and Y. Messaddeq, “Self-organized periodic structures on Ge-S based chalcogenide glass induced by femtosecond laser irradiation,” Opt. Express 20(28), 29882–29889 (2012).
[Crossref] [PubMed]

2003 (1)

S. Mamedov, D. G. Georgiev, T. Qu, and P. Boolchand, “Evidence for nanoscale phase separation of stressed rigid glasses,” J. Phys. Condens. Matter 15(31), S2397–S2411 (2003).
[Crossref]

2001 (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

1998 (1)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Aggarwal, I.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Aggarwal, I. D.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Alamgir, I.

Alvarez, O.

Amraoui, M.

Antipov, S.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bayya, S.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Bedford, R.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Bernier, M.

Boolchand, P.

S. Mamedov, D. G. Georgiev, T. Qu, and P. Boolchand, “Evidence for nanoscale phase separation of stressed rigid glasses,” J. Phys. Condens. Matter 15(31), S2397–S2411 (2003).
[Crossref]

Brodeur, A.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Busse, L.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Chen, M.

Chenard, F.

Cheng, T.

Cheng, Z.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Chin, G.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Choi, D. Y.

Churbanov, M. F.

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Coleman, G.

P. Lucas, G. Coleman, S. Jiang, T. Luo, and Z. Yang, “Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing,” Opt. Mater. 47, 530–536 (2015).
[Crossref]

Cui, J.

Cui, X.

Dai, S.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

El-Amraoui, M.

Florea, C.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Freeman, M. J.

Fuerbach, A.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Gai, X.

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Gattass, R.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Gattass, R. R.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Georgiev, D. G.

S. Mamedov, D. G. Georgiev, T. Qu, and P. Boolchand, “Evidence for nanoscale phase separation of stressed rigid glasses,” J. Phys. Condens. Matter 15(31), S2397–S2411 (2003).
[Crossref]

Gibson, D.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Gibson, R.

Giessen, H.

Guo, H.

Guo, J.

Guo, K.

Guo, W.

Han, X.

Hu, T.

Hudson, D.

Ifarraguerri, A. I.

Islam, M. N.

Jackson, S.

Janiszewski, B.

Jiang, S.

P. Lucas, G. Coleman, S. Jiang, T. Luo, and Z. Yang, “Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing,” Opt. Mater. 47, 530–536 (2015).
[Crossref]

Kautek, W.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Kedenburg, S.

Kim, W.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Krausz, F.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Krüger, J.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Kung, F.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Lenzner, M.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Li, G.

Li, L.

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

D. Hudson, S. Antipov, L. Li, I. Alamgir, T. Hu, M. Amraoui, Y. Messaddeq, M. Rochette, S. Jackson, and A. Fuerbach, “Toward all-fiber supercontinuum spanning the mid-infrared,” Optica 4(10), 1163–1166 (2017).
[Crossref]

Li, Y.

Liang, Z.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines (Basel) 9(7), 337 (2018).
[Crossref] [PubMed]

Liu, S.

Liu, X.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines (Basel) 9(7), 337 (2018).
[Crossref] [PubMed]

Liu, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Lu, M.

Lucas, P.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Y. Yang, B. Zhang, A. Yang, Z. Yang, and P. Lucas, “Structural Origin of Fragility in Ge-As-S Glasses Investigated by Calorimetry and Raman Spectroscopy,” J. Phys. Chem. B 119(15), 5096–5101 (2015).
[Crossref] [PubMed]

P. Lucas, G. Coleman, S. Jiang, T. Luo, and Z. Yang, “Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing,” Opt. Mater. 47, 530–536 (2015).
[Crossref]

Luo, T.

P. Lucas, G. Coleman, S. Jiang, T. Luo, and Z. Yang, “Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing,” Opt. Mater. 47, 530–536 (2015).
[Crossref]

Luther-Davies, B.

Madden, S.

Mamedov, S.

