Abstract

Recent advances in condensed matter physics have shown that the valley degree of freedom of electrons in 2D materials with hexagonal symmetry, such as graphene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDs), can be efficiently exploited, leading to the emergent field of valleytronics, which offers unique opportunities for efficient data transfer, computing and storage. The ability to couple the valley degree of freedom of electrons with light can further expand the ways one manipulates this degree of freedom, thus envisioning a new class of solid-state-photonic interfaces and devices. Besides this expansion of control of valley by light-waves, coupling of photons with valley-polarized electrons can dramatically expand the landscape of available optical responses, which may bring new means of controlling light in photonic devices. In this work we design such hybrid solid-state photonic metasurface integrating 2D TMD and photonic all-dielectric metasurface. While TMD is naturally endowed with the property of valley to optical-polarization coupling, the photonic metasurface is designed to produce chiral field which selectively couples to the valley degree of freedom of solid-state TMD component. We experimentally demonstrate that such coupling leads to controlled valley polarization due to the coupling of 2D materials with the chiral photonic metasurface. The measured emission from valley excitons in this hybrid system yields the preferential emission of specific helicity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Electrically tunable valley polarization and valley coherence in monolayer WSe2 embedded in a van der Waals heterostructure [Invited]

Chitraleema Chakraborty, Arunabh Mukherjee, Liangyu Qiu, and A. Nick Vamivakas
Opt. Mater. Express 9(3) 1479-1487 (2019)

Nanophotonics with 2D transition metal dichalcogenides [Invited]

Alex Krasnok, Sergey Lepeshov, and Andrea Alú
Opt. Express 26(12) 15972-15994 (2018)

Exciton dynamics in monolayer transition metal dichalcogenides [Invited]

Galan Moody, John Schaibley, and Xiaodong Xu
J. Opt. Soc. Am. B 33(7) C39-C49 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
    [Crossref] [PubMed]
  2. K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS₂ transistors,” Science 344(6191), 1489–1492 (2014).
    [Crossref] [PubMed]
  3. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
    [Crossref] [PubMed]
  4. A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
    [Crossref]
  5. D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
    [Crossref] [PubMed]
  6. E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
    [Crossref] [PubMed]
  7. K. Y. Bliokh, D. Smirnova, and F. Nori, “Optics: Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
    [Crossref] [PubMed]
  8. T. Van Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent waves: supplemental document,” Optica 3(2), 1–10 (2016).
    [Crossref]
  9. S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” Science 359(6374), 443–447 (2018).
    [Crossref] [PubMed]
  10. T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
    [Crossref]
  11. L. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alu, and X. Li, “Routing Valley Excitons in a Monolayer MoS2 with a Metasurface,” arXiv:1801.06543 (2018).
  12. Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 1–6 (2011).
    [Crossref]
  13. C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
    [Crossref]
  14. P. K. Nayak, F. C. Lin, C. H. Yeh, J. S. Huang, and P. W. Chiu, “Robust room temperature valley polarization in monolayer and bilayer WS2,” Nanoscale 8(11), 6035–6042 (2016).
    [Crossref] [PubMed]

2018 (2)

S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” Science 359(6374), 443–447 (2018).
[Crossref] [PubMed]

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

2016 (2)

P. K. Nayak, F. C. Lin, C. H. Yeh, J. S. Huang, and P. W. Chiu, “Robust room temperature valley polarization in monolayer and bilayer WS2,” Nanoscale 8(11), 6035–6042 (2016).
[Crossref] [PubMed]

T. Van Mechelen and Z. Jacob, “Universal spin-momentum locking of evanescent waves: supplemental document,” Optica 3(2), 1–10 (2016).
[Crossref]

2015 (4)

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
[Crossref]

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
[Crossref] [PubMed]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Optics: Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

2014 (1)

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS₂ transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

2013 (1)

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

2012 (2)

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

2011 (1)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 1–6 (2011).
[Crossref]

Allain, A. V.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
[Crossref]

Alpeggiani, F.

S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” Science 359(6374), 443–447 (2018).
[Crossref] [PubMed]

Alù, A.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 1–6 (2011).
[Crossref]

Amand, T.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Anderson, Z.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

Azzini, S.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Berciaud, S.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Bliokh, K. Y.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Optics: Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

Cao, T.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Chervy, T.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Chiu, P. W.

P. K. Nayak, F. C. Lin, C. H. Yeh, J. S. Huang, and P. W. Chiu, “Robust room temperature valley polarization in monolayer and bilayer WS2,” Nanoscale 8(11), 6035–6042 (2016).
[Crossref] [PubMed]

Ebbesen, T. W.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Fan, H.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Feng, J.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Fu, L.

E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
[Crossref] [PubMed]

Garnett, E. C.

S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” Science 359(6374), 443–447 (2018).
[Crossref] [PubMed]

Gedik, N.