S. Mamedov, D. G. Georgiev, T. Qu, and P. Boolchand, “Evidence for nanoscale phase separation of stressed rigid glasses,” J. Phys. Condens. Matter 15(31), S2397–S2411 (2003).
[Crossref]

Martinez, R. A.

Matsumoto, M.

Maynard, R. L.

Mazur, E.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Messaddeq, S. H.

Messaddeq, Y.

Miklos, R.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Mörz, F.

Mourou, G.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Nagasaka, K.

Nguyen, V.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Nguyen, V. Q.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Nie, Q.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Ohishi, Y.

Pan, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Peng, B.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Plant, G.

Pureza, P. C.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Qi, S.

Qiu, J.

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Qu, T.

S. Mamedov, D. G. Georgiev, T. Qu, and P. Boolchand, “Evidence for nanoscale phase separation of stressed rigid glasses,” J. Phys. Condens. Matter 15(31), S2397–S2411 (2003).
[Crossref]

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Rochette, M.

Sanghera, J. S.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Sartania, S.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Schaffer, C. B.

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Shaw, L.

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

Shaw, L. B.

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Shen, X.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Shiryaev, V. S.

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Soucy, P.

Spielmann, C.

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Steinle, T.

Steinmann, A.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Sun, L.

Suzuki, T.

Tang, D.

S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
[Crossref] [PubMed]

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Tang, J.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Tao, H.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Terry, F. L.

Tezuka, H.

Tuan, T. H.

Vallée, R.

Wang, R.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref] [PubMed]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Wang, X.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines (Basel) 9(7), 337 (2018).
[Crossref] [PubMed]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
[Crossref] [PubMed]

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Wang, Y.

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
[Crossref] [PubMed]

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref] [PubMed]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Wu, B.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

Xiao, X.

Xu, D.

Xu, P.

Xu, Y.

Xue, X.

Yang, A.

S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
[Crossref] [PubMed]

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Y. Yang, B. Zhang, A. Yang, Z. Yang, and P. Lucas, “Structural Origin of Fragility in Ge-As-S Glasses Investigated by Calorimetry and Raman Spectroscopy,” J. Phys. Chem. B 119(15), 5096–5101 (2015).
[Crossref] [PubMed]

Yang, Y.

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Y. Yang, B. Zhang, A. Yang, Z. Yang, and P. Lucas, “Structural Origin of Fragility in Ge-As-S Glasses Investigated by Calorimetry and Raman Spectroscopy,” J. Phys. Chem. B 119(15), 5096–5101 (2015).
[Crossref] [PubMed]

Yang, Z.

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
[Crossref] [PubMed]

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Y. Yang, B. Zhang, A. Yang, Z. Yang, and P. Lucas, “Structural Origin of Fragility in Ge-As-S Glasses Investigated by Calorimetry and Raman Spectroscopy,” J. Phys. Chem. B 119(15), 5096–5101 (2015).
[Crossref] [PubMed]

P. Lucas, G. Coleman, S. Jiang, T. Luo, and Z. Yang, “Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing,” Opt. Mater. 47, 530–536 (2015).
[Crossref]

You, C.

Yu, Y.

Zhai, C.

Zhang, B.

S. Qi, B. Zhang, C. Zhai, Y. Li, A. Yang, Y. Yu, D. Tang, Z. Yang, and B. Luther-Davies, “High-resolution chalcogenide fiber bundles for longwave infrared imaging,” Opt. Express 25(21), 26160–26165 (2017).
[Crossref] [PubMed]

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

Y. Yang, B. Zhang, A. Yang, Z. Yang, and P. Lucas, “Structural Origin of Fragility in Ge-As-S Glasses Investigated by Calorimetry and Raman Spectroscopy,” J. Phys. Chem. B 119(15), 5096–5101 (2015).
[Crossref] [PubMed]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

Zhang, M.

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

Zhang, P.

Zhang, Y.

Zhao, Z.