E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
[Crossref] [PubMed]

Genet, C.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Gong, S. H.

S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” Science 359(6374), 443–447 (2018).
[Crossref] [PubMed]

Gorodetski, Y.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Han, W.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

He, K.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Heikes, C.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

Heinz, T. F.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Huang, J. S.

P. K. Nayak, F. C. Lin, C. H. Yeh, J. S. Huang, and P. W. Chiu, “Robust room temperature valley polarization in monolayer and bilayer WS2,” Nanoscale 8(11), 6035–6042 (2016).
[Crossref] [PubMed]

Hutchison, J. A.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Imamoglu, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
[Crossref]

Jacob, Z.

Kis, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
[Crossref]

Kong, J.

E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
[Crossref] [PubMed]

Kormányos, A.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

Kuipers, L.

S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” Science 359(6374), 443–447 (2018).
[Crossref] [PubMed]

Lee, Y. H.

E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
[Crossref] [PubMed]

Lembke, D. S.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
[Crossref]

Lin, F. C.

P. K. Nayak, F. C. Lin, C. H. Yeh, J. S. Huang, and P. W. Chiu, “Robust room temperature valley polarization in monolayer and bilayer WS2,” Nanoscale 8(11), 6035–6042 (2016).
[Crossref] [PubMed]

Liu, B.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Liu, B. L.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Lorchat, E.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

MacNeill, D.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

Mak, K. F.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS₂ transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Marie, X.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

McEuen, P. L.

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS₂ transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

McGill, K. L.

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS₂ transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

McIver, J. W.

E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
[Crossref] [PubMed]

Nayak, P. K.

P. K. Nayak, F. C. Lin, C. H. Yeh, J. S. Huang, and P. W. Chiu, “Robust room temperature valley polarization in monolayer and bilayer WS2,” Nanoscale 8(11), 6035–6042 (2016).
[Crossref] [PubMed]

Niu, Q.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Nori, F.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Optics: Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

Park, J.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS₂ transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

Qiao, X. F.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Ralph, D. C.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

Sciacca, B.

S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” Science 359(6374), 443–447 (2018).
[Crossref] [PubMed]

Shan, J.

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Shi, J.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Sidler, M.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
[Crossref]

Sie, E. J.

E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
[Crossref] [PubMed]

Smirnova, D.

K. Y. Bliokh, D. Smirnova, and F. Nori, “Optics: Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

Srivastava, A.

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
[Crossref]

Tan, P.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Tan, P. H.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Urbaszek, B.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Van Mechelen, T.

Wang, E.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Wang, G.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Wang, S.

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Wu, X. X.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Ye, H.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Yeh, C. H.

P. K. Nayak, F. C. Lin, C. H. Yeh, J. S. Huang, and P. W. Chiu, “Robust room temperature valley polarization in monolayer and bilayer WS2,” Nanoscale 8(11), 6035–6042 (2016).
[Crossref] [PubMed]

Zhang, X.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Zhao, Y.

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 1–6 (2011).
[Crossref]

Zhu, C.

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Zhu, C. R.

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Zólyomi, V.

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

ACS Photonics (1)

T. Chervy, S. Azzini, E. Lorchat, S. Wang, Y. Gorodetski, J. A. Hutchison, S. Berciaud, T. W. Ebbesen, and C. Genet, “Room Temperature Chiral Coupling of Valley Excitons with Spin-Momentum Locked Surface Plasmons,” ACS Photonics 5(4), 1281–1287 (2018).
[Crossref]

Nanoscale (1)

P. K. Nayak, F. C. Lin, C. H. Yeh, J. S. Huang, and P. W. Chiu, “Robust room temperature valley polarization in monolayer and bilayer WS2,” Nanoscale 8(11), 6035–6042 (2016).
[Crossref] [PubMed]

Nat. Commun. (1)

T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, and J. Feng, “Valley-selective circular dichroism of monolayer molybdenum disulphide,” Nat. Commun. 3(May), 885 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

E. J. Sie, J. W. McIver, Y. H. Lee, L. Fu, J. Kong, and N. Gedik, “Valley-selective optical Stark effect in monolayer WS2,” Nat. Mater. 14(3), 290–294 (2015).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

K. F. Mak, K. He, J. Shan, and T. F. Heinz, “Control of valley polarization in monolayer MoS2 by optical helicity,” Nat. Nanotechnol. 7(8), 494–498 (2012).
[Crossref] [PubMed]

Nat. Phys. (1)

A. Srivastava, M. Sidler, A. V. Allain, D. S. Lembke, A. Kis, and A. Imamoglu, “Valley Zeeman effect in elementary optical excitations of monolayer WSe2,” Nat. Phys. 11(2), 141–147 (2015).
[Crossref]

Optica (1)

Phys. Rev. B Condens. Matter Mater. Phys. (2)

Y. Zhao and A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B Condens. Matter Mater. Phys. 84(20), 1–6 (2011).
[Crossref]