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Zhou, T.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines (Basel) 9(7), 337 (2018).
[Crossref] [PubMed]

Zhu, Z.

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines (Basel) 9(7), 337 (2018).
[Crossref] [PubMed]

J. Am. Ceram. Soc. (2)

B. Zhang, Y. Yu, C. Zhai, S. Qi, Y. Wang, A. Yang, X. Gai, R. Wang, Z. Yang, and B. Luther-Davies, “High brightness 2.2-12 μm supercontinuum generation in a nontoxic chalcogenide step-index fiber,” J. Am. Ceram. Soc. 99(8), 2565–2568 (2016).
[Crossref]

J. Qiu, A. Yang, M. Zhang, L. Li, B. Zhang, D. Tang, and Z. Yang, “Ga2S3‐Sb2S3‐CsI chalcohalide glasses for mid‐infrared applications,” J. Am. Ceram. Soc. 100(11), 5107–5112 (2017).
[Crossref]

J. Non-Cryst. Solids (3)

W. Kim, V. Nguyen, L. Shaw, L. Busse, C. Florea, D. Gibson, R. Gattass, S. Bayya, F. Kung, G. Chin, R. Miklos, I. Aggarwal, and J. S. Sanghera, “Recent progress in chalcogenide fiber technology at NRL,” J. Non-Cryst. Solids 431, 8–15 (2016).
[Crossref]

V. S. Shiryaev and M. F. Churbanov, “Trends and prospects for development of chalcogenide fibers for mid-infrared transmission,” J. Non-Cryst. Solids 377, 225–230 (2013).
[Crossref]

Y. Yang, Z. Yang, P. Lucas, Y. Wang, Z. Yang, A. Yang, B. Zhang, and H. Tao, “Composition dependence of physical and optical properties in Ge-As-S chalcogenide glasses,” J. Non-Cryst. Solids 440, 38–42 (2016).
[Crossref]

J. Phys. Chem. B (1)

Y. Yang, B. Zhang, A. Yang, Z. Yang, and P. Lucas, “Structural Origin of Fragility in Ge-As-S Glasses Investigated by Calorimetry and Raman Spectroscopy,” J. Phys. Chem. B 119(15), 5096–5101 (2015).
[Crossref] [PubMed]

J. Phys. Condens. Matter (1)

S. Mamedov, D. G. Georgiev, T. Qu, and P. Boolchand, “Evidence for nanoscale phase separation of stressed rigid glasses,” J. Phys. Condens. Matter 15(31), S2397–S2411 (2003).
[Crossref]

Laser Photonics Rev. (1)

Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, and R. Wang, “Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber,” Laser Photonics Rev. 11(2), 792–798 (2017).
[Crossref]

Meas. Sci. Technol. (1)

C. B. Schaffer, A. Brodeur, and E. Mazur, “Laser-induced breakdown and damage in bulk transparent materials induced by tightly focused femtosecond laser pulses,” Meas. Sci. Technol. 12(11), 1784–1794 (2001).
[Crossref]

Micromachines (Basel) (1)

T. Zhou, Z. Zhu, X. Liu, Z. Liang, and X. Wang, “A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics,” Micromachines (Basel) 9(7), 337 (2018).
[Crossref] [PubMed]

Nat. Photonics (1)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8(11), 830–834 (2014).
[Crossref]

Opt. Express (3)

Opt. Fiber Technol. (1)

R. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-Fiber Chalcogenide-Based Mid-Infrared Supercontinuum Source,” Opt. Fiber Technol. 18(5), 345–348 (2012).
[Crossref]

Opt. Lett. (6)

R. A. Martinez, G. Plant, K. Guo, B. Janiszewski, M. J. Freeman, R. L. Maynard, M. N. Islam, F. L. Terry, O. Alvarez, F. Chenard, R. Bedford, R. Gibson, and A. I. Ifarraguerri, “Mid-infrared supercontinuum generation from 1.6 to >11 μm using concatenated step-index fluoride and chalcogenide fibers,” Opt. Lett. 43(2), 296–299 (2018).
[Crossref] [PubMed]