C. R. Zhu, G. Wang, B. L. Liu, X. Marie, X. F. Qiao, X. Zhang, X. X. Wu, H. Fan, P. H. Tan, T. Amand, and B. Urbaszek, “Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2,” Phys. Rev. B Condens. Matter Mater. Phys. 88(12), 1–5 (2013).
[Crossref]

Phys. Rev. Lett. (1)

D. MacNeill, C. Heikes, K. F. Mak, Z. Anderson, A. Kormányos, V. Zólyomi, J. Park, and D. C. Ralph, “Breaking of valley degeneracy by magnetic field in monolayer MoSe2.,” Phys. Rev. Lett. 114(3), 037401 (2015).
[Crossref] [PubMed]

Science (3)

K. F. Mak, K. L. McGill, J. Park, and P. L. McEuen, “Valleytronics. The valley Hall effect in MoS₂ transistors,” Science 344(6191), 1489–1492 (2014).
[Crossref] [PubMed]

K. Y. Bliokh, D. Smirnova, and F. Nori, “Optics: Quantum spin Hall effect of light,” Science 348(6242), 1448–1451 (2015).
[Crossref] [PubMed]

S. H. Gong, F. Alpeggiani, B. Sciacca, E. C. Garnett, and L. Kuipers, “Nanoscale chiral valley-photon interface through optical spin-orbit coupling,” Science 359(6374), 443–447 (2018).
[Crossref] [PubMed]

Other (1)

L. Sun, C.-Y. Wang, A. Krasnok, J. Choi, J. Shi, J. S. Gomez-Diaz, A. Zepeda, S. Gwo, C.-K. Shih, A. Alu, and X. Li, “Routing Valley Excitons in a Monolayer MoS2 with a Metasurface,” arXiv:1801.06543 (2018).

Supplementary Material (2)

NameDescription
» Visualization 1       Left handed circular polarization generation for linear polarization incidence at +45 degrees incidence to the orthogonal nanorods as shown in Fig. 2e
» Visualization 2       Right-handed circular polarization generation for linear polarization incidence at +45 degrees incidence to the orthogonal nanorods as shown in Fig. 2f.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 a) Schematic of the valley polarization in TMD monolayer. b) Schematic of the chiral metasurface showing the linear polarization control on valley selective polarization. c) Optical image of the structure with WS2 monolayer. d) SEM image of Ge chiral metasurface, inset shows high magnification image of the chiral metasurface. The white dashed line indicates the boundary of the WS2 monolayer below the Ge metasurface.
Fig. 2
Fig. 2 (a) Dipole resonances of longer (blue) and shorter rod (red) for the linear polarization incidence along their longer axes. b) Near 90° phase difference resulting from linearly polarized light incident at + 45° with respect to both orthogonal rods as shown in (c). Schematic unit cell of the Chiral metasurface illustrating the linear polarization electric field excitation at (c) + 45° and (d) −45° with respect to the orthogonal rods, and the corresponding circular polarization with preferential handedness that is generated. Simulated electric field distributions arising from the two antennas for linear polarized excitation resulting in left (e) and right (f) circularly polarized light, respectively. Media files attached to the simulations show left handed and right handed circular polarizations from the metasurface for linear polarization incidence at +45° and-45° respectively (Visualization 1 and Visualization 2).
Fig. 3
Fig. 3 (a, b) Dipolar resonances for the linearly polarization incidence with in-plane polarization along (a) vertical and (b) horizontal rods. (c, d) Similar spectra for the linearly-polarized incidence with in-plane polarization at (c) + 45° and (d) −45° with respect to rods. White dashed lines are guide to eye to show the dipolar and chiral modes of resonances. e) Simulated wavelength dispersion of (black line) phase difference for chiral metasurface with WS2 monolayer. Wavelength dispersion of degree of circular polarization measured (blue circles) at different wavelengths of excitation. Red dashed line is a guide to eye. f) Reflected laser intensity from the chiral metasurface with WS2 for the excitation wavelength of 575 nm as a function of angle of rotation of the second linear polarizer (analyzer) for −45° (blue) and + 45° (red) incidence of in-plane linear polarization. Similarly, the black and green circles are measurement on reference bare silicon substrate.
Fig. 4
Fig. 4 k-space PL dispersions for the wavelength of excitation of 625 nm are resolved into σ + (left handed) and σ- (right handed) circular polarization emissions for the incidence of linear polarization at (a) −45° and (b) + 45°, as shown in the unit cell in Fig. 2.
Fig. 5
Fig. 5 k-space PL dispersions resolved into σ + (left handed) and σ- (right handed) circular polarization emissions for the incidence of linear polarization at −45°, as shown in the unit cell in Fig. 2 for the wavelengths of excitation (a) 600 nm, (b) 575 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

 ρ=  I( σ )I( σ + ) I( σ )+I( σ + )

Metrics