Y. Wang, S. Dai, G. Li, D. Xu, C. You, X. Han, P. Zhang, X. Wang, and P. Xu, “1.4-7.2 μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime,” Opt. Lett. 42(17), 3458–3461 (2017).
[Crossref] [PubMed]

Y. Yu, B. Zhang, X. Gai, C. Zhai, S. Qi, W. Guo, Z. Yang, R. Wang, D. Y. Choi, S. Madden, and B. Luther-Davies, “1.8-10 μm mid-infrared supercontinuum generated in a step-index chalcogenide fiber using low peak pump power,” Opt. Lett. 40(6), 1081–1084 (2015).
[Crossref] [PubMed]

S. Kedenburg, T. Steinle, F. Mörz, A. Steinmann, and H. Giessen, “High-power mid-infrared high repetition-rate supercontinuum source based on a chalcogenide step-index fiber,” Opt. Lett. 40(11), 2668–2671 (2015).
[Crossref] [PubMed]

T. Cheng, K. Nagasaka, T. H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, and Y. Ohishi, “Mid-Infrared Supercontinuum Generation Spanning 2.0 to 15.1 μm in a Chalcogenide Step-Index Fiber,” Opt. Lett. 41(9), 2117–2120 (2016).
[Crossref] [PubMed]

Z. Zhao, X. Wang, S. Dai, Z. Pan, S. Liu, L. Sun, P. Zhang, Z. Liu, Q. Nie, X. Shen, and R. Wang, “1.5-14 μm midinfrared supercontinuum generation in a low-loss Te-based chalcogenide step-index fiber,” Opt. Lett. 41(22), 5222–5225 (2016).
[Crossref] [PubMed]

Opt. Mater. (1)

P. Lucas, G. Coleman, S. Jiang, T. Luo, and Z. Yang, “Chalcogenide glass fibers: Optical window tailoring and suitability for bio-chemical sensing,” Opt. Mater. 47, 530–536 (2015).
[Crossref]

Opt. Mater. Express (1)

Optica (1)

Phys. Rev. Lett. (1)

M. Lenzner, J. Krüger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, “Femtosecond Optical Breakdown in Dielectrics,” Phys. Rev. Lett. 80(18), 4076–4079 (1998).
[Crossref]

Sci. Rep. (1)

C. You, S. Dai, P. Zhang, Y. Xu, Y. Wang, D. Xu, and R. Wang, “Mid-infrared femtosecond laser-induced damages in As2S3 and As2Se3 chalcogenide glasses,” Sci. Rep. 7(1), 6497 (2017).
[Crossref] [PubMed]

Other (2)

Y. Yao, T. Xie, and Y. Gao, Handbook of chemistry and physics (Shanghai Science and Technology Press, 1983).

J. Qiu, Femtosecond laser processing technology-basic and applied (Science Press, 2018).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Experimental set-up for the laser damage threshold measurements.
Fig. 2
Fig. 2 (a) Variation of the laser damage threshold (LDT) of Ge17.5As15S67.5 glass when irradiated by fs pulses at different repetition rates and composition dependence of the LDT in Ge15AsxS85-x (b) and GexAs10S90-x (c) glasses.
Fig. 3
Fig. 3 The SEM images of the damaged areas on Ge17.5As15S67.5 glass surface when irradiated by fs-pulses at different repetition rates

Tables (2)

Tables Icon

Table 1 Laser damage thresholds (LDTs) of Ge-As-S glasses under the irradiation of 216-fs pulses (1030 nm) at different repetition rates

Tables Icon

Table 2 Composition changes of the damaged area on Ge17.5As15S67.5 glass surface when exposed to fs-pulses at different repetition rates

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L D T = P c r R τ π ( d / 2 ) 2

Metrics